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1. A Borel space X determines the set P(X ) of all probability measures on X . The

set P(X ) is a Borel space, too.

2. A convenient way to determine the distribution of a Markov chain {Xk}k∈Z, Xk ∈

Xk, is to give for each k a measure µk ∈ P(Xk) and a measurable map νk : Xk−1 → P(Xk)

such that

(3) µk =

∫

νk(x)µk−1(dx).

4. For a Borel space X introduce the set SM(X ) of all measurable pseudometrics

ρ(·, ·) on X , turning X into a separable metric space after identifying points having zero

distance.

A general form of such a metric is

(5) ρ(x, y) = sup
n

|fn(x) − fn(y)|,

where f1, f2, . . . are measurable functions on X such that the supremum is finite every-

where.

Distinguish the set CM(X ) ⊂ SM(X ) of pseudometrics giving a precompact space

(that is, compact after completion). Such a metric may be described by (5) under condition

that each fn is bounded, and the finite-dimensional pseudometric

(6) ρn(x, y) = sup
m=1,...,n

|fm(x) − fm(y)|

converges when n→ ∞ to ρ(x, y) uniformly in x, y.

7. Any pseudometric ρ ∈ SM(X ) determines the corresponding Kantorovich-

Rubinstein pseudometric ρKR ∈ SM(P(X )) as follows:

(8) ρKR(µ, ν) = inf

{
∫ 1

0

ρ(ξ(t), ψ(t)) dt : ξ, ψ : [0, 1] → X , ξ(mes) = µ, ψ(mes) = ν

}

;

here µ, ν ∈ P(X ), mes is the Lebesgue measure on [0, 1], and ξ(mes) = µ means that ξ is

a measure-preserving map from ([0, 1],mes) to (X , µ).

9. If ρ ∈ CM(X ), then ρKR ∈ CM(P(X )). Further, if ρ ∈ CM(X ) is a metric (that is,

it separates points), then ρKR provide P(X ) with the weak topology:

(10) ρKR(µn, µ) →
n

0 ⇐⇒ ∀f ∈ C(X , ρ)

∫

f dµn →
n

∫

f dµ.
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11. A measurable map ν : X0 → P(X1) induces its associate map ν̃ : SM(X1) →

SM(X0) as follows:

(12) ρ0 = ν̃ρ1 ⇐⇒ ∀x, y ∈ X0 ρ0(x, y) = ρ1,KR(ν(x), ν(y)).

Also, ν̃ : CM(X1) → CM(X0).

13. When a Markov chain is given for k ∈ (−∞, N ] ∩ Z by means of {µk}k, {νk}k as

in (2), then any ρN ∈ SM(XN ) determines a sequence {ρk}k, ρk ∈ SM(Xk), as follows:

(14) ρk−1 = ν̃kρk for k ≤ N.

15. Theorem. If a Markov chain admits a generating parametrization and is tail-

trivial, then

(16)

∫ ∫

ρk(x, y)µk(dx)µk(dy) → 0 when k → −∞

for any ρN ∈ CM(Xn).

17. Theorem. There exists a Markov chain with finite sets Xk, tail-trivial, and

satisfying

(18) lim inf
k→−∞

∫ ∫

ρk(x, y)µk(dx)µk(dy) > 0

for any metric ρN on XN .

19. Corollary. There exists a non-standard tail-trivial, conditionally non-atomic

chain of σ-fields.

Proof. The Markov chain of Theorem 17 may be easily converted into a conditionally

non-atomic one by taking the two-component Markov process (Xk, X
′

k) with {Xk}k as in

Theorem 17, and X ′

k i.i.d. and independent of {Xk}k. Then, taking ρN non-depending

on the additional component, we keep ρk essentially the same as in (18). So, (18) remains

true, and according to Theorem 15 the chain admits no generating parametrization. Hence,

the corresponding chain of σ-fields is non-standard.

The following lemma is the key to Theorem 15.

20. Lemma. Let a Markov chain is given for k ∈ [M,N ] ∩ Z by means of {µk}k,

{νk}k as in (2). Define ρN ∈ CM(XN ) as

(21) ρN (x, y) = |f(x) − f(y)|

with a measurable bounded f : XN → R. Then for any parametrization

(22)

∫ ∫

ρ2
M (x, y)µM(x)µM (y) ≤ 2E ( f(XN ) − E ( f(XN) |YM+1, . . . , YN ) )2.
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The same remains true, if f takes its values in an Euclidean or Hilbert space instead of R.

The following lemma is the key to Theorem 17.

23. Lemma. There exist α > 0 and N0 < ∞ such that for any N ≥ N0 there exists

a Markov chain for k ∈ {0, 1, 2}, with finite sets Xk, satisfying the following conditions.

(a) |X0| ≥ 2N ; |X2| ≤ N

(|X | denoting the number of elements in X ).

(b) X0 and X2 are independent and uniformly distributed (within X0 and X2, corre-

spondingly).

(c) If a metric ρ2 on X2 is defined by

ρ2(x, y) = 1 for x 6= y,

then the corresponding metric ρ0 on X0 satisfy

ρ0(x, y) ≥ exp(−N−α) for x 6= y.

24. Let me note, in addition, the following “probability-free” fact, which seems to be

the “cause” of the existence of non-standard chain of σ-fields.

Any separable metric space (X , ρ) may be considered embedded into the space

(P(X ), ρKR), the Kantorovich-Rubinstein extension of the given space. And the new space

may be extended, too. By continuing this way, we obtain a huge metric space—the union

of the sequence of successive extensions:

(25) X∞ =
⋃

n

Xn, Xn+1 = P(Xn), X0 = X .

26. Proposition. If a metric space X contains more than one point, then X∞ is not

precompact.
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