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UTILIZATION OF IDLE TIME IN 
AN M/G/1 QUEUEING SYSTEM* 

YONATAN LEVY AND URI YECHIALI 

Tel-A viv University 

This paper studies an M/G/1 queue where the idle time of the server is utilized 
for additional work in a secondary system. As usual, the server is busy as long as 
there are units in the main system. However, as soon as the server becomes idle he 
leaves for a "vacation." The duration of a vacation is a random variable with a 
known distribution function. Two models are considered. In the first, upon 
termination of a vacation the server returns to the main queue and begins to serve 
those units, if any, that have arrived during the vacation. If no units have arrived the 
server waits for the first arrival when an ordinary M/G/I1 busy period is initiated. In 
the second model, if the server finds the system empty at the end of a vacation, he 
immediately takes another vacation, etc. For both models Laplace-Stieltjes 
transforms of the occupation period, vacation period and waiting time are derived 
and generating functions of the number of units in the system are calculated. The 
two models are then compared to each other, and for some special cases the optimal 
mean vacation times are found. 

1. Introduction 

We consider an M/G/ 1 queueing system where, as usual, the server serves the queue 
continuously as long as there is at least one unit in the system. When the server finishes 
serving a unit and finds the system empty he goes away for a length of time called a 
vacation. The vacation time is utilized for some additional work so that the idle time of 
the server is not completely lost. At the end of the vacation the server returns to the 
main system. 

We study two models. In the first one, upon termination of a single vacation, the 
server returns to the main queue and begins to serve those units, if any, that have 
arrived during the vacation. If no units have arrived the server waits for the first one to 
arrive when an ordinary M/G/1 busy period is initiated. In the second model, if the 
server finds the system empty at the end of a vacation, he immediately takes another 
vacation, and continues in this manner until he finds at least one waiting unit upon 
return from a vacation. 

Although it seems that (because of the Poissonian properties of the arrival stream) 
Model 2 is superior to Model 1, there may be cases where Model 1 is the more 
reasonable one. For example, suppose that the server is a machine that is being checked 
each time it becomes idle. Clearly, there is no point in checking it again before it 
resumes operating again. 

The analysis of the above two models, besides being interesting by itself as a possible 
solution for the problem of utilization of the server's idle time, may be used as an 
intermediate step for the analysis of other queueing models such as priority queues, 
cyclic queues, etc. For example, the second model has been partially used by Cooper 
[2] to analyze a system of queues served in cyclic order. In that study, for any given 
queue, say i, the "vacation time" is the length of time the server spends idle or working 
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on other queues before returning and beginning service on queue i. However, Cooper 
was not interested in the length of time the server spends outside queue i, but only in the 
number of customers the server finds upon return. In our study we analyze this model 
completely (using a somewhat different technique) and obtain detailed and explicit 
results. Yadin and Naor [5] and Heyman [3] analyzed an M/G/1 system where the 
service facility is turned off when no customers are present and is turned on only when 
the rth unit has arrived. Yadin and Naor's model differs from ours in that the server 
returns to the main queue immediately when the r th unit arrives, while in our model the 
server reutrns to the main queue only upon termination of its vacation-independent 
of the number of customers present there. 

In ?2 Model 1 is analyzed. We obtain the Laplace-Stieltjes (LS) transforms for the 
occupation period and cycle time. We then consider an embedded Markov chain 
defined on an extended state space, derive the generating functions of the limiting 
probabilities and calculate the mean queue size. 

Model 2 is studied in ?3. LS transforms, generating functions and mean queue size 
are calculated. In addition, the average waiting time of a customer is derived as a 
limiting case of Cobham's [1] nonpreemptive priority model. In ?4 we compare the two 
models and find optimal vacation lengths for some special cases. 

