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501. Let X be a Borel space. By multiplying it to the Borel space [0, 1] we obtain a
new Borel space X x [0, 1].

502. SM(X) € SM(X x [0,1]). More precisely, SM(X) may be considered embedded
into SM(X x [0, 1]) by identifying a pseudometric p € SM(X) with the pseudometric

p((z1,t1), (w2,t2)) = p(x1, 22);

here x1, 9 € X and t,t2 € [0, 1].

503. Lemma. Let X be a Borel space, p € SM(X), and p € SM(X %[0, 1]) corresponds
to p as above. Then

Pxr(p X mes, v X mes) = pxg(p, V)

for any u,v € P(X). (Of course, i x mes denotes the product of the measure p on X and
the Lebesgue measure mes on [0, 1]).

Proof. Use the definition of Kantorovich-Rubinstein metric, given in Item 401 (via
Lipschitz functions). Clearly, a Lipschitz function f on (X x [0,1], p) does not depend on
t € [0,1] and may be identified with a Lipschitz function f on (X, p). Now,
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504. Let {Xx}r be a random sequence, Xj € Xj. Form a two-component random
sequence {Xk}k, X, € X = Xy X [0, 1], as follows:

and so
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as was to be proved.

Xk = (X, X3)
with X, independent, uniform on [0, 1], and {X} } independent of {Xj}.

505. What is the “markovization” of such a sequence {X};},? We have
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and the conditional distribution of X for given X E;} is the product measure: the condi-
tional distribution of X}, for given X1

—00 7

multiplied by mes. So, the conditional distribu-

tion g (2% 71) of X*__ for given X*7! = 2%~ is essentially v (2*2}) x mes. More exactly,
the second term is the infinite product of J-measures multiplied by mes, but it does not

change the following argument.

506. Consider a chain of metrics {px}x for {Xj}x, and form pg as in Item 502, that
is,
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Then {py}x is a chain of metrics for {Xy}x. This fact follows from Item 505 and Lemma
503 (slightly modified). And note that the numbers p;,, defined in (210), are insensitive to

the distinction between pj and py.

507. Corollary. Let {X k}x be the two-component random sequence constructed
from a random sequence { Xy} as in Item 504. If { X}, admits a chain of metrics with
non-zero p__, then {X;}, admits such a chain, too.

508. The distribution of {X}} is
P = P x Mes,
where P € P(X°_) is the distribution of {X}}x, and Mes is the distribution of { X} },

that is, Mes is the Lebesgue product measure on the infinite-dimensional cube.

509. If P is equivalent to another distribution P, then clearly P x Mes is equivalent
to Py x Mes. And if P, is a product,

pO:H,ukn
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then Py x Mes is a product, too:

P x Mes ~ Py x Mes = H(,uk X mes).
k

510. But, from general point of view, each measure space (X x [0, 1], ur X mes) is
anyway isomorphic to the standard space ([0, 1], mes). Indeed, all nonatomic measures are
isomorphic.

511. Corollary. Let {X k }x be the two-component random sequence constructed from
a random sequence { X}, as in Item 504. If the distribution P of { X}y is equivalent to
a product measure, then the distribution P of {X k}x is equivalent to the corresponding
product of nonatomic measures.



512. Proof of Theorem 101. Take {X;}; as in Theorem 103, form {Xj}; as
in Ttem 504, and consider {f(Xj)}x, where each fj, : X, — [0,1] is some isomorphism
between ({0,1} x [0,1], u x mes) and ([0, 1], mes); here u is the uniform distribution on
the two-element set {0, 1}, so we may choose f; simply as
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fr(x,t) = forxr=0o0r1l,and 0 <t < 1.

Now Corollary 511 shows that the distribution of {fzx(X%)}x is equivalent to the Lebesgue
product measure. It follows that the sequence is tail-trivial. And Corollary 507 together
with Theorem 15 shows that the chain of o-fields

ol oy foa(Xeo1), fe(Xn) Y =o{ .., Xp1, Xi}

is non-standard. So, Theorem 101 is proved.



