About Yor's problem.

5. An equivalent measure: proofs

Boris Tsirelson (Tel Aviv University)

Deducing Theorem 103 from Lemma 215

301. Choose $\varepsilon_{0}, \varepsilon_{1}, \ldots \in(0,1)$ and $N_{0}, N_{1}, \ldots \in \mathbb{N}$ suct that

$$
\begin{equation*}
\prod_{k}\left(1-\frac{C}{\varepsilon_{k} N_{k}}\right)>0 \tag{303}
\end{equation*}
$$

(C as in (216)), and

$$
\begin{equation*}
\sum_{k} \varepsilon_{k}^{2} N_{k}<\infty \tag{304}
\end{equation*}
$$

(For example, $N_{k}=2^{k} N_{0}$ and $\varepsilon_{k}=\theta^{k} \varepsilon_{0}$ with $\theta \in(1 / 2,1 / \sqrt{2})$ and $\varepsilon_{0} N_{0}>C$).
Apply Lemma 215 for $n=N_{k}$ and $\varepsilon=\varepsilon_{k}$. It gives us $2^{2 N_{k}}$ measures from $\mathcal{P}_{\varepsilon_{k}}^{N_{k}}$; choose $2^{N_{k+1}}$ of them, and number them by N_{k+1} indices with two values each. So, we have $\mu_{k}\left(\xi_{1}, \ldots, \xi_{N_{k+1}}\right) \in \mathcal{P}_{\varepsilon_{k}}^{N_{k}}$ (each ξ_{i} being 0 or 1) such that

$$
\begin{equation*}
\operatorname{KR}^{N_{k}}\left(\mu_{k}\left(\xi_{1}^{\prime}, \ldots, \xi_{N_{k+1}}^{\prime}\right), \mu_{k}\left(\xi_{1}^{\prime \prime}, \ldots, \xi_{N_{k+1}}^{\prime \prime}\right)\right) \geq 1-\frac{C}{\varepsilon_{k} N_{k}} \tag{305}
\end{equation*}
$$

unless $\xi_{1}^{\prime}=\xi_{1}^{\prime \prime}, \ldots, \xi_{N_{k+1}}^{\prime}=\xi_{N_{k+1}}^{\prime \prime}$. We may consider μ_{k} as a Markov transition probability from $\{0,1\}^{N_{k+1}}$ to $\{0,1\}^{N_{k}}$.
306. Divide the set $\{\ldots,-2,-1,0\}$ into segments of length N_{k}; that is, take $M_{k}=$ $N_{0}+\ldots+N_{k}$ and $\Delta_{-k}=\left\{-M_{k}+1,-M_{k}+2, \ldots,-M_{k-1}\right\}$ (here $M_{-1}=0$). We claim that there exists a random sequence $\left\{X_{k}\right\}_{k \leq 0}$, each X_{k} taking values 0,1 only, such that

$$
\begin{equation*}
\mathbb{P}\left\{X\left(\Delta_{-k}\right) \mid X\left(\Delta_{-(k+1)}\right)\right\}=\mu_{k}\left(X\left(\Delta_{-(k+1)}\right)\right)\left(X\left(\Delta_{-k}\right)\right), \tag{307}
\end{equation*}
$$

(308) the distribution of $\left\{X_{k}\right\}_{k \leq 0}$ is equivalent to the Bernoulli-1/2 measure.

Indeed, to construct the needed distribution, it is enough to prove convergence of the product for its density

$$
\begin{equation*}
\prod_{k} p_{-k}=\prod_{k} p_{-k}\left(x\left(\Delta_{-(k+1)}\right), x\left(\Delta_{-k}\right)\right) \tag{309}
\end{equation*}
$$

in L_{2} on the Bernoulli-1/2 measure; here p_{-k} is the density of μ_{k}. From (214) we obtain

$$
\mathbb{E}\left(p_{-k}^{2} \mid x_{-\infty}^{-M_{k}}\right) \leq\left(1+\varepsilon_{k}^{2}\right)^{N_{k}} \leq \exp \left(\varepsilon_{k}^{2} N_{k}\right)
$$