2. Model 1 

We consider an M/G/ 1 queueing system where the stream of arrivals is a 
homogeneous Poisson process with rate X. The service times VI, V2,. .. are independent 
random variables having common distribution H(v) and finite mean E(V). When a 
service is completed and no customers are present in the system the server leaves for a 
"vacation" (which may be utilized for some additional and different work) whose 
duration U is a random variable with distribution F(u) and finite mean E(U). After 
finishing his "vacation" the server returns to the main system. If, on returning, the 
server finds customers waiting for him (customers who arrived during the "vacation" 
time U) he starts service immediately and keeps busy until the system becomes idle 
again' and he leaves for another vacation. If no customers have arrived during the 
vacation time the server waits for the first customer to arrive when an ordinary M/G/ 1 
busy period starts. At the termination of the busy period the server takes another 
vacation, etc. 

2.1. Occupation Period and Cycle Time 

Let the occupation period T, be the total time elapsing from the moment the server 
returns from a vacation until he leaves for another one, and let T1, T2,. ., Ti, ... represent 
a sequence of ordinary busy periods in an M/G/l queue. Also, let N be the number of 
customers present at the end of a vacation, then 

(1) ~~~TS X X+T1 if N=O, 

- T1 + T2 + ...+ TN if N 1. 

The cycle time, T, is thus given by T TS + U. 
For any random variable, say Y, we denote its Laplace-Stieltjes transform (LST) by 

Fy(z) = E{e- zY}. 

The LST's of T, and Tare now readily obtained. Let 

(2) b P(N =j) f0 e -t (Xt)j/j! dF(t) (j = 0, 1, 2, 
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By conditioning on N and recalling Tx(z) = X/(X + z), we obtain 

(3) FTj(z) = ?+ z F7Ti(z)FuQ) + FU(X-XMT1(z)) - ru(X). 

Since U and Tl are not independent the LST of T is not the product of the LST's of U 
and T, However, FT(z) is derived by conditioning on U and N 

(4) J'T(Z) = _ z FT,(z))u(A+?z) + Fu(X+Z-M'T1(z)) - Tu(A+?Z). 

Now, the mean cycle time is 

(5) E(T) = (l/X + E(T1 ))(T'(A) + AE(LU )). 

Using the well-known result [4] that E(T1 ) E( V) /( - XE( V) ) we finally have 

(6) E(T) -E())] [fu(X) + E(U)] 

and 

(7) E(Ts )=E(T)-E(U) f u ()t) + AE(U)E(T)] 

Let PO. denote the fraction of time the server spends Oil vacatioii. Clearly 

(8) po.- E(U) [1 - XE(V)] XE(U) 
E(T) [XE(U) ?+ Fu(\) 

The proportion of time that the server is not busy serving customers in the main system 
(i.e., when he is either on vacation or idle) is 

(9) E(U) + (1/X)P(N = O) = - IXE( V). 

E(T) 

Result (9) indicates, as is intuitively clear, that the condition for the system to be in a 
steady state regime is 1 > XE(V), as is the case in the ordinary M/G/1 queue. The 
difference between the two models is that in our case a single busy period is 
(stochastically) longer than a single busy period in the ordinary M/G/I1 queue. 

2.2. An Extended-Markov-Chalin Representation 

The common approach now would be to consider the system at epochs of service 
completion or vacation termination, and to define a Markov chain with transitions 
occurring at these instants. However, if we then want to find the mean number of 
customers in the system we cannot apply the standard argument that each departing 
unit leaves behind it precisely those units that arrived during its sojourn time. The 
problem is that if we define the state space to be {O, 1, 2, 3, ... } then for each state] 
there is no distinction between the epoch of departure and the epoch of vacation 
terminaLtion. To distinguish between these two instants we define an extended state 
space {(i, j): i = 0, 1; j = 0, 1, 2, ... } such that if i 0 O thenj counts the number of 
customers at epochs of vacation termination, and if i 1 thenj denotes the number of 
customers immediately after a service completion. 
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If t t2 - tn are transition moments and T(t) denotes the state of the system at time 
t, then the sequence of random variables (in,]n) T(tn + 0) determines a semi-Markov 
chain with a law of transition given by 

