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5 Markov chains

5a Random walk on a regular graph

Assume that a weakly connected1 finite directed graph has m vertices and is
regular (that is, each vertex has k outgoing edges and k incoming edges, the
same k for all vertices). In addition, we assume aperiodicity: there exists no
p ∈ {2, 3, . . . } such that the length of every cycle is divisible by p. A random
walk started at a given vertex. Denote by Sn the position of the walk after
n steps.

5a1 Proposition. For each vertex x of the graph,

P
(

Sn = x
)

→
1

m
as n → ∞ .

This fact is a special case of a convergence theorem for Markov chains
(see 5b3).2

Now assume that the random walk, started at a given vertex, stops on
the first return to this vertex.

5a2 Proposition. The expected number of moves is equal tom (the number
of vertices).

The proof uses Markov chains.3 (Aperiodicity is not needed.)
Think, what happens if the graph consists of two large pieces connected

by a thin neck.
Prop. 5a2 will be proved in Sect. 5c; Prop. 5a1 — in the end of this

Sect. 5a.
First, some graph theory.

1That is, the corresponding undirected graph is connected.
2[D, Sect. 5.4, Example 4.5; Sect. 5.5(a)]; [KS, Sect. 5.3].
3[D, Sect. 5.4, (4.6) and Example 4.5].
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We consider an aperiodic regular weakly connected finite directed graph.
The graph has a set V of vertices and a set E ⊂ V × V of edges.1 Weak
connectedness:

∅ ( A ( V =⇒ E ∩
(

(A× (V \ A)) ∪ ((V \ A)× A)
)

6= ∅

for all A ⊂ V . Regularity:

#{y : (x, y) ∈ E} = k = #{y : (y, x) ∈ E}

for all x ∈ V .

5a3 Lemma. For every A ⊂ V the number of incoming edges is equal to
the number of outgoing edges; that is,

#
(

E ∩ (A× (V \ A))
)

= #
(

E ∩ ((V \ A)× A)
)

.

Proof. Denoting B = V \ A we have

E ∩ (A× V ) = E ∩ (A× B) ⊎ E ∩ (A× A) ,

E ∩ (V × A) = E ∩ (B × A) ⊎ E ∩ (A× A) ,

thus #
(

E ∩ (A×B)
)

= k · (#A)−#
(

E ∩ (A×A)
)

= #
(

E ∩ (B ×A)
)

.

5a4 Corollary. Strong connectedness:

∅ ( A ( V =⇒ E ∩
(

A× (V \ A)
)

6= ∅

for all A ⊂ V . (Closed sets: ∅ and V only.)

5a5 Corollary. For all x, y ∈ V there exists a path (of some length) from
x to y.

5a6 Lemma. There exists n such that for all x, y ∈ V , every t ≥ n is the
length of some (at least one) path from x to y.

Proof. The set Lx of lengths of all loops from x to x is a semigroup, therefore
Lx − Lx is a group, Lx − Lx = pxZ for some px. By 5a5, Lx − Lx does not
depend on x. Thus, px = 1 for all x. It means existence of Nx such that
Nx ∈ Lx and Nx +1 ∈ Lx. We take nx = N2

x and note that2 N2
x + kNx+ r =

Nx(Nx+k)+r = Nx(Nx+k)−Nxr+(Nx+1)r = Nx(Nx+k−r)+(Nx+1)r ∈
Lx. We take m such that a path of length ≤ m exists from every x to every
y; then n = m+maxx nx fits.

1May intersect the diagonal. Multiple edges are excluded, but all said can be easily
generalized to graphs with multiple edges.

2Example: {10k + 11l} 6∋ 78, 79, 89.
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Now we return to probability.
We want to show that the initial point x0 is ultimately forgotten by the

random walk (Sn).
Given another starting point x′

0 ∈ V , we introduce the probability space
Ω′ of paths (of length n) starting at x′

0, and random variables S ′
0, . . . , S

′
n :

Ω′ → V . We take the product

Ω̃ = Ω× Ω′

and treat St, S
′
t as maps Ω̃ → V . We get two independent random walks, one

starting at x0, the other at x′
0. In addition, we let S̃t = (St, S

′
t) : Ω̃ → Ṽ =

V × V .
The reflection helps again! The transformation (x, y) 7→ (y, x) of Ṽ will

be treated as reflection, and the diagonal of Ṽ as the barrier. We define
Mn : Ω̃ → {0, 1} by

Mn =

{

0 if S0 6= S ′
0, S1 6= S ′

1, . . . , Sn 6= S ′
n,

1 otherwise.