Hence $\mathbb{E} p_{-k}^{2} \leq \exp \left(\varepsilon_{k}^{2} N_{k}\right)$, and then*

$$
\begin{aligned}
& \mathbb{E}\left(p_{-(k+1)}^{2} p_{-k}^{2}\right)=\mathbb{E} \mathbb{E}\left(p_{-(k+1)}^{2} p_{-k}^{2} \mid x_{-\infty}^{-M_{k}}\right)=\mathbb{E}\left(p_{-(k+1)}^{2} \mathbb{E}\left(p_{-k}^{2} \mid x_{-\infty}^{-M_{k}}\right)\right) \leq \\
& \quad \leq \mathbb{E}\left(p_{-(k+1)}^{2} \exp \left(\varepsilon_{k}^{2} N_{k}\right)\right)=\exp \left(\varepsilon_{k}^{2} N_{k}\right) \mathbb{E} p_{-(k+1)}^{2} \leq \exp \left(\varepsilon_{k}^{2} N_{k}+\varepsilon_{k+1}^{2} N_{k+1}\right)
\end{aligned}
$$

In the same way

$$
\begin{equation*}
\mathbb{E} \prod_{k=s}^{t} p_{k}^{2} \leq \exp \left(\sum_{k=s}^{t} \varepsilon_{k}^{2} N_{k}\right) \tag{310}
\end{equation*}
$$

Taking into account that $\mathbb{E} \prod_{k=s}^{t} p_{k}=1$, we obtain

$$
\mathbb{E}\left(\left(\prod_{k=s}^{t} p_{k}\right)-1\right)^{2} \leq \exp \left(\sum_{k=s}^{t} \varepsilon_{k}^{2} N_{k}\right)-1
$$

and, by using the above trick with conditional expectation once more,

$$
\mathbb{E}\left(\left(\left(\prod_{k=r}^{s-1} p_{k}\right)-1\right) \cdot \prod_{k=s}^{t} p_{k}\right)^{2} \leq\left(\exp \left(\sum_{k=r}^{s-1} \varepsilon_{k}^{2} N_{k}\right)-1\right) \cdot \exp \left(\sum_{k=s}^{t} \varepsilon_{k}^{2} N_{k}\right)
$$

that is,

$$
\begin{equation*}
\mathbb{E}\left(\prod_{k=r}^{t} p_{k}-\prod_{k=s}^{t} p_{k}\right)^{2} \leq \exp \left(\sum_{k=r}^{t} \varepsilon_{k}^{2} N_{k}\right)-\exp \left(\sum_{k=s}^{t} \varepsilon_{k}^{2} N_{k}\right) \tag{311}
\end{equation*}
$$

for any $r \leq s \leq t \leq 0$. Now (304) implies convergence of (309).
312. Define ρ_{0} as

$$
\begin{equation*}
\rho_{0}\left(\left\{x_{k}^{\prime}\right\}_{k},\left\{x_{k}^{\prime \prime}\right\}_{k}\right)=\max _{k \in \Delta_{0}}\left|x_{k}^{\prime}-x_{k}^{\prime \prime}\right| \tag{313}
\end{equation*}
$$

and consider the corresponding chain of metrics $\left\{\rho_{k}\right\}_{k}$ (see (209)). From (305) and (307) we obtain

$$
\rho_{-M_{0}}\left(\left\{x_{k}^{\prime}\right\}_{k},\left\{x_{k}^{\prime \prime}\right\}_{k}\right) \geq\left(1-\frac{C}{\varepsilon_{0} N_{0}}\right) \max _{k \in \Delta-1}\left|x_{k}^{\prime}-x_{k}^{\prime \prime}\right|
$$

[^0]for any $\left\{x_{k}^{\prime}\right\}_{k},\left\{x_{k}^{\prime \prime}\right\}_{k}$. Continuing in this way, we obtain
\[

$$
\begin{equation*}
\rho_{-M_{n}}\left(\left\{x_{k}^{\prime}\right\}_{k},\left\{x_{k}^{\prime \prime}\right\}_{k}\right) \geq\left(\prod_{m=0}^{n}\left(1-\frac{C}{\varepsilon_{m} N_{m}}\right)\right) \max _{k \in \Delta_{-(n+1)}}\left|x_{k}^{\prime}-x_{k}^{\prime \prime}\right| \tag{314}
\end{equation*}
$$

\]

It follows that

$$
\bar{\rho}_{-\infty} \geq \prod_{m}\left(1-\frac{C}{\varepsilon_{m} N_{m}}\right)>0
$$

by virtue of (303). So, Theorem 103 is deduced from Lemma 215.