(in+l, jn+l ) =(1,in + -1) n -1,1 

(10) =(1, 0) i1,jl (O, 0), 

=(0, NV), (in, in) =1, O), 

where t denotes the number of arrivals during a service time. 
Let ak =P(t k) = f0 e-V (XT7)k/k! dH(V) (k = 0, 1, 2, ), then, when in a 

steady-state regime, there exists a unique distribution r,,j= limn, P(in 
in- j), i = 0, 1; j 0 O, 1, 2, .. ., that satisfies 

(lla) TO,j = 7rT,0bj, j =0, 1, 2, 

(I lb) 910j 90,0aj + Ekj=l 7Tk a-k?1= j O, 0, 1, 2, 

(1 lc) E0 j>f7,j= 

where 

(12) + 

Define the generating functions 

(13a) A(z) = E=O a zi B(z) = I?c) b zi and 

qi (z) - E Zj, (i - 0, 1); 

(13b) ~()~0z ~z 7T(Z) =770 (Z) + 7T 1 (Z) =,9 0 7? T. j Z. 

Multiplying each of the equations (1 la) and (1 Ib) by z' and summing overj we arrive at 

(14ea) 7To (Z)-T =j,B(z), 

(14b) q7T(z) = 7TO oA(z) + [rT(0)A(:) - ) T.0A()]/. 

Using (1la), (12) and ( 14) we obtaini 

(15a) qrI (z) - bo A (z) (z- 1) + A (z) [B(z) - 1] 0 
z -A(z) 

(15b) g(z) - zB(z) - A(z) + boA(z) (z- 1) 7 l0 . 

z - A(z) 

It follows that a solution exists if A(z) = z does not have a solution in the interval (0, 1), 
which is true if 2, h= ka XE( V) < 1. 

Applying l'Hopital's rule on (15b) and (15a) one gets 

(11 (l) 1 ? XE(U) -XE(V) + bo (16a) 1 Tl 

1 - XE( V) OO bo + XE(U) (16b) 1._ zj0 171,j _ - - XE(+ ) + 1E(U 

bo + AE(U) 

1-AXE(V) + bo + AE(U) 
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1. is the probability that at a transition instant a service completion has occurred. 
We proceed now to find the LST of the waiting time distribution of an arbitrary 

arrival. Let C() be the distribution function of an arbitrary unit's sojourn time, W, 
defined as the elapsed time between the unit's arrival and departure epochs. This 
customer leaves behind himj customers with probability 71' /71.. Hence 

(17)=fe- (x) 
7Tl,j /71l 0 e A j! dQ(t), j = ?, i, 2,.. 

Substituting (17) in (13) yields (analogous to the ordinary M/G/ 1 queue) 

(18) 71 (z) = FW [x(l -Z) ] 7r. 

Differentiating (18) with respect to z we obtain 

(19) 7T1(1)/71. = -XTY (0) = XE(W). 

Hence, from Little's law, the mean number of customers in the system is 

(20) L (1)/71@ 

The specific calculations for 7' (1) result in 

X2E(V2) X2E(U2) 
(21) L XE( V) + 2(1 - XE(V)) 2(bo + XE(U)) 

We observe that the first two terms in (21) give the well-known Khintchine-Pollaczek 
formula for the ordinary M/G/ 1 queue, while the third term in (21) is the result of the 
serverfs vacation periods and, indeed, is independent of the service time. 

The LS transform of Wis calculated using (15), (16b), and (18). Letting a = X(l - z) 
and, since A(z) = Fv((I - z)) and B(z) Ft(,( I -)), one obtains 

(22) W (a) (1 - XE(V) ) (1 - 'a( bo /X+ ) / v(a) 
bo + XE(U) F1v(a) - (1 - a/X)) 

3. Model 2 
We consider now a variation of the model studied previously. In this variation the 

underlying structure is, as before, an M/G/I1 queue with server's vacations. However, 
in this case if the server fiinds the system empty at the end of a vacation, he immediately 
takes another vacation, and continues in this manner until he finds at least one waiting 
unit upon return from vacation. 

