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Deducing Theorem 103 from Lemma 215

301. Choose ε0, ε1, . . . ∈ (0, 1) and N0, N1, . . . ∈ N suct that

(302) Nk+1 ≤ 2Nk,

(303)
∏

k

(

1 − C

εkNk

)

> 0

(C as in (216)), and

(304)
∑

k

ε2kNk <∞.

(For example, Nk = 2kN0 and εk = θkε0 with θ ∈ (1/2, 1/
√

2) and ε0N0 > C).

Apply Lemma 215 for n = Nk and ε = εk. It gives us 22Nk measures from PNk

εk
;

choose 2Nk+1 of them, and number them by Nk+1 indices with two values each. So, we

have µk(ξ1, . . . , ξNk+1
) ∈ PNk

εk
(each ξi being 0 or 1) such that

(305) KRNk(µk(ξ′1, . . . , ξ
′
Nk+1

), µk(ξ′′1 , . . . , ξ
′′
Nk+1

)) ≥ 1 − C

εkNk

unless ξ′1 = ξ′′1 , . . . , ξ
′
Nk+1

= ξ′′Nk+1
. We may consider µk as a Markov transition probability

from {0, 1}Nk+1 to {0, 1}Nk .

306. Divide the set {. . . ,−2,−1, 0} into segments of length Nk; that is, take Mk =

N0 + . . .+ Nk and ∆−k = {−Mk + 1,−Mk + 2, . . . ,−Mk−1} (here M−1 = 0). We claim

that there exists a random sequence {Xk}k≤0, each Xk taking values 0, 1 only, such that

(307) P {X(∆−k) |X(∆−(k+1)) } = µk(X(∆−(k+1)))(X(∆−k)),

(308) the distribution of {Xk}k≤0 is equivalent to the Bernoulli-1/2 measure.

Indeed, to construct the needed distribution, it is enough to prove convergence of the

product for its density

(309)
∏

k

p−k =
∏

k

p−k ( x(∆−(k+1)), x(∆−k) )
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in L2 on the Bernoulli-1/2 measure; here p−k is the density of µk. From (214) we obtain

E (p2
−k | x−Mk

−∞ ) ≤ (1 + ε2k)Nk ≤ exp(ε2kNk).

Hence Ep2
−k ≤ exp(ε2kNk), and then*

E ( p2
−(k+1) p

2
−k ) = E E ( p2

−(k+1)p
2
−k | x−Mk

−∞ ) = E ( p2
−(k+1) E (p2

−k | x−Mk

−∞ ) ) ≤
≤ E ( p2

−(k+1) exp(ε2kNk) ) = exp(ε2kNk) Ep2
−(k+1) ≤ exp(ε2kNk + ε2k+1Nk+1).

In the same way

(310) E

t
∏

k=s

p2
k ≤ exp

(

t
∑

k=s

ε2kNk

)

.

Taking into account that E
∏t

k=s pk = 1, we obtain

E

((

t
∏

k=s

pk

)

− 1

)2

≤ exp

(

t
∑

k=s

ε2kNk

)

− 1,

and, by using the above trick with conditional expectation once more,

E

(((

s−1
∏

k=r

pk

)

− 1

)

·
t
∏

k=s

pk

)2

≤
(

exp

(

s−1
∑

k=r

ε2kNk

)

− 1

)

· exp

(

t
∑

k=s

ε2kNk

)

,

that is,

(311) E

(

t
∏

k=r

pk −
t
∏

k=s

pk

)2

≤ exp

(

t
∑

k=r

ε2kNk

)

− exp

(

t
∑

k=s

ε2kNk

)

for any r ≤ s ≤ t ≤ 0. Now (304) implies convergence of (309).

312. Define ρ0 as

(313) ρ0 ( {x′k}k, {x′′k}k ) = max
k∈∆0

|x′k − x′′k |

and consider the corresponding chain of metrics {ρk}k (see (209)). From (305) and (307)

we obtain

ρ−M0
( {x′k}k, {x′′k}k ) ≥

(

1 − C

ε0N0

)

max
k∈∆

−1

|x′k − x′′k |

* The rest of Item 306 is undoubtedly a well-known argument; now I am lazy to find a

relevant reference.
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for any {x′k}k, {x′′k}k. Continuing in this way, we obtain

(314) ρ−Mn
( {x′k}k, {x′′k}k ) ≥

(

n
∏

m=0

(

1 − C

εmNm

)

)

max
k∈∆

−(n+1)

|x′k − x′′k |.

It follows that

ρ−∞ ≥
∏

m

(

1 − C

εmNm

)

> 0

by virtue of (303). So, Theorem 103 is deduced from Lemma 215.

