About Yor's problem.

6. Supplement: from discrete to continuous

Boris Tsirelson (Tel Aviv University)

501. Let \mathcal{X} be a Borel space. By multiplying it to the Borel space $[0,1]$ we obtain a new Borel space $\mathcal{X} \times[0,1]$.
502. $\operatorname{SM}(\mathcal{X}) \subset \operatorname{SM}(\mathcal{X} \times[0,1])$. More precisely, $\operatorname{SM}(\mathcal{X})$ may be considered embedded into $\operatorname{SM}(\mathcal{X} \times[0,1])$ by identifying a pseudometric $\rho \in \operatorname{SM}(\mathcal{X})$ with the pseudometric

$$
\hat{\rho}\left(\left(x_{1}, t_{1}\right),\left(x_{2}, t_{2}\right)\right)=\rho\left(x_{1}, x_{2}\right) ;
$$

here $x_{1}, x_{2} \in \mathcal{X}$ and $t_{1}, t_{2} \in[0,1]$.
503. Lemma. Let \mathcal{X} be a Borel space, $\rho \in \operatorname{SM}(\mathcal{X})$, and $\hat{\rho} \in \operatorname{SM}(\mathcal{X} \times[0,1])$ corresponds to ρ as above. Then

$$
\hat{\rho}_{\mathrm{KR}}(\mu \times \mathrm{mes}, \nu \times \mathrm{mes})=\rho_{\mathrm{KR}}(\mu, \nu)
$$

for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$. (Of course, $\mu \times$ mes denotes the product of the measure μ on \mathcal{X} and the Lebesgue measure mes on $[0,1]$).

Proof. Use the definition of Kantorovich-Rubinstein metric, given in Item 401 (via Lipschitz functions). Clearly, a Lipschitz function \hat{f} on $(\mathcal{X} \times[0,1], \hat{\rho})$ does not depend on $t \in[0,1]$ and may be identified with a Lipschitz function f on (\mathcal{X}, ρ). Now,

$$
\int \hat{f} d(\mu \times \mathrm{mes})=\int f d \mu
$$

and so

$$
\sup _{\hat{f}}\left|\int \hat{f} d(\mu \times \mathrm{mes})-\int \hat{f} d(\nu \times \mathrm{mes})\right|=\sup _{f}\left|\int f d \mu-\int f d \nu\right|,
$$

as was to be proved.
504. Let $\left\{X_{k}\right\}_{k}$ be a random sequence, $X_{k} \in \mathcal{X}_{k}$. Form a two-component random sequence $\left\{\hat{X}_{k}\right\}_{k}, \hat{X}_{k} \in \hat{\mathcal{X}}_{k}=\mathcal{X}_{k} \times[0,1]$, as follows:

$$
\hat{X}_{k}=\left(X_{k}, X_{k}^{\prime}\right)
$$

with X_{k}^{\prime} independent, uniform on $[0,1]$, and $\left\{X_{k}^{\prime}\right\}_{k}$ independent of $\left\{X_{k}\right\}_{k}$.
505. What is the "markovization" of such a sequence $\left\{\hat{X}_{k}\right\}_{k}$? We have

$$
\hat{X}_{-\infty}^{k}=\left(X_{-\infty}^{k}, X_{-\infty}^{\prime k}\right),
$$

and the conditional distribution of \hat{X}_{k} for given $\hat{X}_{-\infty}^{k-1}$ is the product measure: the conditional distribution of X_{k} for given $X_{-\infty}^{k-1}$, multiplied by mes. So, the conditional distribution $\hat{\nu}_{k}\left(\hat{x}_{-\infty}^{k-1}\right)$ of $\hat{X}_{-\infty}^{k}$ for given $\hat{X}_{-\infty}^{k-1}=\hat{x}_{-\infty}^{k-1}$ is essentially $\nu_{k}\left(x_{-\infty}^{k-1}\right) \times$ mes. More exactly, the second term is the infinite product of δ-measures multiplied by mes, but it does not change the following argument.
506. Consider a chain of metrics $\left\{\rho_{k}\right\}_{k}$ for $\left\{X_{k}\right\}_{k}$, and form $\hat{\rho}_{k}$ as in Item 502, that is,

$$
\hat{\rho}_{k}\left(\left(x_{-\infty}^{k}, x_{-\infty}^{\prime k}\right),\left(y_{-\infty}^{k}, y_{-\infty}^{\prime k}\right)\right)=\rho_{k}\left(x_{-\infty}^{k}, y_{-\infty}^{k}\right) .
$$

