Contents

2 Central limit theorem 21
2a Introduction 21
2b Convolution 22
2c The initial distribution does not matter 24
2d From smooth functions to indicators 26

2 Central limit theorem

2a Introduction

Discrete probability spaces are enough here as long as all random variables are discrete (otherwise $\Omega=\mathbb{R}^{n}$ fits); to this end use triangle arrays.

Let X_{1}, X_{2}, \ldots be independent identically distributed random variables, and $S_{n}=X_{1}+\cdots+X_{n}$.

2a1 Theorem. ${ }^{1}$ Let $\mathbb{E} X_{1}=0$ and $\mathbb{E} X_{1}^{2}=1$. Then

$$
\mathbb{P}\left(a \sqrt{n}<S_{n}<b \sqrt{n}\right) \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{a}^{b} \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x \quad \text { as } n \rightarrow \infty
$$

whenever $-\infty \leq a \leq b \leq \infty$.
Clearly, the De Moivre-Laplace Theorem 1a20 is a special case.
More than 10 proofs are well-known. Some use Stirling formula. Some use Brownian motion. Some prove convergence to the normal distribution. Some prove first convergence to some distribution, and then identify it.

Moment method: first, find $\lim _{n} \mathbb{E}\left(\frac{S_{n}}{\sqrt{n}}\right)^{k}$ assuming all moments finite (otherwise, truncate); then approximate the indicator of an interval by polynomials.

Fourier transform ("characteristic function"): first, $\lim _{n} \mathbb{E} \exp \left(\mathrm{i} \lambda \frac{S_{n}}{\sqrt{n}}\right)=$ $\exp \left(-\frac{\lambda^{2}}{2}\right)$; then approximate the indicator of an interval by trigonometric sums.

Smooth test functions (Lindeberg): first, $\mathbb{E} f\left(\frac{S_{n}}{\sqrt{n}}\right)-\mathbb{E} f\left(\frac{\tilde{S}_{n}}{\sqrt{n}}\right) \rightarrow 0$ as $n \rightarrow \infty$ for $f \in C^{3}$; then approximate the indicator of an interval by such smooth functions. This will be done here.

[^0]
2b Convolution

The convolution $\nu * f$ of a probability distribution ν on \mathbb{R} and a bounded continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function $\mathbb{R} \rightarrow \mathbb{R}$ defined by ${ }^{1}$

$$
(\nu * f)(x)=\int f(x+y) \nu(\mathrm{d} y)
$$

For a discrete ν the convolution is a linear combination of shifts. In general it may be thought of as an integral combination of shifts. Probabilistically, $\left(P_{X} * f\right)(a)=\mathbb{E} f(a+X)$.

2b1 Lemma. If f is bounded and continuous ${ }^{2}$ then also $\mu * f$ is, and $\|\mu * f\| \leq$ $\|f\|$.

Here and below the norm is supremal (rather than L_{2}):

$$
\|f\|=\sup _{x \in \mathbb{R}}|f(x)|
$$

Proof. Boundedness: $|\mathbb{E} f(a+X)| \leq \sup |f(\cdot)|$. Continuity: if $a_{n} \rightarrow a$ then $f\left(a_{n}+x\right) \rightarrow f(a+x)$ pointwise, thus $\mathbb{E} f\left(a_{n}+X\right) \rightarrow \mathbb{E} f(a+X)$ by the bounded convergence theorem.

For independent X, Y we have $P_{X+Y} * f=P_{Y} * P_{X} * f$ (it means, $\left(P_{Y} *\right.$ $\left.\left(P_{X} * f\right)\right)$), since

$$
\begin{aligned}
\left(P_{X+Y} * f\right)(a)=\mathbb{E} f(a+X+Y) & =\iint f(a+x+y) P_{X}(\mathrm{~d} x) P_{Y}(\mathrm{~d} y)= \\
\int\left(\int f(a+x+y) P_{X}(\mathrm{~d} x)\right) P_{Y}(\mathrm{~d} y) & =\int\left(P_{X} * f\right)(a+y) P_{Y}(\mathrm{~d} y)=\left(P_{Y} *\left(P_{X} * f\right)\right)(a)
\end{aligned}
$$

We define the convolution of two probability distributions μ, ν by $(\mu * \nu)(B)=$ $(\mu \times \nu)(\{(x, y): x+y \in B\})$, then $P_{X+Y}=P_{X} * P_{Y}$ for independent X, Y, and we may interpret $P_{Y} * P_{X} * f$ as $\left(P_{Y} * P_{X}\right) * f$ equally well.