Proof of Lemma 215

401. Another definition of the Kantorovich-Rubinstein metric, equivalent to one given

in Item 7, follows:

(402) ρKR(µ, ν) = sup
f

∣

∣

∣

∣

∫

f dµ−
∫

f dν

∣

∣

∣

∣

,

where supremum is taken over all f : X → R satisfying Lipschitz condition:

(403) ∀x, y ∈ X |f(x) − f(y)| ≤ ρ(x, y).

404. Lemma. Let each of two probability measures µ, ν be concentrated on a two-

point set, µ on {a, b} and ν on {c, d}, in a metric space. Suppose that

ρ(a, c) ≤ 1, ρ(b, d) ≤ 1,

ρ(a, d) = 1, ρ(b, c) = 1.

Then

(405)

ρKR(µ, ν) =
1

2
(µ{a} + ν{c})ρ(a, c) +

1

2
(µ{b} + ν{d})ρ(b, d)+

+

(

1 − 1

2
ρ(a, c)− 1

2
ρ(b, d)

)

|µ{a} − ν{c}|.

406. Proof.* It is enough to consider the case when µ{a} ≥ ν{c}. Take a Lipschitz

function f : {a, b, c, d} → R such that

f(c) − f(a) = ρ(a, c),

f(d) − f(b) = ρ(b, d),

f(d) − f(a) = ρ(a, d) = 1.

* A general method is known for calculating Kantorovich-Rubinstein distance for a finite

number of points by solving a linear programming problem.
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It is easy to see that such f exists and is unique up to an additive constant. We have

∫

f dν −
∫

f dµ = f(c)ν{c} + f(d)ν{d} − f(a)µ{a} − f(b)µ{b} =

= (f(c) − f(a))ν{c}+ (f(d) − f(b))µ{b}+ (f(d) − f(a))(µ{a} − ν{c}),

because µ{a} − ν{c} = ν{d} − µ{b}. Hence

ρKR(µ, ν) ≥ (f(c) − f(a))ν{c} + (f(d) − f(b))µ{b}+ (f(d) − f(a))(µ{a} − ν{c}) =

= ρ(a, c)ν{c}+ ρ(b, d)µ{b}+ µ{a} − ν{c} =

=
1

2
(µ{a} + ν{c})ρ(a, c) +

1

2
(µ{b} + ν{d})ρ(b, d)+

+

(

1 − 1

2
ρ(a, c)− 1

2
ρ(b, d)

)

|µ{a} − ν{c}|.

An opposite inequality* can be obtained from the Item 7. Take

ξ(t) =

{

a, when 0 < t < µ{a};
b, when µ{a} < t < 1;

ψ(t) =

{

c, when 0 < t < ν{c};
d, when ν{c} < t < 1.

Then

ρKR(µ, ν) ≤
∫ 1

0

ρ(ξ(t), ψ(t)) dt=

=

∫ ν{c}

0

ρ(a, c) dt+

∫ µ{a}

ν{c}

ρ(a, d) dt+

∫ 1

µ{a}

ρ(b, d) dt =

= ν{c}ρ(a, c) + (µ{a} − ν{c})ρ(a, d) + (1 − µ{a})ρ(b, d) =

=
1

2
(µ{a} + ν{c})ρ(a, c) +

1

2
(µ{b} + ν{d})ρ(b, d)+

+

(

1 − 1

2
ρ(a, c)− 1

2
ρ(b, d)

)

|µ{a} − ν{c}|,

and Lemma 404 is proved.

407. Note some other forms of (405):

(408) ρKR(µ, ν) = ρ(a, c) min(µ{a}, ν{c}) + ρ(b, d) min(µ{b}, µ{d}) + |µ{a} − ν{c}|;

(409) 1 − ρKR(µ, ν) = (1 − ρ(a, c)) min(µ{a}, ν{c}) + (1 − ρ(b, d)) min(µ{b}, µ{d}).

* In fact, the opposite inequality is not needed for our purpose.
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410. Introduce a probability measure Mn
ε on the set Pn

ε as the uniform distribution

on the finite set ex (Pn
ε ) of all extremal points of Pn

ε . That is, Mn
ε -distributed random

element of Pn
ε may be written as the following distribution for (X1, . . . , Xn):

(411) P (Xk = 1 |X1 = x1, . . . , Xk−1 = xk−1 ) =
1

2
(1 + ετ(x1, . . . , xk−1)),

where each τ(x1, . . . , xk−1) is a random variable taking the values ±1 with probability 1/2

each, all such variables being independent for all corteges (x1, . . . , xk−1) of all lengthes

0, . . . , n− 1. We intend to estimate the expression

(412) Fn(λ, ε) =

∫ ∫

exp (λ(1 − KRn(µ, ν))) Mn
ε (dµ)Mn

ε (dν);

we will write also

(413) Fn(λ, ε) = E exp (λ(1 − KRn(µ, ν))) ,

treating µ, ν as independent random element of Pn
ε distributed according to Mn

ε .

