About Yor's problem.

8. A strengthening of the standardness theorem
 Boris Tsirelson (Tel Aviv University)

Consider a Markov chain $\left\{X_{k}\right\}_{k}, X_{k} \in \mathcal{X}_{k}$. As before (see "Another proof of a standardness theorem"), we may describe it by means of $\mu_{k} \in \mathbb{P}\left(\mathcal{X}_{k}\right)$ and $\nu_{k}: \mathcal{X}_{k-1} \rightarrow$ $\mathbb{P}\left(\mathcal{X}_{k}\right)$; that is, μ_{k} is the distribution of X_{k}, and $\nu_{k}\left(x_{k-1}\right)$ is the conditional distribution of X_{k} for given $X_{k-1}=x_{k-1}$.

For $x_{k-1}^{\prime}, x_{k-1}^{\prime \prime} \in \mathcal{X}_{k-1}$ consider the infimum of three measures

$$
\nu\left(x_{k-1}^{\prime}\right) \wedge \nu\left(x_{k-1}^{\prime \prime}\right) \wedge \mu_{k}
$$

take its total mass, and its essential infimum in $x_{k-1}^{\prime}, x_{k-1}^{\prime \prime}$; more exactly, define m_{k} as the maximal number satisfying the following condition:

$$
\begin{equation*}
\left(\nu\left(x_{k-1}^{\prime}\right) \wedge \nu\left(x_{k-1}^{\prime \prime}\right) \wedge \mu_{k}\right)\left(\mathcal{X}_{k}\right) \geq m_{k} \tag{1}
\end{equation*}
$$

for all pairs $\left(x_{k-1}^{\prime}, x_{k-1}^{\prime \prime}\right)$ in a product set of full measure.
Note 1. m_{k} introduced above is clearly no less than m_{k} introduced in "Another proof of a standardness theorem."

Note 2. If there exists the density

$$
\rho_{k}\left(x_{k}, x_{k-1}\right)=\frac{\nu_{k}\left(x_{k-1}\right)\left(d x_{k}\right)}{\mu_{k}\left(d x_{k}\right)}
$$

then (1) means that

$$
\int\left(\rho_{k}\left(x_{k-1}^{\prime}, x_{k}\right) \wedge \rho_{k}\left(x_{k-1}^{\prime \prime}, x_{k}\right) \wedge 1\right) \mu_{k}\left(d x_{k}\right) \geq m_{k}
$$

Theorem. If $\sum_{k} m_{k}=\infty$, then $\left\{X_{k}\right\}_{k}$ is tail-trivial, and admits a generating parametrization.

Proof. We have to construct the needed function

$$
\alpha_{k}:[0,1] \times \mathcal{X}_{k-1} \rightarrow \mathcal{X}_{k}
$$

for each k. But $[0,1]$ may be replaced with another probability space; we prefer to construct functions

$$
\alpha_{k}:\left(\mathcal{X}_{k} \times[0,1]\right) \times \mathcal{X}_{k-1} \rightarrow \mathcal{X}_{k}
$$

the first space $\mathcal{X}_{k} \times[0,1]$ being equipped with the measure $\mu_{k} \times$ mes. Introduce the density*

$$
\begin{equation*}
p_{k}\left(x_{k-1}, x_{k}\right)=\frac{\left(\nu_{k}\left(x_{k-1}\right) \wedge \mu_{k}\right)\left(d x_{k}\right)}{\mu_{k}\left(d x_{k}\right)} . \tag{2}
\end{equation*}
$$

First, define

$$
\begin{equation*}
\alpha_{k}\left(x_{k}, t, x_{k-1}\right)=x_{k} \quad \text { when } t \leq p_{k}\left(x_{k-1}, x_{k}\right) ; \tag{3}
\end{equation*}
$$

it "parametrizes" the measure $\nu_{k}\left(x_{k-1}\right) \wedge \mu_{k}$. Second, define $\alpha_{k}\left(x_{k}, t, x_{k-1}\right)$ for $t>$ $p_{k}\left(x_{k-1}, x_{k}\right)$ in any way providing that α_{k} is a parametrization. We have to prove that

$$
\sigma\left(X_{-\infty}^{k}\right) \subset \sigma\left(Y_{-\infty}^{k}\right),
$$

because the rest of the proof is the same as in "Another proof of a standardness theorem."
We shall construct functions $f_{r}^{s}: \mathcal{Y}_{r}^{s} \rightarrow \mathcal{X}_{s}$ such that

$$
\begin{equation*}
\mathbb{P}\left\{X_{s}=f_{r}^{s}\left(Y_{r}, \ldots, Y_{s}\right)\right\} \geq 1-\prod_{k=r+1}^{s}\left(1-m_{k}\right) \tag{4}
\end{equation*}
$$

when $r \rightarrow-\infty$, it gives us $X_{s} \in \sigma\left(Y_{-\infty}^{s}\right)$. Of course, $\mathcal{Y}_{r}^{s}=\mathcal{Y}_{r} \times \mathcal{Y}_{r+1} \times \ldots \times \mathcal{Y}_{s}$ and $\mathcal{Y}_{k}=\mathcal{X}_{k} \times[0,1]$.