We distinguish between a single vacation, U, having distribution F( ), and a 
'vacation period,' TR, defined as the time elapsed between the moment the server 
leaves the main system (after a service completion) and the moment he starts serving 
again. 

Again, T, is the occupation period in which, contrary to the first model, the server is 
always busy. In the sequel we use the same notations as for the first model. 

A vacation period, TR, is the sum of geometric number (with parameter bo= FU(A)) 
of independent vacations U. Thus 

(23) FTR(Z) = tO [FU(Z)]k+l bok ( - bo) (1 - bo )U(z) 
R 1-1b - bo Fu(z) 

An occupation period is composed of j ordinary M/G/l busy periods if the server 
findsj units waiting for service upon return from vacation. Similar to Model 1 we get 
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(24) FTS (Z) = (Fu [A-V T, (z)] - bo )/(l - bo) 
The respective means of TR and TS are 

(25) E(TR) = E(U)/( 1-b0) 

which is intuitively clear because of the geometric distribution of the number of 
vacations in a vacation period, and 

(26) 
E(Ts) 

- AE(U)E(T1) - XE(U)) E(V) 

1-bo 
0 - 

bo I - E(V)f/ 
The expected.cycle time is given by 

(27) E(T) =E(TR) + E(TS) E(U) 
(1 - bo)(I -XAE(V)) 

hence, the fraction of time that the server is vacationing is 

(28) PO. E(TR )/E(T) = I -A.E( V) 
which is the proportion of time the server is idle in an ordinary M/G/I queue. 
However, the occupation period is longer than an ordinary busy period in an M/ G/I1 queue since the former starts withj _ 1 customers while the latter always starts with a 
single cuistomer. This is also seen from (26) since AE(U ) > 1 -bo . 

In order to be able to derive the LST of the waiting time, W, and to calculate the 
mean number of customers in the system we define an embedded Markov chain with a state space identical to the one introduced in ? 2.2 except for the (0, 0) state which does not exist in this model. We have 

(2) (in+1 jn+1 (1, in + 1) in-, 

=(O,N*) (i7n Iin,) (I0), 

where N* is the number of customers present at the end of a vacation period. Clearly, P(N* j) bj /(I -bo ), j = 1, 2, .... The limiting probabilities i j] satisfy the 
following equations 

(30a) b1 (30a) ~~~~7To,j = 7 bi1,on j = i, 2^ .. 

(30b) -7. = 
Ek=1 7-kal-k+l, j 0, 1, 2, 

Using standard procedures we arrive at 

(31) 70 (z) 1 )-b 0 
7r1, 

(31()) - 

A(z)(B(z)- 

1)/(l 

- 

b) 
(31) ' 

z)z - A(z) 
T1,0 

Again, it is seen that the condition for the existence of positive limiting probabilities is 
the nonexistence of a solution for A(z) = z in the interval (0, 1). 

NowE 

(33) 7T, X~~E(U) 
T, (33) qtl(1 

(1-~bo )(I - /E(V)) X 
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Since .7T (1) + =1 we arrive at 

(34) (1,o = - AE(V))[1 - AE(V) + AE(U)/(1 - bo)] 1- 

Substituting (34) in (31) and (32) yields the complete expressions for 70 (z) and 71 (z). 
Result (32) as well as the expression for 71,0 /71 (1), given by (33), were obtained by 

Cooper ([2], equations (12) and (13), respectively) while observing the system only at 
epochs of departure. 

The mean number of customers in the system is derived in a way similar to the 
derivation of (21) and is 

(35) L = XE( V) + X2E(V2) XE(U2) 
2(1 - XE(V)) 2E(U) 

Note that the mean waiting time of an arbitrary arrival until the end of a vacation is 
given by the, so-called, Random Modification and is E(U2)/(2E(U)). Hence the 
average increase in queue length due to vacations is given by the third term of (35). 

