Contents

5 Markov chains
 47

5a Random walk on a regular graph 47
5b Finite Markov chains . 50
5c Return time . 52

5 Markov chains

5a Random walk on a regular graph

Assume that a weakly connected ${ }^{1}$ finite directed graph has m vertices and is regular (that is, each vertex has k outgoing edges and k incoming edges, the same k for all vertices). In addition, we assume aperiodicity: there exists no $p \in\{2,3, \ldots\}$ such that the length of every cycle is divisible by p. A random walk started at a given vertex. Denote by S_{n} the position of the walk after n steps.

5a1 Proposition. For each vertex x of the graph,

$$
\mathbb{P}\left(S_{n}=x\right) \rightarrow \frac{1}{m} \quad \text { as } n \rightarrow \infty
$$

This fact is a special case of a convergence theorem for Markov chains $(\text { see 5b3) })^{2}$

Now assume that the random walk, started at a given vertex, stops on the first return to this vertex.

5a2 Proposition. The expected number of moves is equal to m (the number of vertices).

The proof uses Markov chains. ${ }^{3}$ (Aperiodicity is not needed.)
Think, what happens if the graph consists of two large pieces connected by a thin neck.

Prop. 5 a 2 will be proved in Sect. 5c Prop. 5 a 1 - in the end of this Sect. 5a.

First, some graph theory.

[^0]We consider an aperiodic regular weakly connected finite directed graph. The graph has a set V of vertices and a set $E \subset V \times V$ of edges. ${ }^{1}$ Weak connectedness:

$$
\emptyset \subsetneq A \subsetneq V \quad \Longrightarrow \quad E \cap((A \times(V \backslash A)) \cup((V \backslash A) \times A)) \neq \emptyset
$$

for all $A \subset V$. Regularity:

$$
\#\{y:(x, y) \in E\}=k=\#\{y:(y, x) \in E\}
$$

for all $x \in V$.
5a3 Lemma. For every $A \subset V$ the number of incoming edges is equal to the number of outgoing edges; that is,

$$
\#(E \cap(A \times(V \backslash A)))=\#(E \cap((V \backslash A) \times A))
$$

Proof. Denoting $B=V \backslash A$ we have

$$
\begin{aligned}
& E \cap(A \times V)=E \cap(A \times B) \uplus E \cap(A \times A), \\
& E \cap(V \times A)=E \cap(B \times A) \uplus E \cap(A \times A),
\end{aligned}
$$

thus $\#(E \cap(A \times B))=k \cdot(\# A)-\#(E \cap(A \times A))=\#(E \cap(B \times A))$.
5a4 Corollary. Strong connectedness:

$$
\emptyset \subsetneq A \subsetneq V \quad \Longrightarrow \quad E \cap(A \times(V \backslash A)) \neq \emptyset
$$

for all $A \subset V$. (Closed sets: \emptyset and V only.)
5a5 Corollary. For all $x, y \in V$ there exists a path (of some length) from x to y.

5a6 Lemma. There exists n such that for all $x, y \in V$, every $t \geq n$ is the length of some (at least one) path from x to y.

Proof. The set L_{x} of lengths of all loops from x to x is a semigroup, therefore $L_{x}-L_{x}$ is a group, $L_{x}-L_{x}=p_{x} \mathbb{Z}$ for some p_{x}. By 5a5, $L_{x}-L_{x}$ does not depend on x. Thus, $p_{x}=1$ for all x. It means existence of N_{x} such that $N_{x} \in L_{x}$ and $N_{x}+1 \in L_{x}$. We take $n_{x}=N_{x}^{2}$ and note that ${ }^{2} N_{x}^{2}+k N_{x}+r=$ $N_{x}\left(N_{x}+k\right)+r=N_{x}\left(N_{x}+k\right)-N_{x} r+\left(N_{x}+1\right) r=N_{x}\left(N_{x}+k-r\right)+\left(N_{x}+1\right) r \in$ L_{x}. We take m such that a path of length $\leq m$ exists from every x to every y; then $n=m+\max _{x} n_{x}$ fits.

[^1]Now we return to probability.
We want to show that the initial point x_{0} is ultimately forgotten by the random walk $\left(S_{n}\right)$.

Given another starting point $x_{0}^{\prime} \in V$, we introduce the probability space Ω^{\prime} of paths (of length n) starting at x_{0}^{\prime}, and random variables $S_{0}^{\prime}, \ldots, S_{n}^{\prime}$: $\Omega^{\prime} \rightarrow V$. We take the product

$$
\tilde{\Omega}=\Omega \times \Omega^{\prime}
$$

and treat S_{t}, S_{t}^{\prime} as maps $\tilde{\Omega} \rightarrow V$. We get two independent random walks, one starting at x_{0}, the other at x_{0}^{\prime}. In addition, we let $\tilde{S}_{t}=\left(S_{t}, S_{t}^{\prime}\right): \tilde{\Omega} \rightarrow \tilde{V}=$ $V \times V$.