Define the functions by recursion in s :

$$
\begin{aligned}
& f_{r}^{r}\left(x_{k}, t\right)=x_{k} \quad \text { for any } t \in[0,1] ; \\
& f_{r}^{s+1}\left(y_{r}^{s+1}\right)=\alpha_{s+1}\left(y_{s+1}, f_{r}^{s}\left(y_{r}^{s}\right)\right) .
\end{aligned}
$$

Consider events

$$
A_{r}^{s}=\left\{\omega: X_{s} \neq f_{r}^{s}\left(Y_{r}^{s}\right)\right\} .
$$

We have

$$
A_{r}^{s+1} \subset A_{r}^{s}
$$

indeed, $X_{s+1}=\alpha_{s+1}\left(Y_{s+1}, X_{s}\right)$ by definition of a parametrization, and $f_{r}^{s+1}\left(y_{r}^{s+1}\right)=$ $\alpha_{s+1}\left(y_{s+1}, f_{r}^{s}\left(y_{r}^{s}\right)\right)$ by definition of f, so $X_{s}=f_{r}^{s}\left(Y_{r}^{s}\right) \quad \Longrightarrow \quad X_{s+1}=f_{r}^{s+1}\left(Y_{r}^{s+1}\right)$. It remains to prove the inequality

$$
\begin{equation*}
\mathbb{P}\left(A_{r}^{s+1} \mid \sigma\left(X_{-\infty}^{s}, Y_{-\infty}^{s}\right)\right) \leq 1-m_{s+1} \tag{5}
\end{equation*}
$$

because it implies $\mathbb{P}\left(A_{r}^{s+1} \mid A_{r}^{s}\right) \leq 1-m_{s+1}$, hence $\mathbb{P}\left(A_{r}^{s+1}\right) \leq\left(1-m_{s+1}\right) \mathbb{P}\left(A_{r}^{s}\right)$, and hence (4).

[^0]Let us prove (5). We have

$$
A_{r}^{s+1}=\left\{\omega: X_{s+1} \neq f_{r}^{s+1}\left(Y_{r}^{s+1}\right)\right\}=\left\{\omega: \alpha_{s+1}\left(Y_{s+1}, X_{s}\right) \neq \alpha_{s+1}\left(Y_{s+1}, f_{r}^{s}\left(Y_{r}^{s}\right)\right)\right\}
$$

here X_{s} and $f_{r}^{s}\left(Y_{r}^{s}\right)$ are measurable with respect to the given σ-field $\sigma\left(X_{-\infty}^{s}, Y_{-\infty}^{s}\right)$, whereas Y_{s+1} is independent of the σ-field (by definition of parametrization). So, it is enough to prove that

$$
\mathbb{P}\left\{\alpha_{s+1}\left(Y_{s+1}, x_{s}^{\prime}\right) \neq \alpha_{s+1}\left(Y_{s+1}, x_{s}^{\prime \prime}\right)\right\} \leq 1-m_{s+1}
$$

for any $x_{s}^{\prime}, x_{s}^{\prime \prime} \in \mathcal{X}_{s}$. But

$$
\begin{gathered}
\mathbb{P}\left\{\alpha_{s+1}\left(Y_{s+1}, x_{s}^{\prime}\right) \neq \alpha_{s+1}\left(Y_{s+1}, x_{s}^{\prime \prime}\right)\right\}= \\
=\left(\mu_{s+1} \times \operatorname{mes}\right)\left\{\left(x_{s+1}, t\right): \alpha_{s+1}\left(x_{s+1}, t, x_{s}^{\prime}\right) \neq \alpha_{s+1}\left(x_{s+1}, t, x_{s}^{\prime \prime}\right)\right\}= \\
=\int \mu_{s+1}\left(d x_{s+1}\right) \operatorname{mes}\left\{t \in[0,1]: \alpha_{s+1}\left(x_{s+1}, t, x_{s}^{\prime}\right) \neq \alpha_{s+1}\left(x_{s+1}, t, x_{s}^{\prime \prime}\right)\right\} \leq \\
\leq 1-\int \mu_{s+1}\left(d x_{s+1}\right) \cdot\left(p_{s+1}\left(x_{s}^{\prime}, x_{s+1}\right) \wedge p_{s+1}\left(x_{s}^{\prime \prime}, x_{s+1}\right) \wedge 1\right)
\end{gathered}
$$

because, according to (3),

$$
t \leq p_{s+1}\left(x_{s}^{\prime}, x_{s+1}\right) \wedge p_{s+1}\left(x_{s}^{\prime \prime}, x_{s+1}\right) \quad \Longrightarrow \quad \alpha_{s+1}\left(x_{s+1}, t, x_{s}^{\prime}\right)=x_{s+1}=\alpha_{s+1}\left(x_{s+1}, t, x_{s}^{\prime \prime}\right)
$$

Now,

$$
\begin{gathered}
\int \mu_{s+1}\left(d x_{s+1}\right) \cdot\left(p_{s+1}\left(x_{s}^{\prime}, x_{s+1}\right) \wedge p_{s+1}\left(x_{s}^{\prime \prime}, x_{s+1}\right) \wedge 1\right)= \\
=\left(\nu_{s+1}\left(x_{s}^{\prime}\right) \wedge \nu_{s+1}\left(x_{s}^{\prime \prime}\right) \wedge \mu_{s+1}\right)\left(\mathcal{X}_{s+1}\right) \geq m_{s+1}
\end{gathered}
$$

due to (1), and the theorem is proved.

[^0]: * Clearly, $p_{k}\left(x_{k-1}, x_{k}\right)=\rho_{k}\left(x_{k-1}, x_{k}\right) \wedge 1$, provided that ρ_{k} exists. Even if it does not, we may take the absolutely continuous part.

