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Quantum advantages in classically defined tasks
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We analyze classically defined games for which a quantum team has an advantage over any classical team.
The quantum team has a clear advantage in games in which the players of each team are separated in space and
the quantum team can use unusually strong correlations of the Einstein-Podolsky-Rosen type. We present an
example of a classically defined game played at one location for which quantum players have a real advantage.
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Quantum-information research shows how quantum de-
vices can outperform devices working on the basis of classi-
cal physics for certain communication and computational
tasks. One of the clear ways to compare between the strength
of quantum and classical methods is to consider the advan-
tages of a quantum team playing games against a classical
team. Many papers give the impression that for nearly all
games ‘“quantum strategies” are advantageous compared to
classical strategies [1-8]. Van Enk and Pike [9,10], however,
have pointed out that quantized classical games differ as
games from their original classical counterparts, and that in
many cases quantum players cannot win against classical
players as long as the rules of the game are unchanged. We
find that in these games it is also important to analyze the
role of decoherence resulting from actions of classical play-
ers. This decoherence frequently eliminates the advantage of
quantum players.

Quantum objects and strategies can be useful in many
contexts. In quantum-cryptography applications, quantum
devices can replace the third trusted party needed for some
games (e.g., quantum gambling [11]). In numerous cases
where constraints on resources are involved, a quantum team
with N qubits is much more efficient than a classical team
with N bits [12,13], although it is not really a fair compari-
son. This raises the question: In which games, under equal
natural conditions, does a quantum team win against a clas-
sical team?

We can define a particular game as a competition for fac-
toring large numbers. A quantum player using Shor’s algo-
rithm [14] should win against a classical player by perform-
ing this task faster. However, it is not clear when a quantum
computer that outperforms a classical computer will be built
and, moreover, we do not have proof that a classical efficient
algorithm does not exist.

It is even less clear that a quantum team can win in a
competition on the minimum time for finding the answer to
the Deutsh-Jozsa problem [15], as Meyer suggests [16]. In
this game a black box is given which calculates a function
for various inputs. Even if we assume unlimited technologi-
cal power of the quantum team outside the black box, we
cannot be sure that inside the box the coherence needed for
quantum computation is preserved. We can imagine a quan-
tum box which preserves coherence and which can also serve
as a classical box for each possible input, but it is not a
particularly interesting observation that a classical team can-
not operate quantum devices efficiently. The question raised
in this regard is whether a quantum team outperforms a clas-
sical team in classically defined tasks.
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There is a well-known class of games in which a quantum
team with good quantum devices can unambiguously outper-
form any classical team. We call them Einstein-Podolsky-
Rosen (EPR) games, since the advantage of the quantum
team is based on the use of entangled systems exhibiting
EPR correlations, which are stronger than any possible clas-
sical correlations. Other names associated with these games
are pseudotelepathy [17,18] and Bell games [19].

In EPR-type games each team has two or more players at
separate locations. There is a known set of questions the
players can receive, a known set of possible answers, and a
payoff table for these answers. The players are not allowed to
communicate once the game begins (so they do not know
which questions the other team members were asked) but
they are allowed to communicate beforehand and share any
physical devices that might help them. The way to enforce
the rule that these devices must not allow the players to
communicate during the game is to have the players make
their moves before light signals signifying the other players
being given their questions can arrive. There are many ex-
amples of EPR games [20-23]. Conceptually, the simplest
and clearest EPR game is the one based on the Greenberger-
Horne-Zeilinger proof of nonlocality [24-26]. Note also
games based on the Zeno-type proof of Bell inequalities
[27,28].

Using a key distribution protocol [29], one can construct a
(rather artificial) game with players at two separate locations
in which teams equipped with quantum devices can have an
advantage even without entanglement. The task is to transmit
a message from one laboratory to another through an optical
fiber. One team has players at two laboratories, while the
second team has access to the fiber. The second team gains
points for correct guesses of the transmitted messages. The
first team gains points when it correctly catches the eaves-
dropping attempts, but loses points if it announces eaves-
dropping when the opponent has not touched the fiber. Teams
with quantum technology will have an advantage when the
allowed prior shared information is less than one time pad,
but enough to run the quantum protocol [29].