Proof of Lemma 215

401. Another definition of the Kantorovich-Rubinstein metric, equivalent to one given in Item 7, follows:

$$
\begin{equation*}
\rho_{\mathrm{KR}}(\mu, \nu)=\sup _{f}\left|\int f d \mu-\int f d \nu\right|, \tag{402}
\end{equation*}
$$

where supremum is taken over all $f: \mathcal{X} \rightarrow \mathbb{R}$ satisfying Lipschitz condition:

$$
\begin{equation*}
\forall x, y \in \mathcal{X} \quad|f(x)-f(y)| \leq \rho(x, y) \tag{403}
\end{equation*}
$$

404. Lemma. Let each of two probability measures μ, ν be concentrated on a twopoint set, μ on $\{a, b\}$ and ν on $\{c, d\}$, in a metric space. Suppose that

$$
\begin{aligned}
& \rho(a, c) \leq 1, \quad \rho(b, d) \leq 1 \\
& \rho(a, d)=1, \quad \rho(b, c)=1
\end{aligned}
$$

Then

$$
\begin{align*}
& \rho_{\mathrm{KR}}(\mu, \nu)=\frac{1}{2}(\mu\{a\}+\nu\{c\}) \rho(a, c)+\frac{1}{2}(\mu\{b\}+\nu\{d\}) \rho(b, d)+ \\
& \quad+\left(1-\frac{1}{2} \rho(a, c)-\frac{1}{2} \rho(b, d)\right)|\mu\{a\}-\nu\{c\}| . \tag{405}
\end{align*}
$$

406. Proof.* It is enough to consider the case when $\mu\{a\} \geq \nu\{c\}$. Take a Lipschitz function $f:\{a, b, c, d\} \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
& f(c)-f(a)=\rho(a, c) \\
& f(d)-f(b)=\rho(b, d) \\
& f(d)-f(a)=\rho(a, d)=1
\end{aligned}
$$

* A general method is known for calculating Kantorovich-Rubinstein distance for a finite number of points by solving a linear programming problem.

It is easy to see that such f exists and is unique up to an additive constant. We have

$$
\begin{aligned}
& \int f d \nu-\int f d \mu=f(c) \nu\{c\}+f(d) \nu\{d\}-f(a) \mu\{a\}-f(b) \mu\{b\}= \\
& \quad=(f(c)-f(a)) \nu\{c\}+(f(d)-f(b)) \mu\{b\}+(f(d)-f(a))(\mu\{a\}-\nu\{c\})
\end{aligned}
$$

because $\mu\{a\}-\nu\{c\}=\nu\{d\}-\mu\{b\}$. Hence

$$
\begin{aligned}
& \rho_{\mathrm{KR}}(\mu, \nu) \geq(f(c)-f(a)) \nu\{c\}+(f(d)-f(b)) \mu\{b\}+(f(d)-f(a))(\mu\{a\}-\nu\{c\})= \\
& \quad=\rho(a, c) \nu\{c\}+\rho(b, d) \mu\{b\}+\mu\{a\}-\nu\{c\}= \\
& \quad=\frac{1}{2}(\mu\{a\}+\nu\{c\}) \rho(a, c)+\frac{1}{2}(\mu\{b\}+\nu\{d\}) \rho(b, d)+ \\
& \quad+\left(1-\frac{1}{2} \rho(a, c)-\frac{1}{2} \rho(b, d)\right)|\mu\{a\}-\nu\{c\}| .
\end{aligned}
$$

