Part A: Independence

Contents

1 Long independent sequences 1
1a Independent events 1
1b Measure-theoretic foundations 10
1c Independent random variables 18

1 Long independent sequences

1a Independent events

1a1 Reminder. Fair coin: finite probability space $\Omega=\Omega_{n}=\{0,1\}^{n}$ with $p(\omega)=p_{n}(\omega)=2^{-n}$ for all $\omega \in \Omega$; the number of "heads" - random variable $H=H_{n}: \Omega_{n} \rightarrow \mathbb{R}, H(\omega)=a_{1}+\cdots+a_{n}$ for $\omega=\left(a_{1}, \ldots, a_{n}\right) \in \Omega$; its distribution

$$
\mathbb{P}(H=k)=P_{n}(\{\omega: H(\omega)=k\})=\sum_{\omega: H(\omega)=k} p(\omega) .
$$

1a2 Reminder. Binomial distribution (the fair case):

$$
\mathbb{P}(H=k)=2^{-n}\binom{n}{k}, \quad\binom{n}{k}=\frac{n!}{k!(n-k)!} ; \quad H_{n} \sim \operatorname{Binom}(n, 0.5) .
$$

1a3 Reminder. Random signs: random variables $X_{1}, \ldots, X_{n}: \Omega_{n} \rightarrow \mathbb{R}$, $X_{k}(\omega)=2 a_{k}-1$ for $\omega=\left(a_{1}, \ldots, a_{n}\right) \in \Omega$.

Simple random walk: random variables $S_{0}, \ldots, S_{n}: \Omega \rightarrow \mathbb{R}, S_{k}=X_{1}+$ $\cdots+X_{k}$.

1a4 Remark.

$$
\begin{gathered}
S_{n}=2 H_{n}-n \\
\mathbb{P}\left(S_{n}=k\right)=\mathbb{P}\left(H_{n}=\frac{n+k}{2}\right)=\frac{1}{2^{n}} \frac{n!}{\left(\frac{n-k}{2}\right)!\left(\frac{n+k}{2}\right)!} \quad \text { for } k=-n,-n+2, \ldots, n .
\end{gathered}
$$

1a5 Proposition. ${ }^{1}$ For every $\varepsilon>0$,

$$
\mathbb{P}\left(\frac{1}{n}\left|S_{n}\right| \leq \varepsilon\right) \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

Thus, $\mathbb{P}\left(\left|\frac{1}{n} H_{n}-\frac{1}{2}\right| \leq \varepsilon\right) \rightarrow 1$ as $n \rightarrow \infty$. The frequency is close to the probability...

This is a special case of the Weak Law of Large Numbers, see 1c1, See also 1 1a24.

How to prove 1a5? Cumbersome sums of binomial coefficients? No, this is the old way. The newer way: via Pythagorean theorem in the (2^{n}-dimensional) Euclidean space of random variables!

The Euclidean space $L_{2}(\Omega)=L_{2}\left(\Omega_{n}, P_{n}\right)$ consists of all functions X : $\Omega \rightarrow \mathbb{R}$ and is endowed with the norm and scalar product

$$
\begin{gather*}
\|X\|=\sqrt{\sum_{\omega \in \Omega}|X(\omega)|^{2} p(\omega)}=\sqrt{\langle X, X\rangle}, \tag{1a6}\\
\langle X, Y\rangle=\sum_{\omega \in \Omega} X(\omega) Y(\omega) p(\omega)
\end{gather*}
$$

Its dimension is equal to the number of points in Ω (think, why; any restriction on $p(\cdot)$?).

Recall the expectation $\mathbb{E} X$ of a random variable X :

$$
\begin{equation*}
\mathbb{E} X=\sum_{\omega \in \Omega} X(\omega) p(\omega)=\langle X, \mathbb{1}\rangle, \tag{1a7}
\end{equation*}
$$

an important linear functional on $L_{2}(\Omega)$. Note that

$$
\begin{align*}
\|X\|^{2} & =\mathbb{E} X^{2}, \quad\left(\text { that is, } \mathbb{E}\left(X^{2}\right)\right) \\
\langle X, Y\rangle & =\mathbb{E} X Y . \quad \text { (that is, } \mathbb{E}(X Y)) \tag{1a8}
\end{align*}
$$

1a9 Exercise. The random signs X_{1}, \ldots, X_{n} are orthonormal, that is,

$$
\mathbb{E} X_{i} X_{j}= \begin{cases}1 & \text { for } i=j \\ 0 & \text { otherwise }\end{cases}
$$

Prove it. Are they a basis?
1a10 Exercise. $\left\|S_{k}\right\|=\sqrt{k}$ for $k=0,1, \ldots, n$.

Prove it.

