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Abstract

We develop a theory of the double layer at electrolyte � electrolyte interfaces with account for the finite thickness of the
interfacial region. This includes the distribution of ions between the two phases and smooth variation of dielectric properties
across the interface. The theory offers simple laws for the dependence of the double layer capacitance on the nature of ions, ionic
concentrations and potential, which are in line with experimental observations. The theory shows which parameters reflect the
nature of ions and the structure of the interface, and how these parameters can be extracted from the capacitance data. © 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

The electrochemistry of interfaces between two im-
miscible electrolyte solutions (ITIES) is a rapidly
emerging interdisciplinary field where soft matter
physics [1] and statistical physics of liquids [2,3] meet
electrochemistry [4–7]. ITIES is a model system for
reaction-kinetics, biomimetic systems, and a real
medium for industrial phase transfer catalysis [5–7].
One of the solvents is usually water, and the other is a
hydrophobic, low polar organic liquid. Such an inter-
face separates hydrophilic and hydrophobic ions. When
the two salts are dissolved in this system, one composed
of hydrophobic and the other of hydrophilic ions, they
form two ‘back-to-back’ electrical double layers and the
interface can be polarized [5–7]. The resulting electric
field across the interface affects a variety of phenomena
which occur at the interface.

Since the pioneering works of Gavach and coworkers
[8,9] interfaces between two immiscible electrolyte solu-
tions have received considerable attention. Most of
what is known experimentally has been obtained by
classical electrochemical techniques including cyclic
voltammetry and impedance measurements [5,6,10–12].
Thus one of the most basic experimental characteristics
of the interface between two immiscible liquids is a
double layer capacitance. Recently new experimental
techniques such as second harmonic generation [13–
15], time-resolved quasi-elastic laser scattering [16] and
neutron scattering [17] have been applied to study these
interfaces. However, in spite of numerous efforts, the
structure of the ITIES is still a matter of controversy
and there is no unambiguous picture for interpretation
of electrochemical experimental data.

The first models of liquid � liquid interfaces in electro-
chemistry treated them as flat and sharp. It was pro-
posed that the interface consists of two diffuse
space-charge regions separated by a compact ion-free
layer [5,6,10], though the physical origin of the latter
was not obvious in the liquid � liquid system. The treat-
ment of interfacial capacitance in terms of the capaci-
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tance of two ‘back-to-back’ Gouy–Chapman double
layers works fairly well for some electrolytes, while it
fails for the majority of others [5,6,10,12,18–20]. In
contrast to the predictions of the simple Gouy–Chap-
man theory, it was found that the capacitance of ITIES
depends on the nature of the ions [6,12,18–22]. Often
the capacitance curves show a strong asymmetry as a
function of the potential. The discrepancy between
experimental results and the Gouy–Chapman theory
has stimulated theoretical work, which went beyond the
classical scheme. The first step in this direction was
made in pioneering work [21–23], where the ‘mixed
boundary layer’ was introduced and the effect of over-
lapping of the two space-charge regions on the double
layer capacitance was considered. The authors used a
quasi-chemical approximation [21,22] and Monte-Carlo
simulations [23] to calculate the z-dependent (normal to
the interface) density profiles of the ions. Then the
Poisson–Boltzmann equation was solved numerically
assuming, for computational simplicity, that the dielec-
tric constants of the two solvents are equal to each
other and do not vary with the distance from the
interface. It was found that in some cases the penetra-
tion of ions from one solution into another led to an
increase of the double layer capacitance with respect to
Gouy–Chapman results, but in other systems the oppo-
site effect was found.

The essentially numerical studies of capacitance [21–
23] revealed the effect of the mixed layer. However,
they did not disclose general laws for the capacitance of
this interface. For instance a number of questions re-
main open.
� Which characteristics of the ionic density profiles

determine the observed dependences of the capaci-
tance on the nature of the ions?

� Which parameters control the sign of the deviation
of the capacitance from the Gouy–Chapman result
and the asymmetry of the capacitance curves as a
function of the potential?

� What information on the free energy profile of the
ions across the interface can be obtained from the
capacitance data?
Moreover, the smearing of the interface between two

solvents may be manifest in the smooth variation of
dielectric properties across the interface (even if the
interface is sharp, similar effects emerge due to the
non-local dielectric polarizability [24–31]). This prop-
erty was not considered in Refs. [21–23].