An opposite inequality* can be obtained from the Item 7. Take

$$
\begin{aligned}
& \xi(t)= \begin{cases}a, & \text { when } 0<t<\mu\{a\} ; \\
b, & \text { when } \mu\{a\}<t<1 ;\end{cases} \\
& \psi(t)= \begin{cases}c, & \text { when } 0<t<\nu\{c\} ; \\
d, & \text { when } \nu\{c\}<t<1\end{cases}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \rho_{\mathrm{KR}}(\mu, \nu) \leq \int_{0}^{1} \rho(\xi(t), \psi(t)) d t= \\
&= \int_{0}^{\nu\{c\}} \rho(a, c) d t+\int_{\nu\{c\}}^{\mu\{a\}} \rho(a, d) d t+\int_{\mu\{a\}}^{1} \rho(b, d) d t= \\
&= \nu\{c\} \rho(a, c)+(\mu\{a\}-\nu\{c\}) \rho(a, d)+(1-\mu\{a\}) \rho(b, d)= \\
&= \frac{1}{2}(\mu\{a\}+\nu\{c\}) \rho(a, c)+\frac{1}{2}(\mu\{b\}+\nu\{d\}) \rho(b, d)+ \\
& \quad+\left(1-\frac{1}{2} \rho(a, c)-\frac{1}{2} \rho(b, d)\right)|\mu\{a\}-\nu\{c\}|,
\end{aligned}
$$

and Lemma 404 is proved.
407. Note some other forms of (405):

$$
\begin{equation*}
\rho_{\mathrm{KR}}(\mu, \nu)=\rho(a, c) \min (\mu\{a\}, \nu\{c\})+\rho(b, d) \min (\mu\{b\}, \mu\{d\})+|\mu\{a\}-\nu\{c\}| ; \tag{408}
\end{equation*}
$$

$$
\begin{equation*}
1-\rho_{\mathrm{KR}}(\mu, \nu)=(1-\rho(a, c)) \min (\mu\{a\}, \nu\{c\})+(1-\rho(b, d)) \min (\mu\{b\}, \mu\{d\}) . \tag{409}
\end{equation*}
$$

[^1]410. Introduce a probability measure M_{ε}^{n} on the set $\mathcal{P}_{\varepsilon}^{n}$ as the uniform distribution on the finite set ex $\left(\mathcal{P}_{\varepsilon}^{n}\right)$ of all extremal points of $\mathcal{P}_{\varepsilon}^{n}$. That is, M_{ε}^{n}-distributed random element of $\mathcal{P}_{\varepsilon}^{n}$ may be written as the following distribution for $\left(X_{1}, \ldots, X_{n}\right)$:
\[

$$
\begin{equation*}
\mathbb{P}\left(X_{k}=1 \mid X_{1}=x_{1}, \ldots, X_{k-1}=x_{k-1}\right)=\frac{1}{2}\left(1+\varepsilon \tau\left(x_{1}, \ldots, x_{k-1}\right)\right), \tag{411}
\end{equation*}
$$

\]

where each $\tau\left(x_{1}, \ldots, x_{k-1}\right)$ is a random variable taking the values ± 1 with probability $1 / 2$ each, all such variables being independent for all corteges $\left(x_{1}, \ldots, x_{k-1}\right)$ of all lengthes $0, \ldots, n-1$. We intend to estimate the expression

$$
\begin{equation*}
F_{n}(\lambda, \varepsilon)=\iint \exp \left(\lambda\left(1-\operatorname{KR}^{n}(\mu, \nu)\right)\right) M_{\varepsilon}^{n}(d \mu) M_{\varepsilon}^{n}(d \nu) \tag{412}
\end{equation*}
$$

we will write also

$$
\begin{equation*}
F_{n}(\lambda, \varepsilon)=\mathbb{E} \exp \left(\lambda\left(1-\mathrm{KR}^{n}(\mu, \nu)\right)\right), \tag{413}
\end{equation*}
$$

treating μ, ν as independent random element of $\mathcal{P}_{\varepsilon}^{n}$ distributed according to M_{ε}^{n}.