Convolution for discrete:

$$
\begin{gathered}
\left(P_{X} * f\right)(a)=\sum_{x} p_{X}(x) f(a+x) ; \\
p_{X+Y}(a)=\sum_{(x, y): x+y=a} p_{X}(x) p_{Y}(y)=\sum_{x} p_{X}(x) p_{Y}(a-x) .
\end{gathered}
$$

[^1]Convolution for absolutely continuous:

$$
\begin{aligned}
& \left(P_{X} * f\right)(a)=\int p_{X}(x) f(a+x) \mathrm{d} x \\
& p_{X+Y}(a)=\int p_{X}(x) p_{Y}(a-x) \mathrm{d} x
\end{aligned}
$$

Some examples:

$$
\begin{gathered}
\operatorname{Binom}(m, p) * \operatorname{Binom}(n, p)=\operatorname{Binom}(m+n, p), \quad-\operatorname{binomial} \\
\quad N\left(a_{1}, \sigma_{1}^{2}\right) * N\left(a_{2}, \sigma_{2}^{2}\right)=N\left(a_{1}+a_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right) . \quad-\operatorname{normal}
\end{gathered}
$$

The latter equality can be checked by integration, or obtained from the former by a limiting procedure, but better note that the standard two-dimensional normal distribution $N(0,1) \times N(0,1)$ has the density ${ }^{1}$

$$
\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2} \cdot \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-y^{2} / 2}=\frac{1}{2 \pi} \mathrm{e}^{-\left(x^{2}+y^{2}\right) / 2}
$$

invariant under rotations; thus, $X \cos \alpha+Y \sin \alpha \sim N(0,1)$ for all α.
2b2 Lemma. If f has a bounded and continuous derivative, then also $\mu * f$ has, and $(\mu * f)^{\prime}=\mu * f^{\prime}$.
Proof. We have a bounded continuous g satisfying $f(b)=f(a)+\int_{a}^{b} g(x) \mathrm{d} x$. Thus,

$$
\begin{aligned}
&(\mu * f)(b)= \int f(b+y) \mu(\mathrm{d} y)=\int\left(f(a+y)+\int_{a+y}^{b+y} g(x) \mathrm{d} x\right) \mu(\mathrm{d} y)= \\
&=\int f(a+y) \mu(\mathrm{d} y)+\int\left(\int_{a}^{b} g(x+y) \mathrm{d} x\right) \mu(\mathrm{d} y)= \\
&=(\mu * f)(a)+\int_{a}^{b}\left(\int g(x+y) \mu(\mathrm{d} y)\right) \mathrm{d} x=(\mu * f)(a)+\int_{a}^{b}(\mu * g)(x) \mathrm{d} x .
\end{aligned}
$$

The same holds for $f^{\prime \prime}$ and $f^{\prime \prime \prime} .^{2}$

[^2]
2c The initial distribution does not matter

Let μ, ν be two probability distributions on \mathbb{R} satisfying

$$
\int x \mu(\mathrm{~d} x)=\int x \nu(\mathrm{~d} x)=0, \quad \int x^{2} \mu(\mathrm{~d} x)=\int x^{2} \nu(\mathrm{~d} x)=1 .
$$

We consider independent random variables X_{1}, \ldots, X_{n} distributed μ, and independent random variables Y_{1}, \ldots, Y_{n} distributed ν. Note that $\mathbb{E} X_{1}=$ $\mathbb{E} Y_{1}=0$ and $\mathbb{E} X_{1}^{2}=\mathbb{E} Y_{1}^{2}=1$.

