About Yor's problem.

3. Non-standard σ-fields: proofs

Boris Tsirelson (Tel Aviv University)

Deducing Theorem 15 from Lemma 20

27. If $\rho^{\prime}, \rho^{\prime \prime} \in \operatorname{CM}(\mathcal{X})$ and $\varepsilon>0$ are such that $\forall x, y \in \mathcal{X} \quad \rho^{\prime \prime}(x, y) \leq \rho^{\prime}(x, y)+\varepsilon$, then evidently $\forall \mu, \nu \in \mathcal{P}(\mathcal{X}) \quad \rho_{\mathrm{KR}}^{\prime \prime}(\mu, \nu) \leq \rho_{\mathrm{KR}}^{\prime}(\mu, \nu)+\varepsilon$. Hence, in the situation of Item 13,

$$
\begin{equation*}
\rho_{N}^{\prime \prime} \leq \rho_{N}^{\prime}+\varepsilon \quad \Longrightarrow \quad \forall k \quad \rho_{k}^{\prime \prime} \leq \rho_{k}^{\prime}+\varepsilon \tag{28}
\end{equation*}
$$

29. It is enough to prove Theorem 15 for any finite-dimensional $\rho_{N} \in \operatorname{CM}\left(\mathcal{X}_{N}\right)$, that is, ρ_{N} of the form (6). Indeed, the general case may be approximated with finite-dimensional one uniformly in k, see (6) and (28).
30. It is enough to prove Theorem 15 for ρ_{N} of the form

$$
\rho_{N}\left(x_{N}^{\prime}, x_{N}^{\prime \prime}\right)=\left|f\left(x_{N}^{\prime}\right)-f\left(x_{N}^{\prime \prime}\right)\right|
$$

with a bounded measurable $f: \mathcal{X}_{N} \rightarrow \mathbb{R}^{n}$. Indeed, such a metric majorizes a metric from (6):

$$
\max _{m=1, \ldots, n}\left|f_{m}\left(x_{N}^{\prime}\right)-f_{m}\left(x_{N}^{\prime \prime}\right)\right| \leq\left(\sum_{m}\left|f_{m}\left(x_{N}^{\prime}\right)-f_{m}\left(x_{N}^{\prime \prime}\right)\right|^{2}\right)^{1 / 2}=\left|f\left(x_{N}^{\prime}\right)-f\left(x_{N}^{\prime \prime}\right)\right|
$$

where f_{1}, \ldots, f_{n} are coordinate components of f. And each $\tilde{\nu}$ (see (11)) is evidently isotonic: $\rho^{\prime} \leq \rho^{\prime \prime} \quad \Longrightarrow \quad \tilde{\nu} \rho^{\prime} \leq \tilde{\nu} \rho^{\prime \prime}$.
31. Due to Lemma 20, it is enough to prove that

$$
\mathbb{E}\left(f\left(X_{N}\right)-\mathbb{E}\left(f\left(X_{N}\right) \mid Y_{M+1}, \ldots, Y_{N}\right)\right)^{2} \rightarrow 0 \quad \text { when } M \rightarrow-\infty
$$

But it follows immediately from the fact that $\sigma\left(X_{N}\right) \subset \sigma\left\{Y_{k}: k \leq N\right\}$. So, Theorem 15 is deduced from Lemma 20.

Proof of Lemma 20

32. We know (see Item 11), that a map $\nu: \mathcal{X}_{0} \rightarrow \mathcal{P}\left(\mathcal{X}_{1}\right)$ induces $\tilde{\nu}: \operatorname{SM}\left(\mathcal{X}_{1}\right) \rightarrow$ $\operatorname{SM}\left(\mathcal{X}_{0}\right)$. Now, let α be a one-step parametrization of ν. (It means that $\alpha:[0,1] \times \mathcal{X}_{0} \rightarrow \mathcal{X}_{1}$,

$$
\forall x_{0} \in \mathcal{X}_{0} \quad \int_{\mathcal{X}_{1}} f\left(x_{1}\right) \nu\left(x_{0}\right)\left(d x_{1}\right)=\int_{0}^{1} f\left(\alpha\left(y, x_{0}\right)\right) d y
$$