In order to answer these questions we develop an
analytical theory of the double layer at ITIES. The
theory is based on a modified non-linear Poisson–
Boltzmann equation, which takes into account the
overlap of the two back-to-back double layers in the
interfacial region and a smooth variation of dielectric
properties across the interface. The analytical solution
of this equation is obtained within the perturbation
theory, which utilizes the smallness of the ratio of the
‘mixed layer’ thickness to the Gouy lengths in the
adjacent solutions, an approximation which is valid for
not too concentrated solutions and not too high voltage
drops across the interface. Note that the most interest-
ing results have been observed in the region of low
ionic concentrations [6,10,12,18–22], and the theory is
well justified there.

We derive a formula for capacitance, which demon-
strates that the dependence of the capacitance on the
nature of the ion is controlled by three integral parame-
ters. These parameters are independent of the potential
and ionic concentrations. They are expressed through
z-dependent profiles of the short-range contribution to
the free-energy of ion transfer across the interface and
through the dielectric profile of the solvent � solvent
interface. The dependences of these integral parameters
on the type of ion can be disclosed on the basis of a
microscopic model of the interface [21–23] or molecu-
lar dynamics simulations [4]. On the other hand these
parameters can be extracted from the capacitance mea-
surements, and their dependence on the nature of the
ion can be traced. Thus the theory suggests a new
framework for the treatment of the capacitance data
and establishes a relationship between experimental
results and the microscopic structure of ITIES.

2. Double layer theory

Consider a contact between two immiscible elec-
trolyte solutions (Fig. 1) characterized by dielectric
constants, o1 and o2, and Debye lengths, k1

−1 and k2
−1,

respectively. For 1–1 binary electrolyte solutions
k i

−1= (oikBT/8pni
0e2)1/2, where ni

0 is the bulk electrolyte
concentration in the corresponding phase (i=1,2), e is
the charge of a proton, T is the temperature, and kB is
the Boltzmann constant. In the present paper we as-
sume that the ions that have affinity to one solution

Fig. 1. An interface between two immiscible electrolyte solutions:
dielectric profile, o(z) (upper curve) and distributions of ionic concen-
trations, ni(z) (lower curve).
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cannot penetrate into the bulk of the other solution, in
other words the system ‘stays inside’ the potential win-
dow over which the interface is ideally polarizable.
Then the bulk of solvent 1 (z�0), contains only anions
and cations of sort 1, (1

9), while the bulk of solvent 2
(z�0) contains ions of sort 2 (2

9). Here we also assume
that the interface is flat and all properties of the system
are functions of the distance from the interface, z, only.

2.1. Free energy functional

Density profiles of the ions and electric field distribu-
tion at the interface can be calculated using the func-
tional of the free energy of two contacting electrolyte
solutions.

We use the functional which contains the following
generic terms: the electrostatic energy, Fe, the short
range contribution to the free-energy of ion transfer
across the interface, Ftr, and the entropy of diluted
electrolytes, Fs:

F=Fe+Ftr+Fs (1)

where

Fe= −
1

8p
& +�

−�

dzo(z)[9f(z)]2

+e %
2

i=1

& +�

−�

dzf(z)(ni
+(z)−ni

−(z))−EQ (2)

Ftr= %
2

i=1

& +�

−�

dz [ f i
+(z)ni

+(z)+ f i
−(z)ni

−(z)] (3)

and

Fs=kBT %
2

i=1

!& +�

−�

dz [ni
+(z) log(ni

+(z)ni)

+ni
−(z)log(ni

−(z)6i)− (ni
++ni

−)]
"

(4)

The notation used is as follows: f(z) and ni
9(z) are

the electrostatic potential and concentrations of positive
and negative ions of the kind i, ni is a volume per
molecule of the solvent (i ), o(z) represents a dielectric
profile at the interface between two solvents, functions
f i
9(z) describe the free-energy profiles for a transfer of

positive and negative ions of kind i across the interface,
E is the overall potential drop across the interface, and
Q and −Q are the overall charges in the first and
second phases, respectively.

The last term EQ in the expression for electrostatic
energy is the extra work needed to maintain the overall
potential difference E. This term should be included in
the free energy functional if the overall potential drop
between two phases is given [32].