2c1 Proposition. If $f, f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}$ are continuous and bounded on \mathbb{R} then

$$
\mathbb{E} f\left(\frac{X_{1}+\cdots+X_{n}}{\sqrt{n}}\right)-\mathbb{E} f\left(\frac{Y_{1}+\cdots+Y_{n}}{\sqrt{n}}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

The proof will be given after a corollary.

2c2 Corollary.

$$
\mathbb{E} f\left(\frac{X_{1}+\cdots+X_{n}}{\sqrt{n}}\right) \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} f(x) \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x
$$

Proof of the corollary. Let Y_{1} be normal $N(0,1)$, then $Y_{1}+\cdots+Y_{n}$ is also normal, thus

$$
\mathbb{E} f\left(\frac{Y_{1}+\cdots+Y_{n}}{\sqrt{n}}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} f(x) \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x \quad \text { for all } n .
$$

We start proving the proposition.
We have $\int\left(a+b x+c x^{2}\right) \mu(\mathrm{d} x)=\int\left(a+b x+c x^{2}\right) \nu(\mathrm{d} x)$ for all $a, b, c \in \mathbb{R}$. Similarly,

$$
\int\left(a+b x+c x^{2}\right) \mu_{n}(\mathrm{~d} x)=\int\left(a+b x+c x^{2}\right) \nu_{n}(\mathrm{~d} x) ;
$$

here and below μ_{n} is the distribution of X_{1} / \sqrt{n}, and $\nu_{n}-$ of Y_{1} / \sqrt{n}; that is, $\int f\left(\frac{x}{\sqrt{n}}\right) \mu(\mathrm{d} x)=\int f \mathrm{~d} \mu_{n}$ (and the same for ν). These μ_{n}, ν_{n} are useful, since

$$
\begin{equation*}
\mathbb{E} f\left(\frac{X_{1}+\cdots+X_{n}}{\sqrt{n}}\right)=\left(\mu_{n} * \cdots * \mu_{n} * f\right)(0)=\left(\mu_{n}^{* n} * f\right)(0) \tag{2c3}
\end{equation*}
$$

and the same for Y and ν.

2c4 Lemma. There exist $\varepsilon_{n} \rightarrow 0$ such that for every f (as in 2c1) and every n,

$$
\left|\int f \mathrm{~d} \mu_{n}-\int f \mathrm{~d} \nu_{n}\right| \leq \frac{\varepsilon_{n}}{n}\left(\left\|f^{\prime \prime}\right\|+\left\|f^{\prime \prime \prime}\right\|\right) .
$$

2c5 Remark. These ε_{n} depend on μ, ν (but not f). If μ, ν have third moments then moreover

$$
\left|\int f \mathrm{~d} \mu_{n}-\int f \mathrm{~d} \nu_{n}\right| \leq \frac{1}{6 n^{1.5}}\left\|f^{\prime \prime \prime}\right\|\left(\mathbb{E}\left|X_{1}\right|^{3}+\mathbb{E}\left|Y_{1}\right|^{3}\right)
$$

Proof of the lemma. We define g by

$$
f(x)=f(0)+f^{\prime}(0) x+\frac{1}{2} f^{\prime \prime}(0) x^{2}+g(x) ;
$$

g is continuous but not bounded;

$$
|g(x)| \leq\left\|f^{\prime \prime \prime}\right\| \cdot \frac{1}{6}|x|^{3}
$$

We have $\int(f-g) \mathrm{d} \mu_{n}=\int(f-g) \mathrm{d} \nu_{n}$, therefore

$$
\left|\int f \mathrm{~d} \mu_{n}-\int f \mathrm{~d} \nu_{n}\right| \leq \int|g| \mathrm{d} \mu_{n}+\int|g| \mathrm{d} \nu_{n}
$$

which leads immediately to 2c5, but we need an argument that does not require the third moments. We note that $\left|\frac{1}{2} f^{\prime \prime}(0) x^{2}+g(x)\right| \leq \frac{1}{2}\left\|f^{\prime \prime}\right\| x^{2}$, therefore