414. Lemma.

$$
F_{n+1}(\lambda, \varepsilon)=F_{n}\left(\frac{1-\varepsilon}{2} \lambda, \varepsilon\right) \cdot \frac{1}{2}\left(F_{n}\left(\frac{1-\varepsilon}{2} \lambda, \varepsilon\right)+F_{n}\left(\frac{1+\varepsilon}{2} \lambda, \varepsilon\right)\right) .
$$

Proof. Consider $\mathrm{KR}^{n+1}(\mu, \nu)$ as $\rho_{0}(0,1)$ following to Item 212; so,

$$
\rho_{0}(0,1)=\rho_{1, \mathrm{KR}}\left(\mu_{1}, \nu_{1}\right),
$$

where μ_{1} is concentrated on two points $a=(0,0)$ and $b=(0,1)$,

$$
\mu_{1}\{a\}=\frac{1}{2}\left(1-\varepsilon \tau_{\mu}\right), \quad \mu_{1}\{b\}=\frac{1}{2}\left(1+\varepsilon \tau_{\mu}\right),
$$

τ_{μ} takes the values ± 1 with probability $1 / 2$ each. Similarly, ν_{1} is concentrated on two points $c=(1,0)$ and $d=(1,1)$,

$$
\nu_{1}\{c\}=\frac{1}{2}\left(1-\varepsilon \tau_{\nu}\right), \quad \nu_{1}\{d\}=\frac{1}{2}\left(1+\varepsilon \tau_{\nu}\right) .
$$

It follows from the construction of M_{ε}^{n+1} that the four random variables

$$
\tau_{\mu}, \quad \tau_{\nu}, \quad \rho_{1}(a, c), \quad \rho_{1}(b, d)
$$

are independent, and

$$
\begin{aligned}
& \mathbb{E} \exp \left(\lambda\left(1-\rho_{1}(a, c)\right)\right)=F_{n}(\lambda, \varepsilon), \\
& \mathbb{E} \exp \left(\lambda\left(1-\rho_{1}(b, d)\right)\right)=F_{n}(\lambda, \varepsilon), \\
& \mathbb{E} \exp \left(\lambda\left(1-\rho_{0}(0,1)\right)\right)=F_{n+1}(\lambda, \varepsilon) .
\end{aligned}
$$

It is easy to see that $\rho_{1}(a, d)=1, \rho_{1}(b, c)=1$. Lemma 404 in the form (409) gives

$$
1-\rho_{0}(0,1)=\left(1-\rho_{1}(a, c)\right) \cdot \frac{1}{2}\left(1-\varepsilon \max \left(\tau_{\mu}, \tau_{\nu}\right)\right)+\left(1-\rho_{1}(b, d)\right) \cdot \frac{1}{2}\left(1+\varepsilon \min \left(\tau_{\mu}, \tau_{\nu}\right)\right)
$$

Multiplying by λ, taking exponent function and averaging, we obtain the contribution $F_{n}\left(\frac{1-\varepsilon}{2} \lambda, \varepsilon\right) \cdot F_{n}\left(\frac{1+\varepsilon}{2} \lambda, \varepsilon\right)$ from the case $\tau_{\mu}=\tau_{\nu}$, and $F_{n}^{2}\left(\frac{1-\varepsilon}{2} \lambda, \varepsilon\right)$ from the case $\tau_{\mu} \neq \tau_{\nu}$. So, Lemma 414 is proved.

415. Lemma.

$$
\begin{aligned}
F_{n}(\lambda, \varepsilon) & \leq \exp \left(\left(1-\frac{\varepsilon}{3}\right)^{n} \lambda\right) \\
& \text { for } \quad 0 \leq \lambda \leq \frac{1}{\varepsilon\left(1-\frac{\varepsilon}{3}\right)^{n}} \quad \text { and } \quad 0<\varepsilon \leq \frac{1}{2}
\end{aligned}
$$

Proof. First, $F_{0}(\lambda, \varepsilon)=e^{\lambda}$. Further, suppose the inequality holds for n and prove it for $n+1$. Due to Lemma 414 it is enough to show that

$$
\begin{aligned}
& \exp \left(\left(1-\frac{\varepsilon}{3}\right)^{n} \cdot \frac{1-\varepsilon}{2} \lambda\right) \cdot \frac{1}{2}\left(\exp \left(\left(1-\frac{\varepsilon}{3}\right)^{n} \cdot \frac{1-\varepsilon}{2} \lambda\right)+\exp \left(\left(1-\frac{\varepsilon}{3}\right)^{n} \cdot \frac{1+\varepsilon}{2} \lambda\right)\right) \leq \\
& \quad \leq \exp \left(\left(1-\frac{\varepsilon}{3}\right)^{n+1} \lambda\right) \quad \text { for } \quad 0 \leq \lambda \leq \frac{1}{\varepsilon\left(1-\frac{\varepsilon}{3}\right)^{n+1}}
\end{aligned}
$$

