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Deducing Theorem 15 from Lemma 20

27. If ρ′, ρ′′ ∈ CM(X ) and ε > 0 are such that ∀x, y ∈ X ρ′′(x, y) ≤ ρ′(x, y)+ε, then

evidently ∀µ, ν ∈ P(X ) ρ′′
KR

(µ, ν) ≤ ρ′
KR

(µ, ν) + ε. Hence, in the situation of Item 13,

(28) ρ′′N ≤ ρ′N + ε =⇒ ∀k ρ′′k ≤ ρ′k + ε.

29. It is enough to prove Theorem 15 for any finite-dimensional ρN ∈ CM(XN ), that is,

ρN of the form (6). Indeed, the general case may be approximated with finite-dimensional

one uniformly in k, see (6) and (28).

30. It is enough to prove Theorem 15 for ρN of the form

ρN (x′N , x
′′
N ) = |f(x′N ) − f(x′′N )|

with a bounded measurable f : XN → R
n. Indeed, such a metric majorizes a metric from

(6):

max
m=1,...,n

|fm(x′N ) − fm(x′′N )| ≤

(

∑

m

|fm(x′N ) − fm(x′′N )|2

)1/2

= |f(x′N) − f(x′′N )|,

where f1, . . . , fn are coordinate components of f . And each ν̃ (see (11)) is evidently

isotonic: ρ′ ≤ ρ′′ =⇒ ν̃ρ′ ≤ ν̃ρ′′.

31. Due to Lemma 20, it is enough to prove that

E ( f(XN) − E ( f(XN) |YM+1, . . . , YN ) )2 → 0 when M → −∞.

But it follows immediately from the fact that σ(XN ) ⊂ σ{Yk : k ≤ N}. So, Theorem 15 is

deduced from Lemma 20.

Proof of Lemma 20

32. We know (see Item 11), that a map ν : X0 → P(X1) induces ν̃ : SM(X1) →

SM(X0). Now, let α be a one-step parametrization of ν. (It means that α : [0, 1]×X0 → X1,

∀x0 ∈ X0

∫

X1

f(x1) ν(x0)(dx1) =

∫ 1

0

f(α(y, x0)) dy
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for any bounded measurable f : X1 → R.) Define α̃ : SM(X1) → SM(X0) as follows:

(33) ρ0 = α̃ρ1 ⇐⇒ ∀x′0, x
′′
0 ∈ X0 ρ0(x

′
0, x

′′
0) =

∫ 1

0

ρ1(α(y, x′0), α(y, x′′0)) dy.

Then

(34) ν̃ρ1 ≤ α̃ρ1

for any ρ1 ∈ SM(X1). It follows immediately from (8): we may take ξ(t) = α(t, x′0) and

ψ(t) = α(t, x′′0). (In fact, (ν̃ρ1)(x
′
0, x

′′
0) = infα(α̃ρ1)(x

′
0, x

′′
0)).

35. Consider a finite (in time) Markov chain {XM , XM+1, . . . , XN}, with corre-

sponding {µM , . . . , µN} and {νM+1, . . . , νN}, as in Lemma 20, and its parametrization

{αM+1, . . . , αN}. Take a bounded measurable f : XN → R
n and the corresponding

ρN (x′N , x
′′
N ) = |f(x′N) − f(x′′N)|, as in Lemma 20. But, unlike to Lemma 20, define ρk

by

(36) ρk−1 = α̃kρk for k = M + 1, . . . , N.

It is enough to prove Lemma 20 for these ρk, because they majorize metrics defined by

(14), see (34).

The final variable XN may be considered a function of the initial one XM and the

parameters:

(37) XN = αN
M (YN , . . . , YM+1, XM),

{Yk}k being uniform independent. For this end, define functions αN
k recursively:

αN
k−1(yN , . . . , yk+1, yk, xk−1) = αN

k (yN , . . . , yk+1, αk(yk, xk−1)).

We claim that

(38)
ρM (x′M , x′′M ) =

=

∫ 1

0

. . .

