About Yor’s problem.
5. An equivalent measure: proofs

Boris Tsirelson (Tel Aviv University)

Deducing Theorem 103 from Lemma 215
301. Choose €g,€1,... € (0,1) and Ny, Ny, ... € N suct that

(302) Ni41 < 2N,

C
(303) 1;[ <1 - Eka) >0
(C as in (216)), and

(304) S 2N < o
k

(For example, Nj, = 2¥ Ny and e, = 0F¢q with 6 € (1/2, 1/+/2) and g Ny > O).

Apply Lemma 215 for n = Nj, and € = ¢;. It gives us 22V measures from 795]\,1’“;
choose 2Vk+1 of them, and number them by Nji,; indices with two values each. So, we
have kg (€1, ..., €Ny, ) € PY* (each & being 0 or 1) such that

C
€ka

(305) KR (g (€1, - €y ) k(€71 €8, ) 2 1 =

unless & =&, ..., ﬂvkﬂ = f}(,kﬂ. We may consider pu; as a Markov transition probability

from {0, 1}7%+1 to {0, 1}V*.

306. Divide the set {...,—2,—1,0} into segments of length Nj; that is, take M} =
NO + ...+ Nk and A_k = {—Mk + 1, —Mk -+ 2, ey _Mk—l} (here M_1 = 0) We claim
that there exists a random sequence { Xy} <o, each X}, taking values 0,1 only, such that

(307) PLX(A ) [ X(A—ren) b = (X (A ) (X (Ar)),

(308) the distribution of { X} }r<o is equivalent to the Bernoulli-1/2 measure.
Indeed, to construct the needed distribution, it is enough to prove convergence of the
product for its density

(309) Hp—k = Hp—k (2(A_an)), 2(Ak))
K K
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in Ly on the Bernoulli-1/2 measure; here p_y, is the density of . From (214) we obtain

E (p2 |225") < (L+eR)™ < exp(efNi).

— 00

Hence Ep? , < exp(e?Ny), and then*

E(p? iy p2r) = EE (P2 )Py |2Z* ) =E (P2 (hy1) E (024 |2=r)) <
< E (P2 i1y exp(exNe) ) = exp(eiNg) Ep? 1) < exp(egNi + i1 Nit1)-

In the same way
t t
(310) E 1_[]0;2€ < exp (Z 6%Nk> :
k=s k=s

Taking into account that E HZ:S pr = 1, we obtain

() (o)

and, by using the above trick with conditional expectation once more,

(([n) ) fin) < (o (E20) ) oo (o).

that is,

t t 2 t t
(311) E ( Hpk — Hpk> < exp (Z 5%Nk> — exp (Z 5%Nk>
k=r k=s k=r k=s

for any r < s <t < 0. Now (304) implies convergence of (309).
312. Define pg as

(313) po ({x e, {oite ) = max [a), — )
kGAQ

and consider the corresponding chain of metrics {py}r (see (209)). From (305) and (307)
we obtain

C
p—mo ({@ide, {zi}e) = (1 — goNO) max [z, —

* The rest of Item 306 is undoubtedly a well-known argument; now I am lazy to find a
relevant reference.



for any {x} }r, {}}x. Continuing in this way, we obtain

- C
314 _ ! M) > | | 1— i
(314) p—m, ({zrte {zite) 2 (m:()( €mNm>> keinjfﬂ) Ty — Ty,

It follows that

C
D > 1-— 0
T 55) -
by virtue of (303). So, Theorem 103 is deduced from Lemma 215.

Proof of Lemma 215

401. Another definition of the Kantorovich-Rubinstein metric, equivalent to one given

in Item 7, follows:
[ran- [ 1av

where supremum is taken over all f : X — R satisfying Lipschitz condition:

)

(402) prr(pt, V) = sup

(403) Ve,ye X [f(z) — f(y)| < pla,y).

404. Lemma. Let each of two probability measures p, v be concentrated on a two-
point set, p on {a,b} and v on {¢,d}, in a metric space. Suppose that

Then

pren(1,v) = 5(n{a} + (e} pla, ) + 5 (u{b} + w{d))p(b, d)
(405) , X
; (1 L otac)— Sol d)) fa) — v{c].

406. Proof.* It is enough to consider the case when u{a} > v{c}. Take a Lipschitz
function f : {a,b,c,d} — R such that

f(e) = f(a) = pla,c),
f(d) = f(b) = p(b, d),
f(d) = f(a) = pla,d) = 1.

* A general method is known for calculating Kantorovich-Rubinstein distance for a finite
number of points by solving a linear programming problem.
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It is easy to see that such f exists and is unique up to an additive constant. We have

[ v = [ fau=pvic) + Fdwid) - f@nfa} - FE) =
= (F(e) ~ F(@)wle} + (F(d) — FO){b} + (F(d) — Fla))(ufa) — w{c}).
because p{a} — v{c} = v{d} — u{b}. Hence
1) 2 (7€) = Fla)ve} + (F(d) — FO) b} + (7(d) — (@) (u{a} — vie}) =
= pla, w{e} + plb, dyufb} + pfa) — vfc =
= 2 (ufa} + v{e})pla,c) + 5 (u{b} + v {d))p(b, d)

# (1= 30000 = 50,0 ) e} - el

An opposite inequality® can be obtained from the Item 7. Take

£(t) = a, when 0 <t < p{a};
b, when p{a} <t <1;

W(t) = ¢, when 0 <t < v{c};
-1 d, whenv{c} <t<l.