$$
|g(x)| \leq\left\|f^{\prime \prime}\right\| \cdot|x|^{2}
$$

and split the integral: ${ }^{1}$

$$
\begin{aligned}
& \int|g| \mathrm{d} \mu_{n}=\int\left|g\left(\frac{x}{\sqrt{n}}\right)\right| \mu(\mathrm{d} x) \leq \\
& \leq \underbrace{\int_{|x| \leq n^{1 / 12}}\left\|f^{\prime \prime \prime}\right\| \cdot \frac{1}{6}\left|\frac{x}{\sqrt{n}}\right|^{3} \mu(\mathrm{~d} x)}_{O\left(n^{-7 / 6}\right)}+\underbrace{\int_{|x|>n^{1 / 12}}\left\|f^{\prime \prime}\right\| \cdot\left|\frac{x}{\sqrt{n}}\right|^{2} \mu(\mathrm{~d} x)}_{o(1 / n)} \leq \\
& \leq \frac{\varepsilon_{n}}{n}\left(\left\|f^{\prime \prime}\right\|+\left\|f^{\prime \prime \prime}\right\|\right) \text { where } \\
& \varepsilon_{n}=\max \left(\frac{1}{24 n^{1 / 6}}, \int_{|x|>n^{1 / 12}} x^{2} \mu(\mathrm{~d} x)\right)
\end{aligned}
$$

the same holds for $\int|g| \mathrm{d} \nu_{n}$.

[^3]Proof of Proposition 2c1. By (2c3) it is sufficient to prove that $\mid\left(\mu_{n}^{* n} * f\right)(0)-$ $\left(\nu_{n}^{* n} * f\right)(0) \mid \rightarrow 0$. Applying Lemma 2c4 to a shifted function $x \mapsto f(a+x)$ we get

$$
\left\|\mu_{n} * f-\nu_{n} * f\right\| \leq \frac{\varepsilon_{n}}{n}\left(\left\|f^{\prime \prime}\right\|+\left\|f^{\prime \prime \prime}\right\|\right)
$$

We turn $\mu_{n}^{* n}$ into $\nu_{n}^{* n}$ gradually:

$$
\begin{aligned}
\mu_{n}^{* n} * f-\nu_{n}^{* n} * f=\sum_{k=0}^{n-1}\left(\mu_{n}^{*(n-k)} * \nu_{n}^{* k}\right. & \left.* f-\mu_{n}^{*(n-k-1)} * \nu_{n}^{*(k+1)} * f\right)= \\
& =\sum_{k=0}^{n-1} \mu_{n}^{*(n-k-1)} *\left(\mu_{n} * f_{k}-\nu_{n} * f_{k}\right)
\end{aligned}
$$

where $f_{k}=\nu_{n}^{* k} * f$. Now, $\left\|f_{k}^{\prime \prime}\right\| \leq\left\|f^{\prime \prime}\right\|,\left\|f_{k}^{\prime \prime \prime}\right\| \leq\left\|f^{\prime \prime \prime}\right\|$, and $\| \mu_{n}^{*(n-k-1)} *$ $(\ldots)\|\leq\|(\ldots) \|$; thus,

$$
\left\|\mu_{n}^{* n} * f-\nu_{n}^{* n} * f\right\| \leq \sum_{k=0}^{n-1} \frac{\varepsilon_{n}}{n}\left(\left\|f^{\prime \prime}\right\|+\left\|f^{\prime \prime \prime}\right\|\right)=\varepsilon_{n}\left(\left\|f^{\prime \prime}\right\|+\left\|f^{\prime \prime \prime}\right\|\right) \rightarrow 0
$$

as $n \rightarrow \infty$.

2d From smooth functions to indicators

2d1 Lemma. There exists a function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ having three bounded derivatives and such that $\varphi(x)=0$ for all $x \leq-1, \varphi(x)=1$ for all $x \geq 0$.
Proof. The function $\psi(x)=\left(1-x^{2}\right)^{4}$ for $|x| \leq 1$, otherwise 0 , has two (in fact, three) continuous derivatives. We take $\varphi(x)=\frac{1}{c} \int_{-\infty}^{2 x+1} \psi(t) \mathrm{d} t$ where $c=\int_{-\infty}^{\infty} \psi(t) \mathrm{d} t$.