The reflection helps again! The transformation $(x, y) \mapsto(y, x)$ of \tilde{V} will be treated as reflection, and the diagonal of \tilde{V} as the barrier. We define $M_{n}: \tilde{\Omega} \rightarrow\{0,1\}$ by

$$
M_{n}= \begin{cases}0 & \text { if } S_{0} \neq S_{0}^{\prime}, S_{1} \neq S_{1}^{\prime}, \ldots, S_{n} \neq S_{n}^{\prime} \\ 1 & \text { otherwise }\end{cases}
$$

5a7 Exercise. $\mathbb{E}\left(f\left(\tilde{S}_{n}\right) \mathbb{1}_{M_{n}=1}\right)=0$ for every antisymmetric function f : $\tilde{V} \rightarrow \mathbb{R}$ ("antisymmetric" means $f(y, x)=-f(x, y)$).

Prove it.
Hint: similar to the proof of Lemma 4a2.
That is, the conditional distribution of \tilde{S}_{n} given $M_{n}=1$ is symmetric (if defined).

And again (recall 4a3), $\mathbb{E} f\left(\tilde{S}_{n}\right)=\mathbb{E}\left(f\left(\tilde{S}_{n}\right) \mathbb{1}_{M_{n}=0}\right)$.
5a8 Lemma. $\left|\mathbb{P}\left(S_{n}=x\right)-\mathbb{P}\left(S_{n}^{\prime}=x\right)\right| \leq \mathbb{P}\left(M_{n}=0\right)$.
Proof. Take $f(a, b)=\mathbb{1}_{\{x\}}(a)-\mathbb{1}_{\{x\}}(b)$ in 5a7.
The probability of the event $M_{n}=0$ depends on n, x_{0} and x_{0}^{\prime}. We maximize it in x_{0}, x_{0}^{\prime} :

$$
\varepsilon_{n}=\max _{x_{0}, x_{0}^{\prime} \in V} \mathbb{P}\left(M_{n}=0\right) .
$$

5a9 Lemma. $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$.
The proof will be given later.
Let $p_{n}(x, y)$ denote the n-step transition probability from x to y. (Thus, $\mathbb{P}\left(S_{t}=y\right)=p_{t}\left(x_{0}, y\right)$ and $\left.\mathbb{P}\left(S_{t}^{\prime}=y\right)=p_{t}\left(x_{0}^{\prime}, y\right).\right)$

Clearly, $\sum_{y \in V} p_{1}(x, y)=1$ for all $x \in V$; but regularity ensures also $\sum_{x \in V} p_{1}(x, y)=1$ for all $y \in V$. By induction, $\sum_{y \in V} p_{n}(x, y)=1$ for all $x \in V$, and $\sum_{x \in V} p_{n}(x, y)=1$ for all $y \in V$.

Proof of Prop. 5a1. By Lemma 5a8, $\left|p_{n}\left(x_{0}, y\right)-p_{n}\left(x_{0}^{\prime}, y\right)\right| \leq \varepsilon_{n}$. We average it in x_{0}^{\prime}; taking into account that $\frac{1}{m} \sum_{x_{0}^{\prime} \in V} p_{n}\left(x_{0}^{\prime}, y\right)=\frac{1}{m}$ we get $\left|p_{n}\left(x_{0}, y\right)-\frac{1}{m}\right| \leq \varepsilon_{n}$; finally, $\varepsilon_{n} \rightarrow 0$ by Lemma 5a9,
Proof of Lemma 5a9, Lemma 5a6 gives us n such that $p_{n}(x, y) \neq 0$ for all x, y. Clearly, $p_{n}(x, y) \geq k^{-n}$. Thus,

$$
\mathbb{P}\left(M_{n}=1\right) \geq \mathbb{P}\left(S_{n}=y, S_{n}^{\prime}=y\right) \geq k^{-2 n}
$$

no matter which y is used. We put $\theta=1-k^{-2 n}$ and see that $\mathbb{P}\left(M_{n}=0\right) \leq \theta$. But moreover, $\mathbb{P}\left(M_{t+n}=0 \mid M_{t}=0, S_{t}=a, S_{t}^{\prime}=b\right) \leq \theta$ for all a, b (provided that the condition is of non-zero probability). It follows that

$$
\begin{gathered}
\mathbb{P}\left(M_{t+n}=0 \mid M_{t}=0\right) \leq \theta \text { for all } t \\
\mathbb{P}\left(M_{t+n}=0\right) \leq \theta \cdot \mathbb{P}\left(M_{t}=0\right) \text { for all } t \\
\mathbb{P}\left(M_{j n}=0\right) \leq \theta^{j} \quad \text { for all } j
\end{gathered}
$$

and, of course, $\theta^{j} \rightarrow 0$ as $j \rightarrow \infty$.
Interestingly, $\varepsilon_{n} \rightarrow 0$ exponentially fast. However, the constant $n k^{2 n}$ can be quite large.

