About Yor's problem.

2. Non-standard σ -fields: formulations

Boris Tsirelson (Tel Aviv University)

1. A Borel space \mathcal{X} determines the set $\mathcal{P}(\mathcal{X})$ of all probability measures on \mathcal{X} . The set $\mathcal{P}(\mathcal{X})$ is a Borel space, too.

2. A convenient way to determine the distribution of a Markov chain $\{X_k\}_{k\in\mathbb{Z}}, X_k \in \mathcal{X}_k$, is to give for each k a measure $\mu_k \in \mathcal{P}(\mathcal{X}_k)$ and a measurable map $\nu_k : \mathcal{X}_{k-1} \to \mathcal{P}(\mathcal{X}_k)$ such that

(3)
$$\mu_k = \int \nu_k(x) \,\mu_{k-1}(dx).$$

4. For a Borel space \mathcal{X} introduce the set $SM(\mathcal{X})$ of all measurable pseudometrics $\rho(\cdot, \cdot)$ on \mathcal{X} , turning \mathcal{X} into a separable metric space after identifying points having zero distance.

A general form of such a metric is

(5)
$$\rho(x,y) = \sup_{n} |f_n(x) - f_n(y)|,$$

where f_1, f_2, \ldots are measurable functions on \mathcal{X} such that the supremum is finite everywhere.

Distinguish the set $CM(\mathcal{X}) \subset SM(\mathcal{X})$ of pseudometrics giving a precompact space (that is, compact after completion). Such a metric may be described by (5) under condition that each f_n is bounded, and the finite-dimensional pseudometric

(6)
$$\rho_n(x,y) = \sup_{m=1,\dots,n} |f_m(x) - f_m(y)|$$

converges when $n \to \infty$ to $\rho(x, y)$ uniformly in x, y.

7. Any pseudometric $\rho \in SM(\mathcal{X})$ determines the corresponding Kantorovich-Rubinstein pseudometric $\rho_{KR} \in SM(\mathcal{P}(\mathcal{X}))$ as follows:

(8)
$$\rho_{\rm KR}(\mu,\nu) = \inf\left\{\int_0^1 \rho(\xi(t),\psi(t))\,dt:\xi,\psi:[0,1]\to\mathcal{X},\ \xi({\rm mes})=\mu,\ \psi({\rm mes})=\nu\right\};$$

here $\mu, \nu \in \mathcal{P}(\mathcal{X})$, mes is the Lebesgue measure on [0, 1], and $\xi(\text{mes}) = \mu$ means that ξ is a measure-preserving map from ([0, 1], mes) to (\mathcal{X}, μ) .

9. If $\rho \in CM(\mathcal{X})$, then $\rho_{KR} \in CM(\mathcal{P}(\mathcal{X}))$. Further, if $\rho \in CM(\mathcal{X})$ is a metric (that is, it separates points), then ρ_{KR} provide $\mathcal{P}(\mathcal{X})$ with the weak topology:

(10)
$$\rho_{\mathrm{KR}}(\mu_n,\mu) \xrightarrow[n]{\to} 0 \iff \forall f \in C(\mathcal{X},\rho) \quad \int f \, d\mu_n \xrightarrow[n]{\to} \int f \, d\mu.$$

11. A measurable map $\nu : \mathcal{X}_0 \to \mathcal{P}(\mathcal{X}_1)$ induces its associate map $\tilde{\nu} : \mathrm{SM}(\mathcal{X}_1) \to \mathrm{SM}(\mathcal{X}_0)$ as follows:

(12)
$$\rho_0 = \tilde{\nu}\rho_1 \quad \Longleftrightarrow \quad \forall x, y \in \mathcal{X}_0 \quad \rho_0(x, y) = \rho_{1,\mathrm{KR}}(\nu(x), \nu(y)).$$

Also, $\tilde{\nu} : CM(\mathcal{X}_1) \to CM(\mathcal{X}_0).$

13. When a Markov chain is given for $k \in (-\infty, N] \cap \mathbb{Z}$ by means of $\{\mu_k\}_k, \{\nu_k\}_k$ as in (2), then any $\rho_N \in SM(\mathcal{X}_N)$ determines a sequence $\{\rho_k\}_k, \rho_k \in SM(\mathcal{X}_k)$, as follows:

(14)
$$\rho_{k-1} = \tilde{\nu}_k \rho_k \quad \text{for } k \le N.$$

15. **Theorem.** If a Markov chain admits a generating parametrization and is tailtrivial, then

(16)
$$\iint \rho_k(x,y)\,\mu_k(dx)\mu_k(dy) \to 0 \quad \text{when } k \to -\infty$$

for any $\rho_N \in CM(\mathcal{X}_n)$.