Let X_{1}, \ldots, X_{n} be as in 2c1, By 2c2, for every $a \in \mathbb{R}$ and $\varepsilon>0$,

$$
\mathbb{E} \varphi\left(\frac{1}{\varepsilon}\left(\frac{X_{1}+\cdots+X_{n}}{\sqrt{n}}-a\right)\right) \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \varphi\left(\frac{1}{\varepsilon}(x-a)\right) \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x
$$

as $n \rightarrow \infty$. Taking into account that

$$
\mathbb{P}\left(\frac{X_{1}+\cdots+X_{n}}{\sqrt{n}} \geq a\right) \leq \mathbb{E} \varphi\left(\frac{1}{\varepsilon}\left(\frac{X_{1}+\cdots+X_{n}}{\sqrt{n}}-a\right)\right)
$$

we get

$$
\limsup _{n \rightarrow \infty} \mathbb{P}\left(\frac{X_{1}+\cdots+X_{n}}{\sqrt{n}} \geq a\right) \leq \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \varphi\left(\frac{1}{\varepsilon}(x-a)\right) \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x
$$

The right-hand side converges to $\frac{1}{\sqrt{2 \pi}} \int_{a}^{\infty} \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x$ as $\varepsilon \rightarrow 0$. Thus, $\lim \sup \mathbb{P}\left(X_{1}+\right.$ $\left.\cdots+X_{n} \geq a \sqrt{n}\right) \leq \mathbb{P}(\xi \geq a)$ where $\xi \sim N(0,1) ;$ or equivalently, $\lim \inf \mathbb{P}\left(X_{1}+\right.$ $\left.\cdots+X_{n}<a \sqrt{n}\right) \geq \mathbb{P}(\xi<a)$. Similarly, $\lim \sup \mathbb{P}\left(-X_{1}-\cdots-X_{n} \geq\right.$ $a \sqrt{n}) \leq \mathbb{P}(\xi \geq a)$, that is, $\lim \sup \mathbb{P}\left(X_{1}+\cdots+X_{n} \leq-a \sqrt{n}\right) \leq \mathbb{P}(\xi \leq-a)$, or equivalently, $\lim \sup \mathbb{P}\left(X_{1}+\cdots+X_{n} \leq a \sqrt{n}\right) \leq \mathbb{P}(\xi \leq a)$. We have

$$
\begin{aligned}
\mathbb{P}(\xi<a) & \leq \liminf \mathbb{P}\left(X_{1}+\cdots+X_{n}<a \sqrt{n}\right) \leq \\
& \leq \lim \sup \mathbb{P}\left(X_{1}+\cdots+X_{n} \leq a \sqrt{n}\right) \leq \mathbb{P}(\xi \leq a)=\mathbb{P}(\xi<a),
\end{aligned}
$$

therefore

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{1}+\cdots+X_{n}<a \sqrt{n}\right)=\mathbb{P}(\xi<a) .
$$

[^0]: ${ }^{1}$ [KS, Sect. 10.1, Th. 10.5]; [D, Sect. 2.4, Theorem (4.1)].

[^1]: ${ }^{1}$ The definition generalizes easily to finite signed measures and bounded Borel functions, but we do not need it.
 ${ }^{2}$ Well, it is required by the definition above...

[^2]: ${ }^{1}$ In addition, integrating it in polar coordinates we get $\frac{1}{2 \pi}\left(\int_{0}^{\infty} \mathrm{e}^{-r^{2} / 2} r \mathrm{~d} r\right)\left(\int_{0}^{2 \pi} \mathrm{~d} \varphi\right)=1$, which shows that $1 / \sqrt{2 \pi}$ is the right coefficient for the density of $N(0,1)$. (See also Proof of 1a20.)
 ${ }^{2}$ And so on, of course, but we need only three derivatives.

[^3]: ${ }^{1}$ The exponent $1 / 12$ may be replaced with any other number between 0 and $1 / 6$.