∫ 1

0

ρN

(

αN
M (yN , . . . , yM+1, x

′
M ), αN

M(yN , . . . , yM+1, x
′′
M)
)

dyN . . . dyM+1.

Indeed, the equality

ρk(x′k, x
′′
k) =

∫ 1

0

. . .

∫ 1

0

ρN

(

αN
k (yN , . . . , yk+1, x

′
k), αN

k (yN , . . . , yk+1, x
′′
k)
)

dyN . . . dyk+1

may be proved inductively for k = N − 1, N − 2, . . . ,M by using (36) and (31).
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From (38) we obtain

ρ2
M (x′M , x′′M) ≤

≤

∫ 1

0

. . .

∫ 1

0

∣

∣f
(

αN
M (yN , . . . , yM+1, x

′
M )
)

− f
(

αN
M (yN , . . . , yM+1, x

′′
M)
)
∣

∣

2
dyN . . . dyM+1

and hence
∫ ∫

ρ2
M (x′M , x′′M )µM (dx′M )µM (dx′′M ) ≤

≤

∫ 1

0

. . .

∫ 1

0

dyN . . . dyM+1

∫ ∫

µM (dx′M )µM (dx′′M )

∣

∣f
(

αN
M (yN , . . . , yM+1, x

′
M ) − αN

M (yN , . . . , yM+1, x
′′
M )
)
∣

∣

2
.

Applying the general identity

∫ ∫

|ϕ(x) − ϕ(y)|2 µ(dx)µ(dy) = 2

(

∫

|ϕ(x)|2 µ(dx) −

∣

∣

∣

∣

∫

ϕ(x) dx

∣

∣

∣

∣

2
)

,

we obtain
∫ ∫

ρ2
M (x′M , x′′M)µM (dx′M )µM (dx′′M ) ≤

∫ 1

0

. . .

∫ 1

0

dyN . . . dyM+1

2

(

∫

∣

∣f
(

αN
M (yN , . . . , yM+1, xM )

)
∣

∣

2
µM (dxM ) −

∣

∣

∣

∣

∫

f
(

αN
M (yN , . . . , yM+1, xM )

)

µM (dxM )

∣

∣

∣

∣

2
)

;

and this is another form of (22). So, Lemma 20 is proved.

Deducing Theorem 17 from Lemma 23

39. For each n = 0, 1, . . . apply Lemma 23 for N = 2nN0 and combine the results into

a Markov chain {Xk}k∈{...,−2,−1,0}, Xk ∈ Xk, 2 ≤ |Xk| <∞, with following properties.

(39a) each X−2n (for n = 0, 1, 2, . . .) is uniformly distributed within X−2n;

(39b) X−2n and X−2n−2 are independent;

(39c) for any metric ρ0 on X0, the corresponding sequence of metrics ρk (defined

following (14)) satisfies the condition

min
x′

−2n−2
6=x′′

−2n−2

ρ−2n−2(x
′
−2n−2, x

′′
−2n−2) ≥ exp

(

−(2nN0)
−α
)

min
x′

−2n
6=x′′

−2n

ρ−2n(x′−2n, x
′′
−2n).

40. It follows from (39c), that for some ε > 0

∀n min
x′

−2n
6=x′′

−2n

ρ−2n(x′−2n, x
′′
−2n) ≥ ε,
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because
∞
∏

n=0

exp
(

−(2nN0)
−α
)

> 0.

Together with (39a) it implies

∫ ∫

ρ−2n(x, y)µ−2n(dx)µ−2n(dy) ≥
|X−2n| − 1

|X−2n|
ε ≥

ε

2
.

41. The sequence of numbers
∫∫

ρk(x, y)µk(dx)µk(dy) is increasing (in k). It is

a general fact; we will prove it for any one-step Markov transition X0 → X1. Taking

independent ξ, ψ in (8), we obtain

ρKR(µ, ν) ≤

∫ ∫

ρ(x, y)µ(dx)µ(dy).