5b Finite Markov chains

A Markov chain (discrete in space and time, and homogeneous in time) is described by a transition probability matrix

$$
(p(x, y))_{x, y \in V}
$$

satisfying

$$
p(x, y) \geq 0 ; \quad \forall x \quad \sum_{y} p(x, y)=1
$$

The set V is assumed to be finite. We turn V into a graph putting

$$
E=\left\{(x, y) \in V^{2}: p(x, y) \neq 0\right\}
$$

and define the probability of a path $\left(s_{0}, \ldots, s_{n}\right)$ as the product of n probabilities

$$
p\left(s_{0}, \ldots, s_{n}\right)=p\left(s_{0}, s_{1}\right) \ldots p\left(s_{n-1}, s_{n}\right) ;
$$

as before, s_{0} must be equal to a given initial point $x_{0} \in V$. Here are some definitions that depend on the graph only.

A set $A \subset V$ is closed if $E \cap(A \times(V \backslash A))=\emptyset$.

A Markov chain is irreducible if \emptyset and V are the only closed sets. In other words: the graph is strongly connected. Equivalently: for all $x, y \in V$ there exists a path from x to y (recall 5a5).

An irreducible Markov chain is aperiodic, if there exists no $p \in\{2,3, \ldots\}$ such that every loop length is divisible by p. (This property does not depend on the initial point; recall the proof of 5a6;)

Here are some results stated here without proofs.
5b1 Theorem. If a Markov chain is irreducible and aperiodic then the limit

$$
\lim _{n} \mathbb{P}\left(S_{n}=x\right)
$$

exists for each $x \in V$.
5b2 Definition. A probability measure μ on V is stationary, if

$$
\mu(y)=\sum_{x \in V} \mu(x) p(x, y) \quad \text { for all } y \in V
$$

Irreducibility implies that $\mu(x)>0$ for all x (since the set $\{x: \mu(x)>0\}$ is closed).

5b3 Theorem. If a Markov chain is irreducible and aperiodic then it has one and only one stationary probability measure μ, and

$$
\forall y \quad \sum_{x \in V} \nu(x) p_{n}(x, y) \rightarrow \mu(y) \quad \text { as } n \rightarrow \infty
$$

for every probability measure ν on V.
If a Markov chain (V, p) is irreducible but periodic, with the (least) period d, then $V=V_{1} \uplus \cdots \uplus V_{d}$ and $p_{1}(x, y) \neq 0$ only when $x \in V_{i}, y \in V_{i+1}$ for some i (here $n+1=1$, of course). The Markov chain (V_{1}, p_{d}) is irreducible and aperiodic, its stationary probability measure is $\mu(x)=\lim _{n} \mathbb{P}\left(S_{n d}=x\right)$ (assuming $x_{0} \in V_{1}$), and the measure

$$
\nu(x)=\lim _{n} \frac{1}{d}\left(\mathbb{P}\left(S_{n d}=x\right)+\mathbb{P}\left(S_{n d+1}=x\right)+\cdots+\mathbb{P}\left(S_{n d+d-1}=x\right)\right)
$$

is stationary for the original Markov chain (V, p).
Here is another property related to the graph only.
5b4 Definition. ${ }^{1}$ A state $x \in V$ is transient, if there exists $y \in V$ such that a path from x to y exists, but a path from y to x does not exist. Otherwise, x is called recurrent.

[^2]If x is transient then $\mathbb{P}\left(S_{n}=x\right) \rightarrow 0$ as $n \rightarrow \infty$.
Recurrent states x, y are called equivalent, if there exists a path from x to y, and a path from y to x. (Well, the latter follows from the former.) Equivalence classes are irreducible closed sets...

5c Return time

Similarly to Sect. 5a we consider a regular (weakly) connected finite directed (but maybe periodic) graph (V, E), and the random walk $\left(S_{n}\right)$ on it, starting at a given $x_{0} \in V$.

We introduce the "return time" random variable ${ }^{1} T=\inf \left\{n>0: S_{n}=\right.$ $\left.x_{0}\right\}$.