5a7 Exercise. E
(

f(S̃n)1lMn=1

)

= 0 for every antisymmetric function f :

Ṽ → R (“antisymmetric” means f(y, x) = −f(x, y)).
Prove it.
Hint: similar to the proof of Lemma 4a2.

That is, the conditional distribution of S̃n given Mn = 1 is symmetric (if
defined).

And again (recall 4a3), E f(S̃n) = E
(

f(S̃n)1lMn=0

)

.

5a8 Lemma. |P
(

Sn = x
)

− P
(

S ′
n = x

)

| ≤ P
(

Mn = 0
)

.

Proof. Take f(a, b) = 1l{x}(a)− 1l{x}(b) in 5a7.

The probability of the event Mn = 0 depends on n, x0 and x′
0. We

maximize it in x0, x
′
0:

εn = max
x0,x

′

0
∈V

P
(

Mn = 0
)

.

5a9 Lemma. εn → 0 as n → ∞.

The proof will be given later.
Let pn(x, y) denote the n-step transition probability from x to y. (Thus,

P
(

St = y
)

= pt(x0, y) and P
(

S ′
t = y

)

= pt(x
′
0, y).)

Clearly,
∑

y∈V p1(x, y) = 1 for all x ∈ V ; but regularity ensures also
∑

x∈V p1(x, y) = 1 for all y ∈ V . By induction,
∑

y∈V pn(x, y) = 1 for all
x ∈ V , and

∑

x∈V pn(x, y) = 1 for all y ∈ V .
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Proof of Prop. 5a1. By Lemma 5a8, |pn(x0, y) − pn(x
′
0, y)| ≤ εn. We

average it in x′
0; taking into account that 1

m

∑

x′

0
∈V pn(x

′
0, y) = 1

m
we get

|pn(x0, y)−
1

m
| ≤ εn; finally, εn → 0 by Lemma 5a9.

Proof of Lemma 5a9. Lemma 5a6 gives us n such that pn(x, y) 6= 0 for all
x, y. Clearly, pn(x, y) ≥ k−n. Thus,

P
(

Mn = 1
)

≥ P
(

Sn = y, S ′
n = y

)

≥ k−2n ,

no matter which y is used. We put θ = 1−k−2n and see that P
(

Mn = 0
)

≤ θ.
But moreover, P

(

Mt+n = 0
∣

∣Mt = 0, St = a, S ′
t = b

)

≤ θ for all a, b (provided
that the condition is of non-zero probability). It follows that

P
(

Mt+n = 0
∣

∣Mt = 0
)

≤ θ for all t ;

P
(

Mt+n = 0
)

≤ θ · P
(

Mt = 0
)

for all t ;

P
(

Mjn = 0
)

≤ θj for all j

and, of course, θj → 0 as j → ∞.

Interestingly, εn → 0 exponentially fast. However, the constant nk2n can
be quite large.

5b Finite Markov chains

A Markov chain (discrete in space and time, and homogeneous in time) is
described by a transition probability matrix

(

p(x, y)
)

x,y∈V

satisfying

p(x, y) ≥ 0 ; ∀x
∑

y

p(x, y) = 1 .

The set V is assumed to be finite. We turn V into a graph putting

E = {(x, y) ∈ V 2 : p(x, y) 6= 0}

and define the probability of a path (s0, . . . , sn) as the product of n proba-
bilities

p(s0, . . . , sn) = p(s0, s1) . . . p(sn−1, sn) ;

as before, s0 must be equal to a given initial point x0 ∈ V . Here are some
definitions that depend on the graph only.

A set A ⊂ V is closed if E ∩
(

A× (V \ A)
)

= ∅.
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A Markov chain is irreducible if ∅ and V are the only closed sets. In other
words: the graph is strongly connected. Equivalently: for all x, y ∈ V there
exists a path from x to y (recall 5a5).

An irreducible Markov chain is aperiodic, if there exists no p ∈ {2, 3, . . .}
such that every loop length is divisible by p. (This property does not depend
on the initial point; recall the proof of 5a6.)

Here are some results stated here without proofs.

5b1 Theorem. If a Markov chain is irreducible and aperiodic then the limit

lim
n

P
(

Sn = x
)

exists for each x ∈ V .

5b2 Definition. A probability measure µ on V is stationary, if

µ(y) =
∑

x∈V

µ(x)p(x, y) for all y ∈ V .