The diffuseness of the interface between the two
liquids as well as the microscopic structure of the
liquids lead to a smooth variation of dielectric proper-

ties across the interface. Thus the dielectric function
o(z) can be written in the form

o(z)=o0(z)+do(z) (5)

where a step-wise dielectric function o0(z)=o1u(−z)+
o2u(z) corresponds to an idealized sharp interface, and
a smearing function do(z) differs from zero only in the
microscopically thin interfacial layer of thickness l.

Under the assumption of ideal polarizability of the
interface, the free energy profile functions f i

9(z) must
meet the following conditions:

f1
9(z)�0 for z�−� and f1

9(z)�� for z��
f2
9(z)�� for z�−� and f2

9(z)�0 for z��
(6)

and differ from the corresponding limiting values only
in the microscopic interfacial regions of thicknesses l i

9.
Introduction of the finite smearing lengths l i

9 gives rise
to a ‘mixed boundary layer’ where the overlapping of
the two space-charge regions occurs. Recently numeri-
cal simulations [4,23,33] and mean field approximations
[21,22] have been employed to calculate the free energy
profile functions, and to study the dependence of the
thickness of the mixed layer on the nature of the ions.
Within the model of a sharp interface [5,6], where each
sort of ion is either in water or in oil, all smearing
lengths are equal to zero, l i

9=0. Note also that a
helpful simplifying assumption of f i

9(z) varying from
zero to �, first introduced in Ref. [21], is a good
approximation only when the free energies of ion trans-
fer are much larger than thermal energies. However, in
the opposite case the interface is not polarisable.

2.2. Basic equations

The free energy Eq. (1) is a functional of two types of
independent fields, f and ni

9. Relationships between
these fields arise under equilibrium conditions. In order
to derive equations for the electrostatic potential and
ionic concentrations we minimize the grand potential,
V

V=F−kBT %
2

i=1

mi

& +�

−�

dz(ni
+(z)+ni

−(z)) (7)

with respect to f and ni
9. Here F is given by Eqs.

(1)–(4) and mi is the chemical potential of positive and
negative ions of the kind i, which is related to the bulk
concentration of the corresponding electrolyte through
the equation

mi=kBT ln(ni
0ni) (8)

In this way we obtain a Poisson–Boltzmann equa-
tion for the potential

d
dz

o(z)
d
dz

c(z)= −
4pe2

kBT
N(c(z)) (9)
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and expressions for the ionic concentrations through
the potential and free energy profile functions

n1
9(z)=n1

0 exp[� (c(z)+g1
9(z)−V)]

n2
9(z)=n2

0 exp[� (c(z)+g2
9(z))] (10)

Here we introduce the total charge density of ions

eN(c(z))=e %
2

i=1

[ni
+(c(z))−ni

−(c(z))] (11)

and dimensionless potentials, c=ebf, V=ebE, and
free energy profile functions gi

9=bf i
9, where b=

(kBT)−1.
The potential obeys standard boundary conditions

c�V as z�−� and c�0 as z�� (12)

Within the model of a sharp interface exp[−g1
9(z)]

=u(−z) and exp[−g2
9(z)]=u(z), which excludes

penetration of ions through the interface, z=0.
In order to solve Eq. (9), it is convenient to rewrite it

in the form

d
dz

o0(z)
d
dz

c(z)+
4pe2

kBT
N0(c(z))

= −
d
dz

do(z)
d
dz

c(z)−
4pe2

kBT
[N(c(z))−N0(c(z))]

(13)

where eN0(c(z)) is the total ionic charge density at the
sharp interface

N0(c(z))= −2u(−z)n1
0 sinh(c(z)−V)

−2u(z)n2
0 sinh(c(z)) (14)

Equating the left-hand side of Eq. (13) to zero gives
an equation which describes the potential distribution
at the sharp interface. It has an exact analytical solu-
tion, which is nothing other than the Gouy–Chapman
result for two back-to-back ionic double layers [5,6].
The right-hand side of Eq. (13) prescribes a correction
to the Gouy–Chapman result due to diffuseness of the
liquid � liquid interface and the possibility for ions to
penetrate into the interfacial region of the ‘unfriendly’
medium. The diffuseness of the molecular and ionic
profiles is localized [4,21–23,33] in a microscopically
thin layer of not more than several molecular diame-

ters. The right-hand side of Eq. (13) is localized within
this layer, the scale of which is determined by the
largest of the smearing lengths, l,l i