Equation (18) holds for this model as well, and hence 

(36) F(a) (1 
- XE(V) ) (( 

I F 
U(a) 1 -v(a)( XE(U) Fv(a) - (1 - aX 

Representation as a Limiting Case of a Nonpreemptive 

The average waiting time E( W,) = L/ - E( V) may be derived as a limiting case 
of the nonpreemptive priority model developed by Cobham [1] . The queue in the main 
system is considered to have a higher priority over a dummy saturated lower-priority 
queue. Whenever the server completes serving all higher-priority customers he turns to 
the lower-priority queue where each single vacation is considered as a service time. 
However, Cobham's results are true for an unsaturated system. His well-known 
formula for the waiting time of an arbitrary arrival in the higher-priority queue is 

(37) E(W ) - X1E(V12) + X2 E(V22) 
W2(1 ,EV) 

where ?, and E( Vi), i = 1, 2, are the mean arrival rates and service times, respectively. 
Thus, when X1E(V1) + X2E(V2)-> 1, 

E(WI) 2(> XE(V) + 
___ 

2(l -IE(V1)) 2E(V2) 

Letting X = ; E(V1) E(V), E(V2) E(U) we have lim E(W1) E(Wq), i.e., 

(38) E( Wcl) = XE(V2) ?E(U2) 

2(1 - XE(V)) 2E(U) 

which may be obtained directly from (35). 

4. Comparison Between the Models and Optimization 

The two models analyzed previously differ from each other only by their vacation 
policy. While in the second model the entire idle time of the server is utilized, only part 
of it is being used in the first one. This fact is seen quantitatively if we compare the 
mean queue lengths and the fraction of time the server spends vacationing in each of 
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the two models. Considering (21) and (35) and denoting by L'i the third terms of L in 
model i(i- 1, 2) we get L1'/Lj XE(U)/(bo + XE(U)) f < 1, i.e., for a given 
arrival rate X and vacation distribution F(.) the mean queue in Model 1 is always 
smaller than its correspondence in Model 2. A similar result is true for the fraction of 
time the server spends on vacation as is readily seen from (8) and (28). This is why the 
occupation periods and the customers' waiting times are longer in Model 2. 

We suppose now that a vacation period's set-up cost is K, the waiting cost of a 
customer is c per unit time, and the reward for the work done during the vacation is r 
per unit time. The revenue per unit time is given by 

(39) R - rPo. - KjE(T) - cL' 

where, for each of the two models, L' is the excess queue due to vacations. Denote by R, 
the revenue for model i (i - 1, 2) and let p - XE( V), then 

(40a) R r(1 - p)f- K (1-P) e XE(U2) f 
E(U) 2E(U) 

(40b) R - r(I -p)- K (I P) (I1-bo _ A E(U2), 
E(U) 2E( U) 

from which 

(41) R (R2 - K ( p) bo) f 
E(U) / 

From (41) it follows that if R1 > 0 then, sincef < 1, R2 > RL. Moreover, R2 > 0 
implies that R9 > R1. That is, if, for a given vacation distribution F(.), it is profitable to 
operate a system that utilizes the idle time of the server, then it is always better to 
operate it under the policy of Model 2. However, there may be cases where R2 c o. 
Clearly, R2 _ 0 X R1 < 0. In such cases it is not at all clear that Model 2 is superior to 
using(41), itfollowsthatR2 < (=)R1 if andonlyif R2 < ()- A(1 - p)K. Thatis, 
external considerations, we are obliged to operate the system using vacations.) Again, 
using (41), it follows that R2 < (=) R1 if and only if R2 < (=) - X(l - p)K. That is, 
for a fixed distribution F(.) Model 2 is superior to Model 1 if and only if 

(42) R2 > -A( -p)K. 