The question we want to analyze here is the following:
Are there games played at one location for which quantum
players have an advantage? An important candidate for such
a game is Meyer’s coin flipping problem [3]. A coin is placed
heads up. Alice, in her first move, can either flip or not flip
the coin. Bob, in his subsequent move, can also either flip or
not flip the coin, but he is not allowed to see the state of the
coin. Alice gets another turn in which she can again either
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flip or not flip the coin without looking at its state. She wins
if the final state of the coin is heads up.

Classically, each player has maximally a 50% chance of
winning. Meyer claims that, using quantum mechanics, Alice
can reach a 100% chance of winning. Meyer’s proposal is
that Alice, in her first move, should put the coin in the su-
perposition

#(|head> + [tail)). (1)
V2

Then, whatever Bob does, either flip or not flip, the state of
the coin remains unchanged, and Alice in her last move can
rotate the (quantum) state back to |head).

Van Enk [9] analyzed a particular realization of Meyer’s
proposal in which the sides of the coin were represented as
photon polarization states and showed that quantum rotation
to the superposition (1) is actually a classical rotation of the
polarization that Alice, even without quantum capabilities,
can perform. So, van Enk concluded that even classically
Alice can reach a 100% chance of winning.

Discussing Meyer’s proposal requires specifying its actual
realization. Van Enk mentioned that, when we consider an
actual coin, the classical analog of Alice’s quantum action is
putting the coin on its edge, which also yields a 100%
chance of winning. However, this is clearly a different game
because the set of allowed moves is enlarged. Note that a
coin standing on its edge is not described by the state (1).

In Meyers’s game with a real coin and original rules, nei-
ther the classical nor the quantum Alice can really always
win. Indeed, even if Alice, equipped with unlimited quantum
technology, is capable of creating the state (1), classical Bob
will not leave it unchanged after his turn. He is not supposed
to perform a careful, precise quantum experiment. Clearly,
when Bob takes the coin in his hand, its quantum state will
decohere and Alice will not be able to rotate it back to the
state |head).

Formally, Meyer’s idea, in which a quantum player puts
the system in a state that moves of the classical player do not
change, provides an advantage for the quantum player. How-
ever, we are not aware of any natural implementation of it as
a real game in which a quantum team, even with unlimited
technological power, will have an advantage over a classical
team. The game involves a classical player, and he invariably
causes decoherence of the quantum state, thereby eliminating
the advantage of the quantum player.

We claim that there is at least one game, played at one
location, in which quantum players can get better results than
classical players. This is the game based on the three-box
paradox [30]. Contrary to EPR games which do not involve
quantum objects, but where the quantum player uses a quan-
tum device to get the right advice for a classical move, in this
game, as in Meyer’s game, the object we play with is itself
quantum. And, as in Meyer’s game, Bob does not see that the
object he is playing with is a quantum one. The difference is
that, according to our game’s rules, Bob’s actions do not
cause the decoherence which ultimately spoils Alice’s quan-
tum moves.
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Our game is a three-stage game in which each player
makes his moves privately. Alice begins the game by prepar-
ing a single particle that she places inside two boxes or any
other place other than the two boxes. The particle can be
prepared in any possible state chosen by Alice. Bob, who has
no information about the chosen state of the system, can
make one of two possible moves, either look for the particle
in box A or look for the particle in box B. To avoid any
possible cheating by Alice, Bob can occasionally, instead of
his legitimate move, open two boxes to make sure that Alice
does not use two particles. Alice is not allowed to see Bob’s
move, but there is a third trusted party which observes Bob’s
action and which can see if Bob finds the particle. Bob’s
objective is to leave no trace of his action, so he tries to leave
the box exactly as it was before. He is not allowed to touch
the box that he chooses not to open. Then Alice, in her turn,
gets access to the boxes and can perform any measurement
she wants. She then has the option of either canceling or
accepting this trial of the game. She wins if Bob finds the
particle. Alice’s objective is to maximize the probability of
the trials she does not cancel in which Bob finds the particle.

It is clear that if Alice can use only classical objects she
cannot obtain more than a 50% chance of winning. It seems
that placing the particle outside the two boxes can only re-
duce Bob’s chances of finding the particle and consequently
Alice’s chances of winning. Placing the particle in one of the
boxes A or B leads to a 50% chance of Bob finding the
particle. Alice’s last move seems useless; Bob’s finding or
not finding the particle does not change the system, so her
allowed measurement cannot help. She gets no information
about those cases when it is in her interest to cancel the game
trial.