9.
In what follows we assume that the thickness of the

mixed layer is much smaller than the Gouy lengths of
both sides of the interface, i.e.

l,l i
9B (k i

2+ (2pLB
(i )Q/e)2)−1/2 (15)

where LB
(i )=e2/oi kBT is the Bjerrum length for the

solvent (i ). This assumption is well justified for not too
concentrated solutions and not too high voltage drops
across the interface [4,21–23,33]. Then Eq. (13) can be
solved analytically within the perturbation theory,
which utilizes the smallness of the ratio of the interme-
diate layer thickness to the Gouy–Chapman lengths.
The known analytical result for the potential distribu-
tion at a sharp interface, impermeable for ions serves as
a zero-order approximation. The details of the pertur-
bation approach for calculating the potential distribu-
tion are given in Appendix A.

2.3. Capacitance

The net result for the charge density in the first phase
reads:

Q=en1
0 & +�

−�

dz{exp[− (c(z)+g1
+(z)−V)]

−exp[c(z)−g1
−(z)+V ]}

=
kBT

e
CGC

0 {U0(V)+U1(V)L1+U2(V)L2+U3(V)L3}

(16)

Here CGC
0 is the Gouy–Chapman capacitance of the

two back-to-back ionic double layers separated by a
sharp interface at the point of zero charge [5,6]

CGC
0 =

o1k1o2k2

4p(o1k1+o2k2)
(17)

U0(V), U1(V), U2(V) and U3(V) are the functions of the
overall potential drop and the bulk properties of the
contacting electrolyte solutions (dielectric constants and
ionic concentrations):

U0(V)=
2 sinh(V/2)

[1+ (8pCGC
0 /(o1k1+o2k2))(cosh(V/2)−1)]1/2

U1(V)=
2pu1(V)

o1

� 2CGC
0 sinh2(V/2)o2k2

(o1k1+o2k2)+8pCGC
0 (cosh(V/2)−1)

+
o1k1

4p
n

U2(V)= −
2pu2(V)

o2

� 2CGC
0 sinh2(V/2)o1k1

(o1k1+o2k2)+8pCGC
0 (cosh(V/2)−1)

+
o2k2

4p
n

U3(V)=8pCGC
0 u1(V)u2(V)sinh(V/2)

(18)
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Fig. 2. Potential dependences of the functions dU1/dV, dU2/dV and
10−1dU3/dV. o1=80, o2=10, k1=k2=0.3 nm−1.

L3=
& +�

−�

dz
�1

2
�1

o1

exp(−g1
+(z))+

1
o1

exp(−g1
−(z))

+
1
o2

exp(−g2
+(z))+

1
o2

exp(−g2
−(z))

�
−

1
o(z)

n
(22)

All three integrals, L1, L2 and L3 have the dimensions
of length. If the profiles of gi(z) and 1/o(z) have a
common point of inversion, L1=L2=L3=0. For
‘asymmetric’ integrands in Eqs. (20)–(22), the absolute
values of these lengths may be of the order of the
corresponding smearing lengths, l,l i

9, but their sign
can be positive or negative depending on the profiles of
the integrands. The length L3 is typically o2-times
smaller than L1 and L2. However, L3 enters into Eq.
(16) with the coefficient, U3, which is o1 (o2)-times larger
than U1 (U2). Thus the contribution of L3 to the charge
density is of the same order as the contributions of L1

and L2.
Differentiation of Eq. (16) over E gives an expression

for the potential dependent non-linear capacitance

C=
dQ
dE

=CGC
0 �dU0

dV
+L1

dU1

dV
+L2

dU2

dV
+L3

dU3

dV
n

(23)

The first term in Eq. (23) defines the Gouy–Chap-
man capacitance of two back-to-back ionic double lay-
ers separated by a sharp interface, and the three other
terms are caused by the overlap of the double layers in
the interfacial region and a smooth variation of dielec-
tric properties across the interface.

3. Results and discussion

Let us summarize our findings.

3.1. Dependence of the capacitance on the nature of
the ions

This is controlled by length parameters, L1, L2 and L3

(Eqs. (20)–(22)). These lengths are independent of the
potential and ionic concentrations. They are expressed
through z-dependent profiles of the free energy of ion
transfer across the interface and through the dielectric
profile of the solvent � solvent interface. The parameters
L1,2 represent differences in zero moments of cation and
anion distributions across the interface for the salts that
prefer phase ‘1’ or ‘2’, respectively. The parameter L3

characterizes the combined effect of the variation of the
dielectric properties and the smearing of ionic distribu-
tion across the interface.