We now turn to find the optimal vacation lengths. From (40) it is readily seen that Ri is 
dependent on F(.) through E(U), E(U2 ) and bo . Thus, it is impossible to find the 
optimal Ri explicitly. Nevertheless, we will consider the exponential and deterministic 
distributions as special cases. 

We start with Model 1. Let E(U) = y. Hence, for the exponential case, E( U2) 2y2 
and bo = 1/(1 + Ay). Substituting in (40a) yields 

(43) R IR(y) X2y2 + Xy + 1 [(ry - K)(l - p) - CXy2]. 

To find the optimal vacation mean we differentiate with respect toy, equate to zero and 
obtain a fourth-degree polynomial in y from which the optimal value, y*, may be 
calculated numerically. We just show that RI (y) assumes its maximum in the interval 
(0, oo). The function R1( y) satisfies 

(44a) R'1(0) = Xr( - p) > 0, 
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(44b) Rl(y) )-o - X(1 - p)K, 

(44c) RI(y) ->,- oo. 

That is, the revenue function is finite at the origin, increasing at the neighborlhood of 
zero and goes to -oo asy -> oo. Hence, there must exist at least one pointy* E (0, 00) 

for which Rl(y*) is maximum. 
For the deterministic case (again, E( U) y) 

(45) RI(y) = N\Y+ [ X (2y-K)(1-p)- ?cXy2]. 

It is easy to verify that equations (44)(a), (b), (c) hold as well and the consequences are 
the same. 

For Model 2, as is intuitively clear, the profit from the vacation, (r(l-p), is 
independent of the vacation length, and therefore, the objective is to minimize the cost 
caused by the vacation. For example, if no set-up cost is incurred (K = 0) then R2 is 
dependent on the ratio E(U2)/E(U). For many distributions this ratio increases with 
E(U) (e.g., deterministic and exponential) and we wish to have the smallest vacation 
possible. For the normal distribution with fixed varience a2 this ratio is a convex 
function of E(U) and has a minimum at E(U) = a. When K # 0 one would look for an 
optimal vacation length. Considering the exponential case 

(46) R2(y) = r( - p) - cXy - KX(1 - p)/(l + Xy). 

Since -(1 + Xy)Y1 is concave for y > 0, then so is R2(y) Thus, if R2(y) has an 
extremum in (0, oo) this is a maximum point. If an extremum does not exist then the 
maximum is at zero, since R2(y) -> -oo as y -> oo and R2(y) -> (r - XK)(1 - p) as 
y -> 0. To derive the condition fory* > 0 we let R'2(y) = 0 which yields 

(47) cx2y2 + 2cXy + c-X(1-p)K= O. 

The solution of (47) is 

(48) y =?A [?i (1 - p)K/c)? - 1]. 

The condition for y* > 0 is 

(49) X(1 - p)K > c. 

Thus, the optimal vacation mean is 

(50) = A-1 [X(l - p)K/c)112 - 1] if X(I - p)K > c, 

0 otherwise. 

For a deterministic vacation we get 

(51) R2(y) = r ( - p) - %cXy - K(l - p)( l - e "' )/y. 

One can show that fory > 0, (1 - e -Ay )/y is strictly convex and hence R2(y) is strictly 
concave. Thus, if there is an extremum in (0, oo) it is a unique maximum. Since R2( y) 
has a continuous derivative there is a maximum in (0, oo) if and only if Rj'(0) > 0. 
Using l'Hopital's rule it is readily derived that 

limy-+OR2j(y) = - 1cX + X2(1 - p)K/2, 

i.e., R2j(0) > 0 < X(1 - p)K > c, which is the same condition as for the exponential 
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case. Also, if RO(O) _ 0, it follows, using the same arguments, that y" - 0, i.e., 'no 
vacations' is the best strategy. 

For the special case where K 0 O (42) simply implies that Model 2 is superior to 
Model 1 if and only if R2 > 0, and if F( ) is exponential (deterministic) then by (46) (by 
(51)) R2(y) < O iffy > r (1 - p)/c (y > 2r (1 - p)/c). 
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