for any bounded measurable $f: \mathcal{X}_{1} \rightarrow \mathbb{R}$.) Define $\tilde{\alpha}: \operatorname{SM}\left(\mathcal{X}_{1}\right) \rightarrow \operatorname{SM}\left(\mathcal{X}_{0}\right)$ as follows:

$$
\begin{equation*}
\rho_{0}=\tilde{\alpha} \rho_{1} \quad \Longleftrightarrow \quad \forall x_{0}^{\prime}, x_{0}^{\prime \prime} \in \mathcal{X}_{0} \quad \rho_{0}\left(x_{0}^{\prime}, x_{0}^{\prime \prime}\right)=\int_{0}^{1} \rho_{1}\left(\alpha\left(y, x_{0}^{\prime}\right), \alpha\left(y, x_{0}^{\prime \prime}\right)\right) d y \tag{33}
\end{equation*}
$$

Then

$$
\begin{equation*}
\tilde{\nu} \rho_{1} \leq \tilde{\alpha} \rho_{1} \tag{34}
\end{equation*}
$$

for any $\rho_{1} \in \operatorname{SM}\left(\mathcal{X}_{1}\right)$. It follows immediately from (8): we may take $\xi(t)=\alpha\left(t, x_{0}^{\prime}\right)$ and $\psi(t)=\alpha\left(t, x_{0}^{\prime \prime}\right)$. (In fact, $\left.\left(\tilde{\nu} \rho_{1}\right)\left(x_{0}^{\prime}, x_{0}^{\prime \prime}\right)=\inf _{\alpha}\left(\tilde{\alpha} \rho_{1}\right)\left(x_{0}^{\prime}, x_{0}^{\prime \prime}\right)\right)$.
35. Consider a finite (in time) Markov chain $\left\{X_{M}, X_{M+1}, \ldots, X_{N}\right\}$, with corresponding $\left\{\mu_{M}, \ldots, \mu_{N}\right\}$ and $\left\{\nu_{M+1}, \ldots, \nu_{N}\right\}$, as in Lemma 20, and its parametrization $\left\{\alpha_{M+1}, \ldots, \alpha_{N}\right\}$. Take a bounded measurable $f: \mathcal{X}_{N} \rightarrow \mathbb{R}^{n}$ and the corresponding $\rho_{N}\left(x_{N}^{\prime}, x_{N}^{\prime \prime}\right)=\left|f\left(x_{N}^{\prime}\right)-f\left(x_{N}^{\prime \prime}\right)\right|$, as in Lemma 20. But, unlike to Lemma 20, define ρ_{k} by

$$
\begin{equation*}
\rho_{k-1}=\tilde{\alpha}_{k} \rho_{k} \quad \text { for } k=M+1, \ldots, N . \tag{36}
\end{equation*}
$$

It is enough to prove Lemma 20 for these ρ_{k}, because they majorize metrics defined by (14), see (34).

The final variable X_{N} may be considered a function of the initial one X_{M} and the parameters:

$$
\begin{equation*}
X_{N}=\alpha_{M}^{N}\left(Y_{N}, \ldots, Y_{M+1}, X_{M}\right), \tag{37}
\end{equation*}
$$

$\left\{Y_{k}\right\}_{k}$ being uniform independent. For this end, define functions α_{k}^{N} recursively:

$$
\alpha_{k-1}^{N}\left(y_{N}, \ldots, y_{k+1}, y_{k}, x_{k-1}\right)=\alpha_{k}^{N}\left(y_{N}, \ldots, y_{k+1}, \alpha_{k}\left(y_{k}, x_{k-1}\right)\right) .
$$

We claim that

$$
\begin{align*}
& \rho_{M}\left(x_{M}^{\prime}, x_{M}^{\prime \prime}\right)= \tag{38}\\
& \quad=\int_{0}^{1} \ldots \int_{0}^{1} \rho_{N}\left(\alpha_{M}^{N}\left(y_{N}, \ldots, y_{M+1}, x_{M}^{\prime}\right), \alpha_{M}^{N}\left(y_{N}, \ldots, y_{M+1}, x_{M}^{\prime \prime}\right)\right) d y_{N} \ldots d y_{M+1} .
\end{align*}
$$

Indeed, the equality

$$
\rho_{k}\left(x_{k}^{\prime}, x_{k}^{\prime \prime}\right)=\int_{0}^{1} \ldots \int_{0}^{1} \rho_{N}\left(\alpha_{k}^{N}\left(y_{N}, \ldots, y_{k+1}, x_{k}^{\prime}\right), \alpha_{k}^{N}\left(y_{N}, \ldots, y_{k+1}, x_{k}^{\prime \prime}\right)\right) d y_{N} \ldots d y_{k+1}
$$

may be proved inductively for $k=N-1, N-2, \ldots, M$ by using (36) and (31).