5c1 Lemma. $T<\infty$ almost surely, and moreover, $\mathbb{E} T<\infty$.
Proof.

$$
\begin{gathered}
\exists n \forall t \mathbb{P}\left(T \leq t+n \mid S_{0}, \ldots, S_{t}\right)>0 \text { a.s. } \\
\exists n \exists \varepsilon \forall t \mathbb{P}\left(T \leq t+n \mid S_{0}, \ldots, S_{t}\right) \geq \varepsilon \text { a.s.; } \\
\mathbb{P}\left(T>t+n \mid S_{0}, \ldots, S_{t}\right) \leq(1-\varepsilon) \mathbb{1}_{T>t} \text { a.s. } \\
\mathbb{P}(T>t+n) \leq(1-\varepsilon) \mathbb{P}(T>t) ; \\
\forall j \mathbb{P}(T>j n) \leq(1-\varepsilon)^{j} .
\end{gathered}
$$

Treating the (one step) transition function $p(\cdot, \cdot)$ as a matrix and measures on V as row vectors we write $\mu p=\nu$ rather than $\nu(\{y\})=\sum_{x} \mu(\{x\}) p(x, y)=$ $\int p(\cdot, y) \mathrm{d} \mu$, and in particular, $\delta_{x} p$ rather than $\sum_{y} p(x, y) \delta_{y}$. Thus, distributions of S_{n} are: $\operatorname{Distr}\left(S_{0}\right)=\delta_{x_{0}}, \operatorname{Distr}\left(S_{1}\right)=\delta_{x_{0}} p$, and so on. We also use expectations of random vectors (in the m-dimensional linear space of signed measures on V): $\operatorname{Distr}\left(S_{n}\right)=\mathbb{E} \delta_{S_{n}}$ (and in general, $\left.\operatorname{Distr}(X)=\mathbb{E} \delta_{X}\right)$.
"The cycle trick": $\sum_{n=0}^{T-1} \delta_{S_{n}}=\sum_{n=1}^{T} \delta_{S_{n}}$ a.s. (just because $S_{0}=x_{0}=S_{T}$ a.s).

5c2 Lemma. $\mathbb{E} \sum_{n=1}^{T} \delta_{S_{n}}=\left(\mathbb{E} \sum_{n=0}^{T-1} \delta_{S_{n}}\right) p$.
Proof.

$$
\begin{aligned}
& \mathbb{E}\left(\delta_{S_{n+1}}-\delta_{S_{n}} p \mid S_{0}, \ldots, S_{n}\right)=0 ; \\
& \quad \mathbb{E}\left(\left(\delta_{S_{n+1}}-\delta_{S_{n}} p\right) \mathbb{1}_{T>n}\right)=0 ;
\end{aligned}
$$

[^3]taking into account that $\sum_{n=0}^{\infty} \mathbb{P}(T>n)=\mathbb{E} T<\infty$ (and vectors $\delta_{S_{n+1}}$ $\delta_{S_{n}} p$ are a bounded set) we have
\[

$$
\begin{aligned}
& \mathbb{E} \sum_{n=0}^{\infty}\left(\delta_{S_{n+1}}-\delta_{S_{n}} p\right) \mathbb{1}_{T>n}=0 ; \\
& \mathbb{E} \sum_{n=0}^{T-1}\left(\delta_{S_{n+1}}-\delta_{S_{n}} p\right)=0 ; \\
& \mathbb{E} \sum_{n=0}^{T-1} \delta_{S_{n+1}}=\left(\mathbb{E} \sum_{n=0}^{T-1} \delta_{S_{n}}\right) p .
\end{aligned}
$$
\]

Proof of Prop. 5a2. The measure $\mathbb{E} \sum_{n=0}^{T-1} \delta_{S_{n}}$ is invariant, therefore, proportional to the uniform (or the counting) measure. The measure at x_{0} is equal to $1(n=0$ only... $)$; thus the measure of the whole V must be m. On the other hand, it is $\mathbb{E} \sum_{n=0}^{T-1} 1=\mathbb{E} T$; thus, $\mathbb{E} T=m$.

[^0]: ${ }^{1}$ That is, the corresponding undirected graph is connected.
 ${ }^{2}$ [D, Sect. 5.4, Example 4.5; Sect. 5.5(a)]; [KS, Sect. 5.3].
 ${ }^{3}[\mathrm{D}$, Sect. 5.4, (4.6) and Example 4.5].

[^1]: ${ }^{1}$ May intersect the diagonal. Multiple edges are excluded, but all said can be easily generalized to graphs with multiple edges.
 ${ }^{2}$ Example: $\{10 k+11 l\} \not \supset 78,79,89$.

[^2]: ${ }^{1}$ Only for finite Markov chains.

[^3]: ${ }^{1}$ A priori, taking on values in $\{1,2, \ldots\} \cup\{\infty\}$.