However, Alice equipped with quantum devices can reach
a 100% chance of winning. She prepares the particle in a
quantum state which is a superposition of being in three
boxes A, B, and C. The boxes A and B are the ones Bob plays
with. The third box she keeps for herself; Bob need not know
about it. The state is

1) =—=(A) + |B) + C)). 2)
V3

where the states |A), |B), and |C) denote the particle being in
box A, B, and C, respectively.

Now, Bob opens either box A or box B. He has a chance
of one-third to find the particle in the box. Let us assume he
opens box A. (The game is symmetric with respect to the
choices of A and B.) If Bob finds the particle in the box, its
quantum state becomes

| ina) = |A). (3)

If he does not find the particle in the box, its quantum state
becomes

1
|¢not find) = _/_(|B> + |C>) (4)
V2

Since Bob is not allowed to touch the other box, i.e., box B,
the final quantum state in this case is exactly (4). We assume
that Alice’s technological abilities are sufficient to build ro-
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bust boxes which, if untouched, keep the quantum state of
the particle inside them undisturbed. Bob’s action with box
A, even if he is not careful, will not cause a change in the
state (4). Bob tries to leave no trace of his action, but if he
finds the particle in A and he is not careful, he might disturb
the quantum state (3).

Alice, in her turn, makes a projective measurement of the
particle on the state

[ = =(A) +|B) - C)). (5)
V3

If she finds the state, she accepts the game trial, and if she
does not, she cancels it.
Now we see that Alice cannot lose:

<¢nol find|¢> =0, (6)

so the probability of Alice finding this particular state if Bob
did not find the particle is zero. And this is not sensitive to
Bob’s action, provided he follows the rules. If Bob does find
the particle and the final state is (3), we obtain

1
(indl ) = . (7)
V3

Thus, Alice will accept the game with a probability of one-
third. This probability becomes smaller if Bob is not careful
and disturbs the state of the particle in box A. Alice declares
“game on” only in the trials she wins, and never when she
would lose.

We have shown that, apart from games played in separate
locations, in which the EPR correlations give advantage to a
quantum team, there are classically defined games in one
location in which a classical player unaware of quantum me-
chanics should not suspect anything strange except for the
unexplained fact that he loses. The essence of the quantum
team’s advantage here is that, whereas in classical physics
during “an observation of a particle” either we find it or we
do not, we do not change the state of the particle, in quantum
mechanics “observation of a particle” does change its state,
provided that the particle started in a superposition. (Com-
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pare this with Meyer’s example in which the action always
changes “classical” states, and does not change the superpo-
sition state.)

Note that it is possible to find EPR correlations in our
system. Indeed, there is an entanglement between boxes. It is
possible to devise local experiments at different boxes show-
ing violation of Bell’s inequality [31]. However, in our game
we do not have a team of players each addressing a particular
box, so this entanglement is not the source of the advantage
of the quantum player. The locality aspect of our game, i.e.,
that the three boxes are not at the same place, is crucial for
the issue of decoherence. Opening one box does not disturb
the relative phase between parts of the quantum wave in
other boxes.

One might gain an additional insight from viewing our
game in the framework of the two-state vector approach [32].
The essence of the quantum advantage in this picture is that,
while the state of a classical system at a particular time
yields everything one can know about this system given a
known environment, in quantum mechanics, future measure-
ments might add information about the present of a quantum
system even if everything about the past is known. This is
why quantum Alice can benefit from her measurement after
Bob’s observation.

Although there are real experiments testing these quantum
predictions [33], and there are demonstrations of other games
[34], today’s technology does not yet enable one to win
games using quantum devices [28]. It seems, however, that
we are not very far from this stage in technological develop-
ment.

Finally, we hope that our analysis of transforming the
three box paradox into a game in which a quantum team
wins against any classical team will put an end to the con-
troversy about the classical analogy of the three-box paradox
[35-38]. In all proposed classical “analogies” of the three-
box paradox, the intermediate measurement changes the state
of the system, while an observation of a classical particle in
a box does not.
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