From (38) we obtain

$$
\begin{aligned}
& \rho_{M}^{2}\left(x_{M}^{\prime}, x_{M}^{\prime \prime}\right) \leq \\
& \quad \leq \int_{0}^{1} \ldots \int_{0}^{1}\left|f\left(\alpha_{M}^{N}\left(y_{N}, \ldots, y_{M+1}, x_{M}^{\prime}\right)\right)-f\left(\alpha_{M}^{N}\left(y_{N}, \ldots, y_{M+1}, x_{M}^{\prime \prime}\right)\right)\right|^{2} d y_{N} \ldots d y_{M+1}
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \iint \rho_{M}^{2}\left(x_{M}^{\prime}, x_{M}^{\prime \prime}\right) \mu_{M}\left(d x_{M}^{\prime}\right) \mu_{M}\left(d x_{M}^{\prime \prime}\right) \leq \\
& \quad \leq \int_{0}^{1} \ldots \int_{0}^{1} d y_{N} \ldots d y_{M+1} \iint \mu_{M}\left(d x_{M}^{\prime}\right) \mu_{M}\left(d x_{M}^{\prime \prime}\right) \\
& \quad\left|f\left(\alpha_{M}^{N}\left(y_{N}, \ldots, y_{M+1}, x_{M}^{\prime}\right)-\alpha_{M}^{N}\left(y_{N}, \ldots, y_{M+1}, x_{M}^{\prime \prime}\right)\right)\right|^{2}
\end{aligned}
$$

Applying the general identity

$$
\iint|\varphi(x)-\varphi(y)|^{2} \mu(d x) \mu(d y)=2\left(\int|\varphi(x)|^{2} \mu(d x)-\left|\int \varphi(x) d x\right|^{2}\right)
$$

we obtain

$$
\begin{aligned}
& \iint \rho_{M}^{2}\left(x_{M}^{\prime}, x_{M}^{\prime \prime}\right) \mu_{M}\left(d x_{M}^{\prime}\right) \mu_{M}\left(d x_{M}^{\prime \prime}\right) \leq \\
& \quad \int_{0}^{1} \ldots \int_{0}^{1} d y_{N} \ldots d y_{M+1} \\
& \quad 2\left(\int\left|f\left(\alpha_{M}^{N}\left(y_{N}, \ldots, y_{M+1}, x_{M}\right)\right)\right|^{2} \mu_{M}\left(d x_{M}\right)-\left|\int f\left(\alpha_{M}^{N}\left(y_{N}, \ldots, y_{M+1}, x_{M}\right)\right) \mu_{M}\left(d x_{M}\right)\right|^{2}\right) ;
\end{aligned}
$$

and this is another form of (22). So, Lemma 20 is proved.

Deducing Theorem 17 from Lemma 23

39. For each $n=0,1, \ldots$ apply Lemma 23 for $N=2^{n} N_{0}$ and combine the results into a Markov chain $\left\{X_{k}\right\}_{k \in\{\ldots,-2,-1,0\}}, X_{k} \in \mathcal{X}_{k}, 2 \leq\left|\mathcal{X}_{k}\right|<\infty$, with following properties.
(39a) each $X_{-2 n}$ (for $n=0,1,2, \ldots$) is uniformly distributed within $\mathcal{X}_{-2 n}$;
(39b) $X_{-2 n}$ and $X_{-2 n-2}$ are independent;
(39c) for any metric ρ_{0} on \mathcal{X}_{0}, the corresponding sequence of metrics ρ_{k} (defined following (14)) satisfies the condition

$$
\min _{x_{-2 n-2}^{\prime} \neq x_{-2 n-2}^{\prime \prime}} \rho_{-2 n-2}\left(x_{-2 n-2}^{\prime}, x_{-2 n-2}^{\prime \prime}\right) \geq \exp \left(-\left(2^{n} N_{0}\right)^{-\alpha}\right) \min _{x_{-2 n}^{\prime} \neq x_{-2 n}^{\prime \prime}} \rho_{-2 n}\left(x_{-2 n}^{\prime}, x_{-2 n}^{\prime \prime}\right) .
$$

