About Yor’s problem.
8. A strengthening of the standardness theorem

Boris Tsirelson (Tel Aviv University)

Consider a Markov chain {Xy}r, X € Ai. As before (see “Another proof of a
standardness theorem”), we may describe it by means of pux € P(X;) and v : Xp—1 —
P(X)); that is, py is the distribution of Xy, and vg(zk_1) is the conditional distribution
of X, for given X 1 = xp_1.

For ) _,,x}_| € Xj_1 consider the infimum of three measures

v(zh_1) Av(@g_1) A b,

take its total mass, and its essential infimum in xj_,,x}_;; more exactly, define my, as the
maximal number satisfying the following condition:

(w(@h 1) Av(@y) A pe) (k) = (1)

for all pairs (x;c_l, xg_l) in a product set of full measure.

Note 1. my introduced above is clearly no less than my introduced in “Another proof
of a standardness theorem.”

Note 2. If there exists the density

yk(xk_l)(dxk)
pie (day)

pr(Tp, Tp—1) =

then (1) means that

Theorem. If ), m; = oo, then {X}; is tail-trivial, and admits a generating
parametrization.
Proof. We have to construct the needed function

ap 1 [0,1] x Xyq — X

for each k. But [0, 1] may be replaced with another probability space; we prefer to construct
functions
(67773 (Xk X [O, 1]) X Xk:—l — Xk,
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the first space X x [0, 1] being equipped with the measure p;, X mes. Introduce the density*

(v (zr—1) A pg) (dxg)
px(dy) '

(2)

pr(Trp—1, ) =

First, define
ag(xg, t,xp—1) = when t < pr(xp_1,x); (3)

it “parametrizes” the measure vi(xr—_1) A pr. Second, define ay(wg,t, xx—1) for ¢t >
pr(xg—1,xk) in any way providing that ay is a parametrization. We have to prove that

o(Xt) ca(YEy),

because the rest of the proof is the same as in “Another proof of a standardness theorem.”
We shall construct functions f°: Y’ — X, such that

S

P{Xo=f (V... YO >1— [ (1—mw); (4)
k=r+1

when r — —o0, it gives us X, € o(Y*_ ). Of course, Y2 = V. X Vry1 X ... X Vs and
yk - Xk X [07 1]
Define the functions by recursion in s:

fi(xg,t) =z for any t € [0, 1];

PN = aspr(ysgn, £2(1))-
Consider events

Al =A{w: X # (V) )
We have
At C A

indeed, X171 = as11(Yss1, Xs) by definition of a parametrization, and f3T1(yst!) =
o 1(Ys+1, fE(yg)) by definition of f, so X, = f3(V) = Xe = fHHYS). It
remains to prove the inequality

P (AT 0(X2 0, Y20) ) S 1=y, (5)

because it implies P(ASTHAS) <1 — mgyq, hence P(AST) < (1 — mgyq1)P(AS), and hence

(4).

* Clearly, px(xk—1, k) = pr(zr—1,7K) A 1, provided that py exists. Even if it does not,

we may take the absolutely continuous part.
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Let us prove (5). We have
A ={w s o £ FHT) = {w aspa Ve, Xs) # s (Yorr, £7(V0) 1

here X, and f2(Y,°) are measurable with respect to the given o-field o(X* _,Y* ),
whereas Y511 is independent of the o-field (by definition of parametrization). So, it is

enough to prove that
P{asi1(Yerr, #)) # asp1(Yor1,25) } S 1T —mgp
for any 2/, x2” € Xs. But

P{ast1(Yor1,25) # ass1(Yoy1, 7)) } =
= (1 x mes) { (Ts11,1) : Qo1 (Top1, 8, 2) # Qsp1 (Torr, b, 27) } =

//,Ls_|_1 drsir) mes{t € [0,1]: asy1(wsa1,t, 7)) # asi1(Tsr1,t,27) } <
<1- /u3+1(dxs+1) F(Pst1(@5, Tot1) A Pst1 (25, Ts41) A1),
because, according to (3),
t < Psp1 (@, Tog1) APsi1 (25, Ts41) = Qep1(Tog1, 6, 25) = Top1 = Qg1 (Tspa, 25,

Now,

/H8+1(dx8+1) (Ps1 (25, Ts 1) APsia (2, Ts01) A1) =

= (Vo1 () Avsi1(29) A prsin) (Xoy1) > mgpa

due to (1), and the theorem is proved.