3.2. Potential dependence of the capacitance

This is determined by the functions dU1(V)/dV,
dU2(V)/dV and dU3(V)/dV, as exemplified in Fig. 2.

Fig. 3. The effect of dielectric profile on the potential dependence of
the normalized capacitance, C/CGC

0 , for the interface impermeable
for ions, L1=L2=0. Curves correspond to the indicated values of L3

in nanometers. o1=80, o2=10, k1=k2=0.3 nm−1.

where

u1(V)=
(o1k1+o2k2)+o1k1(cosh(V/2)−1)

(o1k1+o2k2)+8pCGC
0 (cosh(V/2)−1)

u2(V)=
(o1k1+o2k2)+o2k2(cosh(V/2)−1)

(o1k1+o2k2)+8pCGC
0 (cosh(V/2)−1)

(19)

The integral parameters L1, L2 and L3, which appear
in Eq. (16) do not depend on potential and electrolyte
concentrations. The parameters L1 and L2 depend only
on the specific interaction of ions of the ‘first’ and the
‘second’ salt with the contacting solvents.

L1=
& +�

−�

dz [exp(−g1
+(z))−exp(−g1

−(z))] (20)

L2=
& +�

−�

dz [exp(−g2
+(z))−exp(−g2

−(z))] (21)

In addition to L1 and L2, the nature of ions enters the
‘combined’ parameter L3, which is also affected by the
profiles of the dielectric constant across the interface:
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The functions dU0(V)/dV and dU3(V)/dV are
symmetric in potential with a minimum at V=0, while
dU1(V)/dV and dU2(V)/dV are asymmetric functions of
the potential. Thus the parameter L3 influences the
symmetric part of the capacitance, and L1 and L2

control the asymmetry. Figs. 3–6 illustrate this, show-
ing the effects of the ionic nature and dielectric profile
on the potential dependence of the capacitance. C(E)
curves presented here exhibit the main features ob-
served experimentally of the electrical capacitance of
ITIES [12,18,19].

Fig. 6. The combined effect of smearing of the dielectric profile and
the penetration of a hydrophobic positive ion into the aqueous
solution on the potential dependence of the normalized capacitance,
C/CGC

0 . (1) Gouy–Chapman result; (2) the effect of ionic penetration
only, L2

+=	+�
−�dz [exp(−g2

+(z))−u(z)]=0.3 nm; combined effects
(3) L2

+=0.3 nm and Do=	+�
−�dz [(1/o1)u(−z)+ (1/o2)u(z)− (1/

o(z))]=0.02 nm, and (4) L2
+=0.3 nm and Do= −0.02 nm. The

figure is plotted for the case of no penetration of other ions through
the interface. o1=80, o2=10, k1=k2=0.3 nm−1.

Fig. 4. The effect of penetration of a hydrophilic positive ion into the
organic phase on the potential dependence of the normalized capaci-
tance, C/CGC

0 . Curves correspond to Gouy–Chapman results ob-
tained for L1=L2=L3=0, and to the values indicated of the
parameter L1

+=	+�
−�dz [exp(−g1

+(z))−u(−z)] in nanometers. The
figure is plotted for the case of no penetration of other ions through
the interface and no smearing of the dielectric profile. o1=80, o2=10,
k1=k2=0.3 nm−1.

3.3. De6iation from the Gouy–Chapman result

The microscopic parameters L1, L2 and L3 can take
either positive or negative values depending on the
shape of the free energy profiles and dielectric function.
As a result the capacitance of ITIES can be higher as
well as lower than that predicted by Gouy–Chapman
theory for two back-to-back double layers (see Figs.
3–6). Both types of behavior have been observed exper-
imentally [12,18,19] and through numerical simulations
[21,23].

3.4. Role of the dielectric constants of the liquids in
contact

Eqs. (18)–(23) and Figs. 2 and 4 show that the
influence of the nature of the ion on the capacitance is
inversely proportional to the dielectric constant of the
phase where the corresponding ion is dissolved. Since
the dielectric constant of water is much higher than that
of an organic solvent, the effect discussed here should
be mainly determined by the nature of the ion dissolved
in the organic phase. As expected, the influence of the
nature of the cation (anion) from the aqueous phase is
observed only at positive (negative) potentials (see Fig.
4), but the nature of the cation (anion) in the organic
phase is manifested predominantly in the negative (pos-
itive) range of potentials (see Fig. 5).