40. It follows from (39c), that for some $\varepsilon>0$

$$
\forall n \min _{x_{-2 n}^{\prime} \neq x_{-2 n}^{\prime \prime}} \rho_{-2 n}\left(x_{-2 n}^{\prime}, x_{-2 n}^{\prime \prime}\right) \geq \varepsilon,
$$

because

$$
\prod_{n=0}^{\infty} \exp \left(-\left(2^{n} N_{0}\right)^{-\alpha}\right)>0
$$

Together with (39a) it implies

$$
\iint \rho_{-2 n}(x, y) \mu_{-2 n}(d x) \mu_{-2 n}(d y) \geq \frac{\left|\mathcal{X}_{-2 n}\right|-1}{\left|\mathcal{X}_{-2 n}\right|} \varepsilon \geq \frac{\varepsilon}{2}
$$

41. The sequence of numbers $\iint \rho_{k}(x, y) \mu_{k}(d x) \mu_{k}(d y)$ is increasing (in k). It is a general fact; we will prove it for any one-step Markov transition $X_{0} \rightarrow X_{1}$. Taking independent ξ, ψ in (8), we obtain

$$
\rho_{\mathrm{KR}}(\mu, \nu) \leq \iint \rho(x, y) \mu(d x) \mu(d y) .
$$

Hence,

$$
\begin{aligned}
& \iint \rho_{0}\left(x_{0}^{\prime}, x_{0}^{\prime \prime}\right) \mu_{0}\left(d x_{0}^{\prime}\right) \mu_{0}\left(d x_{0}^{\prime \prime}\right)= \\
& \quad=\iint \rho_{1, \mathrm{KR}}\left(\nu\left(x_{0}^{\prime}\right), \nu\left(x_{0}^{\prime \prime}\right)\right) \mu_{0}\left(d x_{0}^{\prime}\right) \mu_{0}\left(d x_{0}^{\prime \prime}\right) \leq \\
& \quad \leq \iint \mu_{0}\left(d x_{0}^{\prime}\right) \mu_{0}\left(d x_{0}^{\prime \prime}\right) \iint \nu\left(x_{0}^{\prime}\right)\left(d x_{1}^{\prime}\right) \nu\left(x_{0}^{\prime \prime}\right)\left(d x_{1}^{\prime \prime}\right) \rho_{1}\left(x_{1}^{\prime}, x_{1}^{\prime \prime}\right)= \\
& \quad=\iint\left(\int \mu_{0}\left(d x_{0}^{\prime}\right) \nu\left(x_{0}^{\prime}\right)\right)\left(d x_{1}^{\prime}\right) \cdot\left(\int \mu_{0}\left(d x_{0}^{\prime \prime}\right) \nu\left(x_{0}^{\prime \prime}\right)\right)\left(d x_{1}^{\prime \prime}\right) \rho_{1}\left(x_{1}^{\prime}, x_{1}^{\prime \prime}\right) \\
& \quad=\iint \mu_{1}\left(d x_{1}^{\prime}\right) \mu_{1}\left(d x_{1}^{\prime \prime}\right) \rho_{1}\left(x_{1}^{\prime}, x_{1}^{\prime \prime}\right) .
\end{aligned}
$$

42. From (40) and (41) we see that

$$
\iint \rho_{k}(x, y) \mu_{k}(d x) \mu_{k}(d y) \geq \frac{\varepsilon}{2} \quad \text { for all } k
$$

so, (18) is satisfied.
43. It remains to prove that $\left\{X_{k}\right\}_{k}$ is tail-trivial. This fact follows from (39b). Indeed, (39b) together with Markov property shows that $\sigma\left\{X_{k}: k \leq-2 n-2\right\}$ and $\sigma\left\{X_{k}: k \geq-2 n\right\}$ are independent. Hence, $\sigma_{-\infty}$ is independent of $\sigma\left\{X_{k}: k \geq-2 n\right\}$ for any n. Now Theorem 17 is deduced from Lemma 23.

