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101. Theorem. There exists a probability measure on [0, 1]N, that is equivalent to

the Lebesgue measure, but the corresponding filtration is non-standard.

102. Theorem 101 is obtained from the following discrete case, similar to Corollary

19 that follows from Theorem 17.

103. Theorem. There exists a random sequence {Xk}k≤0, taking values 0, 1 only,

having its joint distribution equivalent to the Bernoulli-1/2 measure, and such that its

“markovization” satisfies

lim
k→−∞

∫ ∫

ρk(x, y) µk(dx)µk(dy) > 0

for some metric ρ0.

201. Any random sequence {Xk}k, Xk ∈ Xk, determines its “markovization”—the

Markov process {Xk
−∞}k, Xk

−∞ = (. . . , Xk−1, Xk) ∈ X k
−∞ = . . . ×Xk−1 × Xk.

202. Applying the notion of parametrization to the “markovization” {Xk
−∞}k of a

random sequence {Xk}k with a distribution P ∈ P(X 0
−∞), we come to the following notion

(in two equivalent forms).

(A) A parametrization of P is a sequence of measurable maps

αk : [0, 1]× X k−1
−∞ → Xk

such that

(203) E ( f(Xk) | Xk−1
−∞ ) =

∫ 1

0

f(αk(y, Xk−1
−∞ )) dy

for any k and any bounded measurable f : Xk → R.

(B) A parametrization of P is a two-component random sequence {(Xk, Yk)}k (on a

probability space) such that

the distribution of {Xk}k coincides with P ,

Yk are independent and uniform on [0, 1],

∀k σ(Xk) ⊂ σ(Yk, Xk−1
−∞ ),

∀n σ{Yk : k > n} is independent of σ{Xk, Yk : k ≤ n}.

The connection between (A) and (B) is given by

(204) Xk = αk(Yk, Xk−1
−∞ ).
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It follows from (203) that

(205) E ( f(Xk
−∞) | Xk−1

−∞ ) =

∫ 1

0

f(Xk−1
−∞ , αk(y, Xk−1

−∞ )) dy

for any k and any bounded measurable f : X k
−∞ → R.

A parametrization is called generating, if

∀n σ{Xk : k ≤ n} ⊂ σ{Yk : k ≤ n} ∨ σ−∞(X).

206. Applying the above-described notions, connected with the Kantorovich-

Rubinstein metric, to the “markovization,” we come to the following.

A measure P ∈ P(X 0
−∞) determines maps

(207) ν̃k : SM(X k
−∞) → SM(X k−1

−∞ ),

and in addition

(208) ν̃k : CM(X k
−∞) → CM(X k−1

−∞ ).

Define a chain of metrics as a sequence {ρk}k, ρk ∈ CM(X k
−∞), such that

(209) ∀k ρk−1 = ν̃kρk.

(In fact, ρk may be a pseudometric rather than a metric).

Any chain of metrics {ρk}k determines a sequence of numbers

(210) ρk =

∫ ∫

ρk(x, y) µk(dx)µk(dy),

where µk is the distribution of Xk
−∞. The sequence is increasing (see Item 41) and hence

it has a limit

ρ−∞ = lim
k→−∞

ρk.

From Theorem 15 we obtain:

211. Theorem. If a measure P admits a generating parametrization and is tail-trivial,

then

ρ−∞ = 0

for any chain of metrics.
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212. The following particular case is of special interest for us. Let X0 = X1 = . . .

= Xn = {0, 1}, and put

ρn ( (x′
0, x

′
1, . . . , x

′
n), (x′′

0 , x′′
1 , . . . , x′′

n) ) = max
k=1,...,n

|x′
k − x′′

k |

for any x′ = (x′
0, x

′
1, . . . , x

′
n), x′′ = (x′′

0 , x′′
1 , . . . , x′′

n) from X n
0 = {0, 1}1+n. Note that the

maximum is taken over k = 1, . . . , n rather than 0, 1, . . . , n; so, ρn is a pseudometric rather

than a metric.

A probability measure P on X n
0 may be considered as a pair of probability measures

µ, ν on X n
1 = {0, 1}n:

P ( x0, x1, . . . , xn | x0 ) =

{

µ(x1, . . . , xn), when x0 = 0;
ν(x1, . . . , xn), when x0 = 1.

together with a distribution of X0. When such P is given, we may construct a chain of

metrics ρ0, . . . , ρn. We start from ρn defined as above and finish at ρ0, that is essentially

one number ρ0(0, 1). This number depends only on µ, ν and may be considered a distance

between them:

KRn(µ, ν) = ρ0(0, 1);

KRn means: n-step Kantorovich-Rubinstein distance. In order to prove the triangle in-

equality for KRn it is enough to consider the case when X0 contains three points.

213. Consider the following condition on a random sequence X1, . . . , Xn (each Xk

being ±1), or on its distribution µ ∈ P({0, 1}n):

∀k ∀x1, . . . , xk−1

1 − ε

2
≤ P ( Xk = 1 | X1 = x1, . . . , Xk−1 = xk−1 ) ≤

1 + ε

2
.

The set of measures µ, satisfying this condition, will be denoted by Pn
ε . The only measure

belonging to Pn
ε for all ε is the Bernoulli-1/2 measure µ0. The density dµ/dµ0 of any

µ ∈ Pn
ε satisfies the following inequality:

(214)

∫
(

dµ

dµ0

)2

dµ0 ≤ (1 + ε2)n.

It can be proved easily by induction in n.

The following lemma is the key to Theorem 103.

215. Lemma. For any n and ε there exist N = 22n measures µ1, . . . , µN ∈ Pn
ε such

that

(216) KRn(µi, µj) ≥ 1 −
C

εn
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for any i, j ∈ {1, . . . , N}; here C is an absolute constant.

217. Remark. In fact, much more strong estimations are valid, than 22n and

1 − C/(εn). But they are not needed for our purpose.

218. Remark. Note that ε and n appear in (216) in the combination εn, while in (214)

in another combination, essentially, ε2n. Clearly, it is possible that εn ≫ 1 while ε2n ≪ 1.

This is why the equivalence to the Bernoulli measure does not prevent the appearance of

a non-standard filtration.
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