Then .
prenljis ) < / pE(), () di =

vic) u{a} |
= / pla,c)dt+ / pla,d)dt + / p(b,d)dt =
0 v{c} pia}

= vicipl(a, ) + (n{a} — vic})pla, d) + (1 = p{a})p(b, d) =

= S (ufa} + v{e})pla,c) + 5 (u{b} + w{d))p(b, d)t
+ (1= 3000 = 500.)) uda) - viell,

and Lemma 404 is proved.

407. Note some other forms of (405):

(408)  pur(p, v) = pla, ¢) min(u{a}, v{c}) + p(b, d) min(u{b}, p{d}) + |p{a} — v{c}|;

(409)  1— palin,v) = (1 — pla, ) min(u{a}, v{c}) + (1 — p(b, d)) min(u{b}, pu{d}).

* In fact, the opposite inequality is not needed for our purpose.
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410. Introduce a probability measure M!" on the set PI' as the uniform distribution
on the finite set ex (P) of all extremal points of PI'. That is, M-distributed random
element of P! may be written as the following distribution for (Xi,...,X,):

1
(411) P(Xk =1 ‘ X1 = T1y -, Xk—l = Tk—1 ) = 5(1+€T(.’B1,...,.’L’k_1)),

where each 7(x1,...,2,_1) is a random variable taking the values +1 with probability 1/2
each, all such variables being independent for all corteges (z1,...,zr_1) of all lengthes
0,...,n— 1. We intend to estimate the expression

(412) Fu(Ae) = / / exp (A1 — KR" (41, 1)) M7 (dys) M7 (dv);
we will write also
(413) Fu(\e) = Eexp (A(1 - KR"(41,11))).

treating p, v as independent random element of P distributed according to M.

414. Lemma.

1—¢ 1 1—¢ 1+e¢
Fn+1()\,€) = Fn (T/\,{f) : 5 (Fn (T/\,{‘:) +Fn (T)\,€)) .

Proof. Consider KR" " (p,v) as pg(0,1) following to Item 212; so,

po(0,1) = p1 xr(p1, 1),

where p is concentrated on two points a = (0,0) and b = (0, 1),

pifa} = 30 —en), afbh = 5(1+2n),

7, takes the values 1 with probability 1/2 each. Similarly, 14 is concentrated on two
points ¢ = (1,0) and d = (1, 1),

1 1
n{c} = 5(1—571,), n{d} = 5(1—1—571,).
It follows from the construction of M 6”4’1 that the four random variables

Tus  Tu, ,01(@, C)7 p1<b7 d)

are independent, and
Eexp(A(1 = pi(a,c))) = Fu(A,€),
Eexp(A(1 = p1(b,d))) = Fu(A,€),
Eexp(A(1 = po(0,1)) = Fuy1(A,2).
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It is easy to see that pj(a,d) =1, p1(b,c) = 1. Lemma 404 in the form (409) gives

1= po(0,1) = (1 p1(ac)) - %(1 — emax(ry, 7)) + (1= pi (b, d) - %(1 4+ emin(r, 7).

Multiplying by A, taking exponent function and averaging, we obtain the contribution
Fo(45E N, ¢) - Fo (442X, ) from the case 7, = 7,, and F2(155),¢) from the case 7, # 7.

So, Lemma 414 is proved.

415. Lemma.

Proof. First, Fy()\,¢) = e*. Further, suppose the inequality holds for n and prove it
for n 4+ 1. Due to Lemma 414 it is enough to show that

(-5 159) 3 ow (-7 552) om0~ 5) 155 <

57’L—|—1 1
com((1-5)""2) o 0ae— L
3 6(1—§)n+1

That is,
1 e\" 2e 1 E\" €
9 N 1 N _> 3 9 (<1 N _> '3 > < 1.
26Xp< ( 3 3)\)+2exp 3 3)\ <

The left-hand side is convex, so it is enough to check the inequality for A = 0 and A =

et (1- %)_n. But exp(—2/3) + exp(1/3) < 2.

416. It follows from Lemma 415 that
n e\" a—1
IP’{KR (u,u)§1—<1—§) a}ﬁexp(— )
€

for any a > 1, 0 < & < 1/2; here, as before, u and v are independent random elements of
P having distribution M.

417. Now we are prepared to complete our proof of Lemma 215. Choose the absolute
constant C suct that

C
(418) o exp (%)—12@41112
for any a > C. For given n and € we have find N = 22" measures pu1,...,uy € P"

such that KR"(p, p;) > 1 — % for i # j. Suppose that en > C'; otherwise we have

6



nothing to prove. We impose an additional condition € < 1/2 and shell prove a bit more:
KR" (i, pj) > 1 — 25% It is enough, because we may use €/2 instead of the given ¢, if it
exceeds 1/2.

Choose p1,...,uny € PP at random, independently, according to the distribution M,
and the needed inequality will be satisfied with a positive probability. To prove this fact,
it is enough to show that

C 1
e ) <1 — — V< — .
IP’{KR (i, ) < 1 QW} <

Put a = C(2en) "' (1 — £)~" in (416); then a > C(2en) ' exp(en/3), and we obtain

P{KR”(M,M) <1- Q} < exp <—a_ 1) :

2en €

It remains to show that exp(—“?_l) < N2 that is, <=L > 2In N, or

g
gexp (5_71) —1>en-41n2,
2en 3

what follows from (418). So, Lemma 215 is proved.