Proof of Lemma 23

44. Take some prime integer p and consider the five-dimensional linear space \mathbb{Z}_{p}^{5} over the finite field \mathbb{Z}_{p}. Let \mathcal{X}_{0} be the set of all two-dimensional linear subspaces ("planes" in
what follows) of $\mathbb{Z}_{p}^{5}, \mathcal{X}_{1}$-the set of all one-dimensional affine subspaces (that is, translated linear subspaces; "lines" in what follows) of \mathbb{Z}_{p}^{5}, and $\mathcal{X}_{2}=\mathbb{Z}_{p}^{5}$-the set of all points of \mathbb{Z}_{p}^{5}.

For given plane $x_{0} \in \mathcal{X}_{0}$, the Markov process may jump from x_{0} to any line $x_{1} \in \mathcal{X}_{1}$ that is parallel to the plane x_{0}, that is, x_{1} is a translation of a one-dimensional linear subspace lying in the plane x_{0} (the case $x_{1} \subset x_{0}$ is permitted, too). The process jumps to any such x_{1} equiprobably.

For a given line $x_{1} \in \mathcal{X}_{1}$, the Markov process may jump from x_{1} to any point $x_{2} \in \mathcal{X}_{2}$ lying on the line x_{1}, equiprobably.
45. Each $x_{0} \in \mathcal{X}_{0}$ leads, after two Markov jumps, to the uniform distribution on \mathcal{X}_{2}. Indeed, after the first jump the distribution becomes translation invariant, and remains translation invariant after the second jump. So, X_{2} is uniformly distributed and independent of X_{0}. The distribution of X_{0} may be choosen arbitrarily; we choose it as the uniform one.
46. We have $\left|\mathcal{X}_{0}\right| \geq p^{6}$. Indeed, each pair of points is contained in a plane (at least one). Each plane contains p^{2} points and hence p^{4} pairs. And the whole number of pairs in \mathbb{Z}_{p}^{5} is p^{10}.
47. Take the metric ρ_{2} on \mathcal{X}_{2} such that $\rho_{2}\left(x_{2}^{\prime}, x_{2}^{\prime \prime}\right)=1$ for all $x_{2}^{\prime} \neq x_{2}^{\prime \prime}$. The corresponding Kantorovich-Rubinstein metric coincides with the norm metric:

$$
\rho_{2, \mathrm{KR}}(\mu, \nu)=\frac{1}{2}\|\mu-\nu\| .
$$

Hence,

$$
\rho_{1}\left(x_{1}^{\prime}, x_{1}^{\prime \prime}\right)=\rho_{2, \mathrm{KR}}\left(\nu_{2}\left(x_{1}^{\prime}\right), \nu_{2}\left(x_{1}^{\prime \prime}\right)\right)=\frac{1}{2}| | \nu_{2}\left(x_{1}^{\prime}\right)-\nu_{2}\left(x_{1}^{\prime \prime}\right)| |=\frac{\left|x_{1}^{\prime}\right|-\left|x_{1}^{\prime} \cap x_{1}^{\prime \prime}\right|}{\left|x_{1}^{\prime}\right|} ;
$$

but $\left|x_{1}^{\prime}\right|=p$ (the number of points on a line), and $\left|x_{1}^{\prime} \cap x_{1}^{\prime \prime}\right| \leq 1$ (the number of common points of two lines). So,

$$
\rho_{1}\left(x_{1}^{\prime}, x_{1}^{\prime \prime}\right) \geq 1-\frac{1}{p} \quad \text { for any } x_{1}^{\prime} \neq x_{1}^{\prime \prime}
$$

48. The same argumentation is applicable for $X_{0} \rightarrow X_{1}$ transition, giving the factor $\geq 1-\frac{1}{p+1}$. Indeed, the number of lines containing 0 and contained in a given plane is equal to $p+1$. Only one of these lines is contained in another given plane. And the condition that the lines contain 0 does not affect the ratio.
49. It remains to choose $\alpha>0$ and $N_{0}<\infty$ such that for any $N \geq N_{0}$ there exists a prime p such that $p^{6} \geq 2 N, p^{5} \leq N$, and

$$
\left(1-\frac{1}{p}\right)\left(1-\frac{1}{p+1}\right) \geq \exp \left(-N^{-\alpha}\right) .
$$

Surely it is possible. So, Lemma 23 is proved.