Then $\left\{\hat{\rho}_{k}\right\}_{k}$ is a chain of metrics for $\left\{\hat{X}_{k}\right\}_{k}$. This fact follows from Item 505 and Lemma 503 (slightly modified). And note that the numbers $\bar{\rho}_{k}$, defined in (210), are insensitive to the distinction between ρ_{k} and $\hat{\rho}_{k}$.
507. Corollary. Let $\left\{\hat{X}_{k}\right\}_{k}$ be the two-component random sequence constructed from a random sequence $\left\{X_{k}\right\}_{k}$ as in Item 504. If $\left\{X_{k}\right\}_{k}$ admits a chain of metrics with non-zero $\bar{\rho}_{-\infty}$, then $\left\{\hat{X}_{k}\right\}_{k}$ admits such a chain, too.
508. The distribution of $\left\{\hat{X}_{k}\right\}_{k}$ is

$$
\hat{P}=P \times \mathrm{Mes},
$$

where $P \in \mathcal{P}\left(\mathcal{X}_{-\infty}^{0}\right)$ is the distribution of $\left\{X_{k}\right\}_{k}$, and Mes is the distribution of $\left\{X_{k}^{\prime}\right\}_{k}$, that is, Mes is the Lebesgue product measure on the infinite-dimensional cube.
509. If P is equivalent to another distribution P_{0}, then clearly $P \times$ Mes is equivalent to $P_{0} \times$ Mes. And if P_{0} is a product,

$$
P_{0}=\prod_{k} \mu_{k}
$$

then $P_{0} \times$ Mes is a product, too:

$$
P \times \mathrm{Mes} \sim P_{0} \times \mathrm{Mes}=\prod_{k}\left(\mu_{k} \times \mathrm{mes}\right)
$$

510. But, from general point of view, each measure space ($\mathcal{X}_{k} \times[0,1], \mu_{k} \times$ mes $)$ is anyway isomorphic to the standard space ($[0,1]$, mes). Indeed, all nonatomic measures are isomorphic.
511. Corollary. Let $\left\{\hat{X}_{k}\right\}_{k}$ be the two-component random sequence constructed from a random sequence $\left\{X_{k}\right\}_{k}$ as in Item 504. If the distribution P of $\left\{X_{k}\right\}_{k}$ is equivalent to a product measure, then the distribution \hat{P} of $\left\{\hat{X}_{k}\right\}_{k}$ is equivalent to the corresponding product of nonatomic measures.
512. Proof of Theorem 101. Take $\left\{X_{k}\right\}_{k}$ as in Theorem 103, form $\left\{\hat{X}_{k}\right\}_{k}$ as in Item 504, and consider $\left\{f_{k}\left(\hat{X}_{k}\right)\right\}_{k}$, where each $f_{k}: \hat{\mathcal{X}}_{k} \rightarrow[0,1]$ is some isomorphism between ($\{0,1\} \times[0,1], \mu \times$ mes $)$ and ($[0,1]$, mes); here μ is the uniform distribution on the two-element set $\{0,1\}$, so we may choose f_{k} simply as

$$
f_{k}(x, t)=\frac{x+t}{2} \quad \text { for } x=0 \text { or } 1, \text { and } 0<t<1
$$

Now Corollary 511 shows that the distribution of $\left\{f_{k}\left(\hat{X}_{k}\right)\right\}_{k}$ is equivalent to the Lebesgue product measure. It follows that the sequence is tail-trivial. And Corollary 507 together with Theorem 15 shows that the chain of σ-fields

$$
\sigma\left\{\ldots, f_{k-1}\left(\hat{X}_{k-1}\right), f_{k}\left(\hat{X}_{k}\right)\right\}=\sigma\left\{\ldots, \hat{X}_{k-1}, \hat{X}_{k}\right\}
$$

is non-standard. So, Theorem 101 is proved.