3.5. Effect of electrolyte concentration

Eqs. (18)–(23) suggest that deviations from the
Gouy–Chapman capacitance and differences between

Fig. 5. The effect of penetration of a hydrophobic positive ion into
the aqueous solution on the potential dependence of the normalized
capacitance, C/CGC

0 . Curves correspond to Gouy–Chapman results
obtained for L1=L2=L3=0, and to the values indicated of the
parameter L2

+=	+�
−�dz [exp(−g2

+(z))−u(z)] in nanometers. The
figure is plotted for the case of no penetration of other ions through
the interface, and no smearing of the dielectric profile. o1=80,
o2=10, k1=k2=0.3 nm−1.
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capacitances measured for different ions should in-
crease with increasing ionic concentrations. Experimen-
tally the effect of concentration on the C(E) curves has
usually been assessed by using equally concentrated
solutions of the electrolytes in each phase, n1

0=n2
0. Our

theory predicts that in this case the deviations should
be proportional to the square root of the concentration.
This behavior has been observed experimentally [12].

3.6. Linear capacitance and Parsons–Zobel plots

Eqs. (16) and (23) for the charge density and capaci-
tance are simplified in the region of small potential
drops across the interface, �E �BkBT/e. In this case the
capacitance can be written in the form

C=CGC
0 (1+4pCGC

0 L3) (24)

Thus for small potentials the deviation of the capaci-
tance of ITIES from the Gouy–Chapman result is
determined by the length L3 (which includes the effects
of the microscopic structure of the interface and the
nature of the ions). This parameter can be found from
the Parson–Zobel plot (plotting the measured inverse
capacitance 1/C versus 1/CGC

0 ), which according to Eq.
(24) is described by the equation

1
C

=
1

CGC
0 −4pL3 (25)

Thus the value of L3 is given by the intercept of the
Parson–Zobel plot at 1/CGC

0 �0.

3.7. Apparent compact layer contribution

Formally, Eq. (25) can be written in terms of an
apparent ‘compact layer contribution’,

1
C

=
1

CGC
0 +

1
CH

(26)

where the ‘compact layer capacitance’

CH= −1/(4pL3) (27)

can be positive or negative. There is no reason to expect
in this system a true ‘compact layer’ for the interface
which is permeable for both salts. Our result thus
rationalizes a long-standing puzzle: the meaning of the
apparent compact layer contribution, its appearance for
some systems and its absence in others. All in all, it
clarifies the nature of the intercept of the Parsons–Zo-
bel plot.

3.8. De6iation of the Parsons–Zobel plots from
linearity

Within the present model, a distortion of the Par-
sons–Zobel plot from a straight line at high concentra-
tion is controlled by a term of the second order in the

ratio of the mixed layer thickness to the Gouy–Chap-
man lengths, similarly to what takes place at the
metal � electrolyte interface [34,35]. This requires a
higher order perturbation theory, in the manner of
Refs. [30,34], not considered here. Within the frame-
work of this theory there is no deviation from the linear
unit slope Parsons–Zobel behavior in the limit of low
concentrations.

3.9. Effect of the nature of the ion on the pzc

The theory developed predicts also a dependence of
the potential of zero charge (pzc) on the nature of the
ions. From Eq. (16) at Q=0 we obtain a very simple
law

E0=
kBT
2e

(k2L2−k1L1) (28)

In contrast to the low voltage capacitance, which is
determined by the length L3 (see Eq. (24)), the position
of the pzc depends on L1 and L2. We see that the shift
of the pzc with changing one of the ions is coupled
(proportional) to the square root of the ionic strength
of the salt this ion belongs to. This law deserves a
systematic comparison with experimental data. The
simplest test will be to plot 2eE0/kBT versus the inverse
Gouy length k2. Within the framework of our theory,
we should obtain a straight line with a slope L2 and the
intercept −k1L1.

