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Consider a Markov chain {Xk}k, Xk ∈ Xk. As before (see “Another proof of a

standardness theorem”), we may describe it by means of µk ∈ P(Xk) and νk : Xk−1 →

P(Xk); that is, µk is the distribution of Xk, and νk(xk−1) is the conditional distribution

of Xk for given Xk−1 = xk−1.

For x′

k−1
, x′′

k−1
∈ Xk−1 consider the infimum of three measures

ν(x′

k−1) ∧ ν(x′′

k−1) ∧ µk,

take its total mass, and its essential infimum in x′

k−1
, x′′

k−1
; more exactly, define mk as the

maximal number satisfying the following condition:

(ν(x′

k−1) ∧ ν(x′′

k−1) ∧ µk)(Xk) ≥ mk (1)

for all pairs (x′

k−1
, x′′

k−1
) in a product set of full measure.

Note 1. mk introduced above is clearly no less than mk introduced in “Another proof

of a standardness theorem.”

Note 2. If there exists the density

ρk(xk, xk−1) =
νk(xk−1)(dxk)

µk(dxk)
,

then (1) means that

∫
(ρk(x′

k−1, xk) ∧ ρk(x′′

k−1, xk) ∧ 1) µk(dxk) ≥ mk.

Theorem. If
∑

k
mk = ∞, then {Xk}k is tail-trivial, and admits a generating

parametrization.

Proof. We have to construct the needed function

αk : [0, 1]× Xk−1 → Xk

for each k. But [0, 1] may be replaced with another probability space; we prefer to construct

functions

αk : (Xk × [0, 1])× Xk−1 → Xk,
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the first space Xk×[0, 1] being equipped with the measure µk×mes. Introduce the density*

pk(xk−1, xk) =
(νk(xk−1) ∧ µk)(dxk)

µk(dxk)
. (2)

First, define

αk(xk, t, xk−1) = xk when t ≤ pk(xk−1, xk); (3)

it “parametrizes” the measure νk(xk−1) ∧ µk. Second, define αk(xk, t, xk−1) for t >

pk(xk−1, xk) in any way providing that αk is a parametrization. We have to prove that

σ(Xk

−∞
) ⊂ σ(Y k

−∞
),

because the rest of the proof is the same as in “Another proof of a standardness theorem.”

We shall construct functions fs
r : Ys

r → Xs such that

P{Xs = fs

r
(Yr, . . . , Ys)} ≥ 1 −

s∏
k=r+1

(1 − mk); (4)

when r → −∞, it gives us Xs ∈ σ(Y s
−∞

). Of course, Ys
r

= Yr × Yr+1 × . . . × Ys and

Yk = Xk × [0, 1].

Define the functions by recursion in s:

f r

r
(xk, t) = xk for any t ∈ [0, 1];

fs+1
r

(ys+1
r

) = αs+1(ys+1, f
s

r
(ys

r
)).

Consider events

As

r
= {ω : Xs 6= fs

r
(Y s

r
)}.

We have

As+1
r

⊂ As

r
;

indeed, Xs+1 = αs+1(Ys+1, Xs) by definition of a parametrization, and fs+1
r (ys+1

r ) =

αs+1(ys+1, f
s
r (ys

r)) by definition of f , so Xs = fs
r (Y s

r ) =⇒ Xs+1 = fs+1
r (Y s+1

r ). It

remains to prove the inequality

P ( As+1
r | σ(Xs

−∞
, Y s

−∞
) ) ≤ 1 − ms+1, (5)

because it implies P(As+1
r

|As
r
) ≤ 1 −ms+1, hence P(As+1

r
) ≤ (1− ms+1)P(As

r
), and hence

(4).

* Clearly, pk(xk−1, xk) = ρk(xk−1, xk) ∧ 1, provided that ρk exists. Even if it does not,

we may take the absolutely continuous part.
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Let us prove (5). We have

As+1
r

= {ω : Xs+1 6= fs+1
r

(Y s+1
r

)} = {ω : αs+1(Ys+1, Xs) 6= αs+1(Ys+1, f
s

r
(Y s

r
))};

here Xs and fs
r
(Y s

r
) are measurable with respect to the given σ-field σ(Xs

−∞
, Y s

−∞
),

whereas Ys+1 is independent of the σ-field (by definition of parametrization). So, it is

enough to prove that

P {αs+1(Ys+1, x
′

s
) 6= αs+1(Ys+1, x

′′

s
) } ≤ 1 − ms+1

for any x′

s, x
′′

s ∈ Xs. But

P {αs+1(Ys+1, x
′

s
) 6= αs+1(Ys+1, x

′′

s
) } =

= (µs+1 × mes) { (xs+1, t) : αs+1(xs+1, t, x
′

s
) 6= αs+1(xs+1, t, x

′′

s
) } =

=

∫
µs+1(dxs+1) mes { t ∈ [0, 1] : αs+1(xs+1, t, x

′

s
) 6= αs+1(xs+1, t, x

′′

s
) } ≤

≤ 1 −

∫
µs+1(dxs+1) · (ps+1(x

′

s, xs+1) ∧ ps+1(x
′′

s , xs+1) ∧ 1),

because, according to (3),

t ≤ ps+1(x
′

s
, xs+1) ∧ ps+1(x

′′

s
, xs+1) =⇒ αs+1(xs+1, t, x

′

s
) = xs+1 = αs+1(xs+1, t, x

′′

s
).

Now,

∫
µs+1(dxs+1) · (ps+1(x

′

s, xs+1) ∧ ps+1(x
′′

s , xs+1) ∧ 1) =

= (νs+1(x
′

s
) ∧ νs+1(x

′′

s
) ∧ µs+1) (Xs+1) ≥ ms+1

due to (1), and the theorem is proved.
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