17. Theorem. There exists a Markov chain with finite sets \mathcal{X}_k , tail-trivial, and satisfying

(18)
$$\liminf_{k \to -\infty} \iint \rho_k(x, y) \,\mu_k(dx) \mu_k(dy) > 0$$

for any metric ρ_N on \mathcal{X}_N .

19. Corollary. There exists a non-standard tail-trivial, conditionally non-atomic chain of σ -fields.

Proof. The Markov chain of Theorem 17 may be easily converted into a conditionally non-atomic one by taking the two-component Markov process (X_k, X'_k) with $\{X_k\}_k$ as in Theorem 17, and X'_k i.i.d. and independent of $\{X_k\}_k$. Then, taking ρ_N non-depending on the additional component, we keep ρ_k essentially the same as in (18). So, (18) remains true, and according to Theorem 15 the chain admits no generating parametrization. Hence, the corresponding chain of σ -fields is non-standard.

The following lemma is the key to Theorem 15.

20. Lemma. Let a Markov chain is given for $k \in [M, N] \cap \mathbb{Z}$ by means of $\{\mu_k\}_k$, $\{\nu_k\}_k$ as in (2). Define $\rho_N \in CM(\mathcal{X}_N)$ as

(21)
$$\rho_N(x,y) = |f(x) - f(y)|$$

with a measurable bounded $f: \mathcal{X}_N \to \mathbb{R}$. Then for any parametrization

(22)
$$\int \int \rho_M^2(x,y) \,\mu_M(x) \mu_M(y) \le 2\mathbb{E} \left(f(X_N) - \mathbb{E} \left(f(X_N) \,|\, Y_{M+1}, \dots, Y_N \right) \, \right)^2.$$

The same remains true, if f takes its values in an Euclidean or Hilbert space instead of \mathbb{R} .

The following lemma is the key to Theorem 17.

23. Lemma. There exist $\alpha > 0$ and $N_0 < \infty$ such that for any $N \ge N_0$ there exists a Markov chain for $k \in \{0, 1, 2\}$, with finite sets \mathcal{X}_k , satisfying the following conditions.

(a) $|\mathcal{X}_0| \ge 2N; |\mathcal{X}_2| \le N$

 $(|\mathcal{X}| \text{ denoting the number of elements in } \mathcal{X}).$

(b) X_0 and X_2 are independent and uniformly distributed (within \mathcal{X}_0 and \mathcal{X}_2 , correspondingly).

(c) If a metric ρ_2 on \mathcal{X}_2 is defined by

$$\rho_2(x, y) = 1 \quad \text{for } x \neq y,$$

then the corresponding metric ρ_0 on \mathcal{X}_0 satisfy

$$\rho_0(x,y) \ge \exp(-N^{-\alpha}) \quad \text{for } x \ne y.$$

24. Let me note, in addition, the following "probability-free" fact, which seems to be the "cause" of the existence of non-standard chain of σ -fields.

Any separable metric space (\mathcal{X}, ρ) may be considered embedded into the space $(\mathcal{P}(\mathcal{X}), \rho_{\text{KR}})$, the Kantorovich-Rubinstein extension of the given space. And the new space may be extended, too. By continuing this way, we obtain a huge metric space—the union of the sequence of successive extensions:

(25)
$$\mathcal{X}_{\infty} = \bigcup_{n} \mathcal{X}_{n}, \quad \mathcal{X}_{n+1} = \mathcal{P}(\mathcal{X}_{n}), \quad \mathcal{X}_{0} = \mathcal{X}.$$

26. **Proposition.** If a metric space \mathcal{X} contains more than one point, then \mathcal{X}_{∞} is not precompact.