Irreducibility implies that µ(x) > 0 for all x (since the set {x : µ(x) > 0}
is closed).

5b3 Theorem. If a Markov chain is irreducible and aperiodic then it has
one and only one stationary probability measure µ, and

∀y
∑

x∈V

ν(x)pn(x, y) → µ(y) as n → ∞

for every probability measure ν on V .

If a Markov chain (V, p) is irreducible but periodic, with the (least) period
d, then V = V1 ⊎ · · · ⊎ Vd and p1(x, y) 6= 0 only when x ∈ Vi, y ∈ Vi+1 for
some i (here n + 1 = 1, of course). The Markov chain (V1, pd) is irreducible
and aperiodic, its stationary probability measure is µ(x) = limn P

(

Snd = x
)

(assuming x0 ∈ V1), and the measure

ν(x) = lim
n

1

d

(

P
(

Snd = x
)

+ P
(

Snd+1 = x
)

+ · · ·+ P
(

Snd+d−1 = x
))

is stationary for the original Markov chain (V, p).
Here is another property related to the graph only.

5b4 Definition. 1 A state x ∈ V is transient, if there exists y ∈ V such that
a path from x to y exists, but a path from y to x does not exist. Otherwise,
x is called recurrent.

1Only for finite Markov chains.
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If x is transient then P
(

Sn = x
)

→ 0 as n → ∞.
Recurrent states x, y are called equivalent, if there exists a path from x

to y, and a path from y to x. (Well, the latter follows from the former.)
Equivalence classes are irreducible closed sets. . .

5c Return time

Similarly to Sect. 5a we consider a regular (weakly) connected finite directed
(but maybe periodic) graph (V,E), and the random walk (Sn) on it, starting
at a given x0 ∈ V .

We introduce the “return time” random variable1 T = inf{n > 0 : Sn =
x0}.

5c1 Lemma. T < ∞ almost surely, and moreover, ET < ∞.

Proof.

∃n ∀t P
(

T ≤ t+ n
∣

∣S0, . . . , St

)

> 0 a.s. ;

∃n ∃ε ∀t P
(

T ≤ t+ n
∣

∣S0, . . . , St

)

≥ ε a.s. ;

P
(

T > t+ n
∣

∣S0, . . . , St

)

≤ (1− ε)1lT>t a.s. ;

P
(

T > t+ n
)

≤ (1− ε)P
(

T > t
)

;

∀j P
(

T > jn
)

≤ (1− ε)j .

Treating the (one step) transition function p(·, ·) as a matrix and measures
on V as row vectors we write µp = ν rather than ν({y}) =

∑

x µ({x})p(x, y) =
∫

p(·, y) dµ, and in particular, δxp rather than
∑

y p(x, y)δy. Thus, distribu-
tions of Sn are: Distr(S0) = δx0

, Distr(S1) = δx0
p, and so on. We also use

expectations of random vectors (in the m-dimensional linear space of signed
measures on V ): Distr(Sn) = E δSn

(and in general, Distr(X) = E δX).
“The cycle trick”:

∑T−1

n=0
δSn

=
∑T

n=1
δSn

a.s. (just because S0 = x0 = ST

a.s).

5c2 Lemma. E
∑T

n=1
δSn

=
(

E
∑T−1

n=0
δSn

)

p.

Proof.

E
(

δSn+1
− δSn

p
∣

∣S0, . . . , Sn

)

= 0 ;

E
(

(δSn+1
− δSn

p)1lT>n

)

= 0 ;

1A priori, taking on values in {1, 2, . . .} ∪ {∞}.
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taking into account that
∑∞

n=0
P
(

T > n
)

= ET < ∞ (and vectors δSn+1
−

δSn
p are a bounded set) we have

E

∞
∑

n=0

(δSn+1
− δSn

p)1lT>n = 0 ;

E

T−1
∑

n=0

(δSn+1
− δSn

p) = 0 ;

E

T−1
∑

n=0

δSn+1
=

(

E

T−1
∑

n=0

δSn

)

p .

Proof of Prop. 5a2. The measure E
∑T−1

n=0
δSn

is invariant, therefore, pro-
portional to the uniform (or the counting) measure. The measure at x0 is
equal to 1 (n = 0 only. . . ); thus the measure of the whole V must be m. On
the other hand, it is E

∑T−1

n=0
1 = ET ; thus, ET = m.
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