3.10. The effect of ion replacement on the capacitance

Eqs. (20)–(23) show that replacing an ion Ai
9 in the

phase i by another ion Bi
9 leads to the following

change of capacitance

C(Bi
9)−C(Ai

9)=Fi
9(V)DLi

9 (29)

Here the potential dependent functions,

F1
9(V)=CGC

0 k1

o2k2(o1k1 cosh(V/2)+o2k2)
[o2k2(exp(�V/2))+o1k1+o2k2]2

(30)

F2
9(V)=CGC

0 k2

o1k1(o2k2 cosh(V/2)+o1k1)
[o1k1(exp(9V/2))+o1k1+o2k2]2

(31)

and the lengths

DLi
9=

&�
−�

dz [exp(−gi
9(Bi

9,z))−exp(−gi
9(Ai

9,z))]

(32)

are determined by the free energy profile functions
gi
9(Ai

9,z) and gi
9(Bi

9,z) for ions Ai
9 and Bi

9,
respectively.

Eqs. (29)–(32) show explicitly that the effect of sub-
stitution of an anion (cation) in phase 1 should be
observed only at negative (positive) potentials, the sub-
stitution of an anion (cation) in phase 2 influences the
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capacitance in the positive (negative) range of
potentials.

According to Eqs. (29)–(32), the ratio (C(Bi
9)−

C(Ai
9))/Fi

9(V) (i=1,2) should be independent of the
potential and concentrations. By plotting this ratio we
detect the difference of zero moments, DLi

9, upon the
replacement of ion Ai

9 by ion Bi
9in the salt ‘i’.

4. Conclusions

The results of Section 3 suggest a new framework for
the treatment of the capacitance data and establish a
relationship between experimental results and the mi-
croscopic structure of ITIES. Fitting experimental data
to Eqs. (17) and (23) one may evaluate the ‘integral
lengths’ L1, L2 and L3 and establish their dependences
on the type of ion. This procedure will give us the
characteristic lengths, the zero moments of ion distribu-
tions across the interface and the inverse dielectric
function. This is the maximal information on the micro-
scopic properties of ITIES that can be extracted from
the capacitance measurements, because microscopic
properties are integrated in these moments.

The effect of the nature of the ion on the characteris-
tic lengths can be studied by measuring changes in
potential dependence of the capacitance due to varia-
tion of one of the ions in one of the salts. In so doing
the composition and ionic strength of the second salt
must be kept constant. The results of such experiments
have already been reported by several groups [12,20].

Before following our recommendations one should
verify the general predictions of the theory. A plot of
(C(Bi

9)−C(Ai
9))/Fi

9(V) as a function of the potential
and/or salt concentrations would provide an ultimate
test. According to Eqs. (29)–(32) this ratio should be
independent of the potential and concentrations.

In fact this conclusion, as well as all other statements
based on the potential independence of L1, L2 and L3, is
correct only under the conjecture that the properties of
the interfacial region do not depend on potential. In
principle, this assumption may be violated at high
potential drops and ionic concentrations which give rise
to electric fields, capable of modifying the structure of
the solvent � solvent interface. However, for potentials
and electrolyte concentrations typically used in experi-
mental studies of ITIES this assumption is warranted
since the electric field generated at the interface is
510−1 V nm−1.

In our previous paper we considered a model of a
sharp interface which is corrugated due to spontaneous,
thermally excited capillary waves [36]. The model re-
vealed that capillary waves induced enhancement of
capacitance with respect to the Gouy–Chapman result.
The enhancement is stronger the larger is the potential
drop, as the latter enhances the amplitudes of capillary

waves [36]. The nature of electrolyte ions was not
included in the model.

In contrast, in the present paper the interface is
translationally invariant in the interfacial plane, but it
is smeared in the z-direction, and the nature of ions
enters through the moments of ion distribution across
the interface.

One may envisage future development of the theory
by way of combining the two effects: the finite width of
the interface and its roughening due to potential drop
dependent capillary waves, similarly to the theory of
capillary waves at liquid � liquid interfaces [2]. In princi-
ple this would be easy to do, if all the wavelengths of
capillary waves were longer than L1, L2 and L3. How-
ever, the short wavelength part of the spectrum of
capillary waves appears to give an important contribu-
tion to the capacitance, and that is why such a combi-
nation requires a special investigation.
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Appendix A

In order to solve Eq. (13) we expand the potential in
powers of the ratio of the mixed layer thickness to the
Gouy–Chapman lengths,

c(z)=c0(z)+c1(z) (A1)