414. Lemma.

Fn+1(λ, ε) = Fn

(

1 − ε

2
λ, ε

)

· 1

2

(

Fn

(

1 − ε

2
λ, ε

)

+ Fn

(

1 + ε

2
λ, ε

))

.

Proof. Consider KRn+1(µ, ν) as ρ0(0, 1) following to Item 212; so,

ρ0(0, 1) = ρ1,KR(µ1, ν1),

where µ1 is concentrated on two points a = (0, 0) and b = (0, 1),

µ1{a} =
1

2
(1 − ετµ), µ1{b} =

1

2
(1 + ετµ),

τµ takes the values ±1 with probability 1/2 each. Similarly, ν1 is concentrated on two

points c = (1, 0) and d = (1, 1),

ν1{c} =
1

2
(1 − ετν), ν1{d} =

1

2
(1 + ετν).

It follows from the construction of Mn+1
ε that the four random variables

τµ, τν , ρ1(a, c), ρ1(b, d)

are independent, and
E exp(λ(1 − ρ1(a, c))) = Fn(λ, ε),

E exp(λ(1 − ρ1(b, d))) = Fn(λ, ε),

E exp(λ(1 − ρ0(0, 1))) = Fn+1(λ, ε).
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It is easy to see that ρ1(a, d) = 1, ρ1(b, c) = 1. Lemma 404 in the form (409) gives

1 − ρ0(0, 1) = (1 − ρ1(a, c)) ·
1

2
(1 − εmax(τµ, τν)) + (1 − ρ1(b, d)) ·

1

2
(1 + εmin(τµ, τν)).

Multiplying by λ, taking exponent function and averaging, we obtain the contribution

Fn( 1−ε
2
λ, ε) · Fn( 1+ε

2
λ, ε) from the case τµ = τν , and F 2

n( 1−ε
2
λ, ε) from the case τµ 6= τν .

So, Lemma 414 is proved.

415. Lemma.

Fn(λ, ε) ≤ exp
((

1 − ε

3

)n

λ
)

for 0 ≤ λ ≤ 1

ε
(

1 − ε
3

)n and 0 < ε ≤ 1

2
.

Proof. First, F0(λ, ε) = eλ. Further, suppose the inequality holds for n and prove it

for n+ 1. Due to Lemma 414 it is enough to show that

exp

(

(

1 − ε

3

)n

· 1 − ε

2
λ

)

· 1

2

(

exp

(

(

1 − ε

3

)n

· 1 − ε

2
λ

)

+ exp

(

(

1 − ε

3

)n

· 1 + ε

2
λ

))

≤

≤ exp

(

(

1 − ε

3

)n+1

λ

)

for 0 ≤ λ ≤ 1

ε
(

1 − ε
3

)n+1 .

That is,
1

2
exp

(

−
(

1 − ε

3

)n

· 2ε

3
λ

)

+
1

2
exp

((

1 − ε

3

)n

· ε
3
λ
)

≤ 1.

The left-hand side is convex, so it is enough to check the inequality for λ = 0 and λ =

ε−1
(

1 − ε
3

)−n
. But exp(−2/3) + exp(1/3) ≤ 2.

416. It follows from Lemma 415 that

P

{

KRn(µ, ν) ≤ 1 −
(

1 − ε

3

)n

a
}

≤ exp

(

−a− 1

ε

)

for any a > 1, 0 < ε ≤ 1/2; here, as before, µ and ν are independent random elements of

Pn
ε having distribution Mn

ε .

417. Now we are prepared to complete our proof of Lemma 215. Choose the absolute

constant C suct that

(418)
C

2a
exp

(a

3

)

− 1 ≥ a · 4 ln 2

for any a ≥ C. For given n and ε we have find N = 22n measures µ1, . . . , µN ∈ Pn
ε

such that KRn(µi, µj) ≥ 1 − C
εn

for i 6= j. Suppose that εn ≥ C; otherwise we have
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nothing to prove. We impose an additional condition ε ≤ 1/2 and shell prove a bit more:

KRn(µi, µj) ≥ 1 − C
2εn

. It is enough, because we may use ε/2 instead of the given ε, if it

exceeds 1/2.

Choose µ1, . . . , µN ∈ Pn
ε at random, independently, according to the distribution Mn

ε ,

and the needed inequality will be satisfied with a positive probability. To prove this fact,

it is enough to show that

P

{

KRn(µi, µj) ≤ 1 − C

2εn

}

≤ 1

N2
.

Put a = C(2εn)−1(1 − ε
3
)−n in (416); then a ≥ C(2εn)−1 exp(εn/3), and we obtain

P

{

KRn(µi, µj) ≤ 1 − C

2εn

}

≤ exp

(

−a− 1

ε

)

.

It remains to show that exp(−a−1
ε

) ≤ N−2, that is, a−1
ε

≥ 2 lnN , or

C

2εn
exp

(εn

3

)

− 1 ≥ εn · 4 ln 2,

what follows from (418). So, Lemma 215 is proved.
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