Hence,

∫ ∫

ρ0(x
′
0, x

′′
0)µ0(dx

′
0)µ0(dx

′′
0) =

=

∫ ∫

ρ1,KR(ν(x′0), ν(x
′′
0))µ0(dx

′
0)µ0(dx

′′
0) ≤

≤

∫ ∫

µ0(dx
′
0)µ0(dx

′′
0)

∫ ∫

ν(x′0)(dx
′
1)ν(x

′′
0)(dx′′1)ρ1(x

′
1, x

′′
1) =

=

∫ ∫
(
∫

µ0(dx
′
0)ν(x

′
0)

)

(dx′1) ·

(
∫

µ0(dx
′′
0)ν(x′′0)

)

(dx′′1) ρ1(x
′
1, x

′′
1)

=

∫ ∫

µ1(dx
′
1)µ1(dx

′′
1) ρ1(x

′
1, x

′′
1).

42. From (40) and (41) we see that

∫ ∫

ρk(x, y)µk(dx)µk(dy) ≥
ε

2
for all k,

so, (18) is satisfied.

43. It remains to prove that {Xk}k is tail-trivial. This fact follows from (39b).

Indeed, (39b) together with Markov property shows that σ{Xk : k ≤ −2n − 2} and

σ{Xk : k ≥ −2n} are independent. Hence, σ−∞ is independent of σ{Xk : k ≥ −2n} for

any n. Now Theorem 17 is deduced from Lemma 23.

Proof of Lemma 23

44. Take some prime integer p and consider the five-dimensional linear space Z
5
p over

the finite field Zp. Let X0 be the set of all two-dimensional linear subspaces (“planes” in
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what follows) of Z
5
p, X1 —the set of all one-dimensional affine subspaces (that is, translated

linear subspaces; “lines” in what follows) of Z
5
p, and X2 = Z

5
p —the set of all points of Z

5
p.

For given plane x0 ∈ X0, the Markov process may jump from x0 to any line x1 ∈ X1

that is parallel to the plane x0, that is, x1 is a translation of a one-dimensional linear

subspace lying in the plane x0 (the case x1 ⊂ x0 is permitted, too). The process jumps to

any such x1 equiprobably.

For a given line x1 ∈ X1, the Markov process may jump from x1 to any point x2 ∈ X2

lying on the line x1, equiprobably.

45. Each x0 ∈ X0 leads, after two Markov jumps, to the uniform distribution on X2.

Indeed, after the first jump the distribution becomes translation invariant, and remains

translation invariant after the second jump. So, X2 is uniformly distributed and indepen-

dent of X0. The distribution of X0 may be choosen arbitrarily; we choose it as the uniform

one.

46. We have |X0| ≥ p6. Indeed, each pair of points is contained in a plane (at least

one). Each plane contains p2 points and hence p4 pairs. And the whole number of pairs

in Z
5
p is p10.

47. Take the metric ρ2 on X2 such that ρ2(x
′
2, x

′′
2) = 1 for all x′2 6= x′′2 . The corre-

sponding Kantorovich-Rubinstein metric coincides with the norm metric:

ρ2,KR(µ, ν) =
1

2
||µ− ν||.

Hence,

ρ1(x
′
1, x

′′
1) = ρ2,KR(ν2(x

′
1), ν2(x

′′
1)) =

1

2
||ν2(x

′
1) − ν2(x

′′
1)|| =

|x′1| − |x′1 ∩ x
′′
1 |

|x′1|
;

but |x′1| = p (the number of points on a line), and |x′1 ∩ x
′′
1 | ≤ 1 (the number of common

points of two lines). So,

ρ1(x
′
1, x

′′
1) ≥ 1 −

1

p
for any x′1 6= x′′1 .

48. The same argumentation is applicable for X0 → X1 transition, giving the factor

≥ 1− 1

p+1
. Indeed, the number of lines containing 0 and contained in a given plane is equal

to p + 1. Only one of these lines is contained in another given plane. And the condition

that the lines contain 0 does not affect the ratio.

49. It remains to choose α > 0 and N0 <∞ such that for any N ≥ N0 there exists a

prime p such that p6 ≥ 2N , p5 ≤ N , and
(

1 −
1

p

)(

1 −
1

p+ 1

)

≥ exp
(

−N−α
)

.

Surely it is possible. So, Lemma 23 is proved.
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