The lowest order term c0 satisfies the Poisson–Boltz-
mann equation for a sharp interface

d
dz

o0(z)
d
dz

c0(z)+
4pe2

kBT
N0(c0(z))=0 (A2)

and the boundary conditions

c0(z= −0)=c0(z= +0)

o1

dc0(z= −0)
dz

=o2

dc0(z= +0)
dz

(A3)

c0�V as z�−� and c0�0 as z�� (A4)

This term coincides with the Gouy–Chapman result
for ITIES

c0(z)=
!V−4 arctanh[exp(k1(z+z1))], z50

4 arctanh[exp(−k2(z+z2))], z\0
"

(A5)
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where

z1= −2k1
−1 arctanh

��o1k1+o2k2 exp(−V/2)
o1k1+o2k2 exp(V/2)

�1/2n
z2=2k2

−1 arctanh
��o2k2+o1k1 exp(−V/2)

o2k2+o1k1 exp(V/2)
�1/2n

(A6)

The first-order term c1 satisfies the following
equations

d
dz

o0(z)
d
dz

c1(z)+
4pe2

kBT
c1

dN0(c0(z))
dc

= −
d
dz

do(z)
o(z)

o0(z)
d
dz

c0(z)

−
4pe2

kBT
[N(c0(z))−N0(c0(z))] (A7)

with the boundary conditions

c1(z= −0)=c1(z= +0)

o1

dc1(z= −0)
dz

=o2

dc1(z= +0)
dz

c1�0 as z�9� (A8)

Here

dN0(c0(z))
dc

= −2u(−z)n1
0 cosh(c0(z)−V)

−2u(z)n2
0 cosh(c0(z)) (A9)

When deriving Eq. (A7) from Eq. (13) we kept in
mind that the perturbation expansion Eq. (A1) is appli-
cable to the slowly varying functions, the electrostatic
potential, c(z), and displacement, o(z)dc(z)/dz, but not
the electric field, dc(z)/dz, which varies rapidly across
the interface.

The solution of Eq. (A7) can be written in the
integral form

c1(z)=
&�

−�

dz %G(z,z %)
!
−

d
dz

do(z)
o(z)

o0(z)
d
dz

c0(z)

−
4pe2

kBT
[N(c0(z))−N0(c0(z))]

"
(A10)

where G(z,z %) is a Green function for Eq. (A7)

G(z, z %)= −
1

2o2k2B1

[c1
(1)(z)c1

(2)(z %)u(z %−z)

+c1
(1)(z %)c1

(2)(z)u(z−z %)] (A11)

functions c1
(1)(z) and c1

(2)(z) are solutions of Eq. (A7)
with a zero right-hand side

c1
(1)(z)= −u(−z)

1
sinh[k1(z+z1)]

+u(z)

×
! A1

sinh[k2(z+z2)]
+B1

�
cosh[k2(z+z2)]−

zk2

sinh[k2(z+z2)]
�"

c1
(2)(z)=u(z)

1
sinh[k2(z+z2)]

+u(−z)

×
! A2

sinh[k1(z+z1)]
+B2

�
cosh[k1(z+z1)]

−
zk1

sinh[k1(z+z1)]
�"

(A12)

and

A1=
o2k2

2o1k1 sinh2(k2z2)
[sinh2(k2z2)−1

−cosh(k1z1)cosh(k2z2)]

B1=
o2k2

2o1k1 sinh3(k2z2)
[cosh(k1z1)+cosh(k2z2)]

A2=
o1k1

2o2k2sinh2(k1z1)
[1−sinh2(k1z1)

+cosh(k1z1)cosh(k2z2)]

B2= −
o1k1

2o1k1sinh3(k1z1)
[cosh(k1z1)+cosh(k2z2)]

(A13)

Using the expansion of the potential given by Eqs.
(A1), (A5) and (A6) and Eqs. (A11), (A12) and (A13)
we obtain the expression for the charge density Q in the
form of Eq. (16) in the text.

Calculating Q we kept only the terms of the zero and
the first orders in the ratio of the mixed layer thickness
to the Gouy–Chapman lengths. An essential feature of
this problem that should be taken into account is a
slow variation of the functions c0(z), c1

(1,2)(z),
o0(z)dc0(z)/dz and o0(z)dc1

(1,2)(z)/dz over microscopic
distances, l,l i

9, which allows them to be factored out
from the integrals containing functions localized within
the microscopic interfacial layer.
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