That is,

$$
\frac{1}{2} \exp \left(-\left(1-\frac{\varepsilon}{3}\right)^{n} \cdot \frac{2 \varepsilon}{3} \lambda\right)+\frac{1}{2} \exp \left(\left(1-\frac{\varepsilon}{3}\right)^{n} \cdot \frac{\varepsilon}{3} \lambda\right) \leq 1
$$

The left-hand side is convex, so it is enough to check the inequality for $\lambda=0$ and $\lambda=$ $\varepsilon^{-1}\left(1-\frac{\varepsilon}{3}\right)^{-n}$. But $\exp (-2 / 3)+\exp (1 / 3) \leq 2$.
416. It follows from Lemma 415 that

$$
\mathbb{P}\left\{\operatorname{KR}^{n}(\mu, \nu) \leq 1-\left(1-\frac{\varepsilon}{3}\right)^{n} a\right\} \leq \exp \left(-\frac{a-1}{\varepsilon}\right)
$$

for any $a>1,0<\varepsilon \leq 1 / 2$; here, as before, μ and ν are independent random elements of $\mathcal{P}_{\varepsilon}^{n}$ having distribution M_{ε}^{n}.
417. Now we are prepared to complete our proof of Lemma 215. Choose the absolute constant C suct that

$$
\begin{equation*}
\frac{C}{2 a} \exp \left(\frac{a}{3}\right)-1 \geq a \cdot 4 \ln 2 \tag{418}
\end{equation*}
$$

for any $a \geq C$. For given n and ε we have find $N=2^{2 n}$ measures $\mu_{1}, \ldots, \mu_{N} \in \mathcal{P}_{\varepsilon}^{n}$ such that $\operatorname{KR}^{n}\left(\mu_{i}, \mu_{j}\right) \geq 1-\frac{C}{\varepsilon n}$ for $i \neq j$. Suppose that $\varepsilon n \geq C$; otherwise we have
nothing to prove. We impose an additional condition $\varepsilon \leq 1 / 2$ and shell prove a bit more: $\operatorname{KR}^{n}\left(\mu_{i}, \mu_{j}\right) \geq 1-\frac{C}{2 \varepsilon n}$. It is enough, because we may use $\varepsilon / 2$ instead of the given ε, if it exceeds $1 / 2$.

Choose $\mu_{1}, \ldots, \mu_{N} \in \mathcal{P}_{\varepsilon}^{n}$ at random, independently, according to the distribution M_{ε}^{n}, and the needed inequality will be satisfied with a positive probability. To prove this fact, it is enough to show that

$$
\mathbb{P}\left\{\mathrm{KR}^{n}\left(\mu_{i}, \mu_{j}\right) \leq 1-\frac{C}{2 \varepsilon n}\right\} \leq \frac{1}{N^{2}}
$$

Put $a=C(2 \varepsilon n)^{-1}\left(1-\frac{\varepsilon}{3}\right)^{-n}$ in (416); then $a \geq C(2 \varepsilon n)^{-1} \exp (\varepsilon n / 3)$, and we obtain

$$
\mathbb{P}\left\{\operatorname{KR}^{n}\left(\mu_{i}, \mu_{j}\right) \leq 1-\frac{C}{2 \varepsilon n}\right\} \leq \exp \left(-\frac{a-1}{\varepsilon}\right)
$$

It remains to show that $\exp \left(-\frac{a-1}{\varepsilon}\right) \leq N^{-2}$, that is, $\frac{a-1}{\varepsilon} \geq 2 \ln N$, or

$$
\frac{C}{2 \varepsilon n} \exp \left(\frac{\varepsilon n}{3}\right)-1 \geq \varepsilon n \cdot 4 \ln 2
$$

what follows from (418). So, Lemma 215 is proved.

[^0]: * The rest of Item 306 is undoubtedly a well-known argument; now I am lazy to find a relevant reference.

[^1]: * In fact, the opposite inequality is not needed for our purpose.

