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Protective Measurements

Lev Vaidman

Protective measurement [1] is a method for measuring an expectation value of an
observable on a single quantum system. The quantum state of the system can be
protected by a potential, when the state is a nondegenerate energy eigenstate with a
known gap to neighboring states, or via � quantum Zeno effect by frequent projec-
tion measurements.

Apart from protection, the procedure consists of a standard von Neumann mea-
surement with weak coupling which is switched on and, after a long time, switched
off, adiabatically. The interaction Hamiltonian for protective measurement of O is:

Hint = g(t)PO, (1)

where P is a momentum conjugate to Q, the pointer variable of the measuring de-
vice. The interaction Hamiltonian is small as in weak measurements, [2, p. 845]. In
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both cases the initial state of the pointer is such that 〈Q〉in = 0, 〈P 〉in = 0. In weak
measurement, the weakness is due to small uncertainty in P which requires a large
uncertainty of the pointer variable Q. Thus, although for the final � wave function
of the pointer, 〈Q〉fin = 〈�|O|�〉, a single measurement does not allow obtaining
significant information about 〈�|O|�〉. In protective measurement, the pointer is
well localized at zero, which requires large uncertainty in P and the weakness is
due to a small value of the coupling g(t). The coupling to the measurement device
is weak, yet long enough so that we still have

∫
g(t)dt = 1. The result is again

〈Q〉fin = 〈�|O|�〉, but this time, the pointer is well localized, so we can learn the
value of the expectation value from a single experiment. This is so if during the
measurement, the quantum state of the system remains close to |�〉. Given the adi-
abatic switching of the measurement interaction, its small value, and the protection
of the state, this is indeed the case.

One of the basic results of quantum mechanics is that when a measurement of a
variable O with eigenvalues oi is performed on a quantum system described by the
state |�〉, the probabilities pi for obtaining outcome oi satisfy:

〈�|O|�〉 =
∑

pioi. (2)

This is why the expression 〈�|O|�〉 is called the expectation value of O . In protec-
tive measurements we obtain this value not as a statistical average, but as a reading
of a measuring device coupled to a single system.

A sufficient number of protective measurements performed on a single system
allow measuring its quantum wave function. This provides an argument against the
claim that the quantum wave function has a physical meaning only for an ensem-
ble of identical systems. Therefore, protective measurements have some merit even
when the protection is achieved via frequent projection measurements on the state
|�〉 with no new information obtained during the whole procedure. If the protection
of the state is via a known energy gap to any orthogonal state, then the protection
measurement provides new information: we can find the whole wave function. Thus,
protective measurement of the quantum wave function of an ion in a trap can yield
the the trap’s potential.

Numerous objections to the validity and meaning of protective measure-
ments have been raised [4–8]. The validity of the result was questioned due to
misunderstanding of what the protective measurement is [9–11]. The issue of mean-
ing: “Is the wave function of a single particle an ontological entity?” [3] is open
to various interpretations. Some will say ‘yes’ even before hearing about protec-
tive measurement, others say ‘no’ just because protective measurements are never
100% reliable. The protective measurement procedure is not a proof that we should
adopt one interpretation instead of the other, but it is a good testbed which shows
advantages and disadvantages of various interpretations. For example, the Bohmian
interpretation does not provide a natural explanation of how a protective measure-
ment can “draw” the whole wave function of an ion in a ground state of a trap, since
the Bohmian position of the ion hardly changes during the measurement [12, 13].



Protective Measurements 507

P

The protective measurements method can be extended to pre- and post-selected
systems described by a � two-state vector formalism 〈�| |�〉 [14]. It requires
separate different protections for the forward and backward evolving quantum states
which are achieved by pre- and post-selection of quantum states of systems which
provide the protection [15]. The outcome of such protective measurements is not the
expectation value, but the � weak value, 〈�|O|�〉〈�|�〉 [2, p. 845]. A realistic setup for
such protective measurement is a weak coupling to a variable of a decaying system
which is post-selected not to decay [16].

Theoretical analysis of protective measurements leads to deeper understanding of
quantum reality while its experimental realization (which seems feasible in a near
future) might be useful for more effective gathering of information about quantum
systems [17].
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