[^0]1a11 Exercise. $\mathbb{P}(|X| \geq \varepsilon) \leq\left(\frac{1}{\varepsilon}\|X\|\right)^{2}$ for all $\varepsilon>0$ and $X \in L_{2}(\Omega)$.
Prove it.
1a12 Exercise. Prove Proposition 1 a5.
Here is the normal approximation to the binomial distribution.
1a13 Proposition. ${ }^{1}$

$$
\mathbb{P}\left(S_{n}=k\right)=\frac{2}{\sqrt{2 \pi n}} \exp \left(-\frac{k^{2}}{2 n}\right) \cdot\left(1+\alpha_{n}\left(\frac{k}{\sqrt{n}}\right)\right) \quad \text { for } k+n \text { even }
$$

where $\alpha_{n}(\cdot) \rightarrow 0$ uniformly on bounded intervals.
(Clearly, $\mathbb{P}\left(S_{n}=k\right)$ vanishes if $n+k$ is odd.)
1a14 Remark. The convergence $\alpha_{n}(\cdot) \rightarrow 0$ cannot be uniform on \mathbb{R}, since $\alpha_{n}\left(\sqrt{n}+\frac{1}{\sqrt{n}}\right)=-1$ (think, why). What about $\alpha_{n}(\sqrt{n})$? Well, it is $-1+$ $\frac{1}{2} \sqrt{2 \pi n} \mathrm{e}^{n / 2} 2^{-n} \rightarrow-1$ (think, why).

How to prove Prop. 1a13? Some calculations with binomial coefficients (but not their sums...) are needed.

1a15 Reminder.

$n!=n^{n} \mathrm{e}^{-n} \sqrt{2 \pi n} \beta(n), \quad \beta(n) \rightarrow 1 ; \quad \beta(n)=1+O(1 / n) . \quad($ Stirling $)$
Thus,

$$
\begin{equation*}
\ln n!=n \ln n-n+\frac{1}{2} \ln n+\frac{1}{2} \ln (2 \pi)+\underbrace{\ln \beta(n)}_{O(1 / n)} . \tag{1a16}
\end{equation*}
$$

1a17 Exercise.

$$
\begin{gathered}
\ln \mathbb{P}\left(S_{n}=c n\right)=-\frac{1}{2} \ln n-\frac{n}{2}((1-c) \ln (1-c)+(1+c) \ln (1+c))- \\
-\frac{1}{2} \ln \left(1-c^{2}\right)+\ln 2-\frac{1}{2} \ln (2 \pi)+\ln \beta(n)-\ln \beta\left(\frac{n(1-c)}{2}\right)-\ln \beta\left(\frac{n(1+c)}{2}\right)
\end{gathered}
$$

whenever $c n \in\{-n,-n+2, \ldots, n\}$.
Prove it. (Combine $1 \mathrm{a4}$ with 1 a15 and enjoy many cancellations!)

[^1]We introduce a function $\gamma:[-1,1] \rightarrow \mathbb{R}$ by

$$
\begin{gather*}
\gamma(c)=\frac{1}{2}(1+c) \ln (1+c)+\frac{1}{2}(1-c) \ln (1-c) \quad \text { for } c \in(-1,1), \tag{1a18}\\
\gamma(-1)=\gamma(+1)=\ln 2 .
\end{gather*}
$$

Now 1 1a17 becomes

$$
\ln \mathbb{P}\left(S_{n}=c n\right)=-n \gamma(c)-\frac{1}{2} \ln n-\frac{1}{2} \ln \left(1-c^{2}\right)+\ln 2-\frac{1}{2} \ln (2 \pi)+o(1),
$$

if $n(1 \pm c) \gg 1$; moreover,
(1a19) $\mathbb{P}\left(S_{n}=c n\right)=\frac{2}{\sqrt{n}} \frac{1}{\sqrt{1-c^{2}}} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-n \gamma(c)} \cdot\left(1+O\left(\frac{1}{n(1-|c|)}\right)\right)$.
A numerical example: $n=200, c=-0.9, \mathbb{P}\left(S_{200}=-180\right)=$? Really $1.397 \cdot 10^{-44}$; approximately (as above) $1.409 \cdot 10^{-44}$; by normal approximation: $3.7 \cdot 10^{-37}$ (oops...).

About the function γ :

$$
\begin{gathered}
\gamma(-c)=\gamma(c) ; \quad \gamma^{\prime}(0)=0 \\
\gamma^{\prime \prime}(0)=1 \quad \text { since } \quad(x \ln x)^{\prime}=1+\ln x, \quad(x \ln x)^{\prime \prime}=\frac{1}{x} \\
\gamma^{\prime \prime \prime}(0)=0 ; \quad \text { thus } \quad \gamma(c)=\frac{1}{2} c^{2}+O\left(c^{4}\right) \text { as } c \rightarrow 0 .
\end{gathered}
$$

Proof of 1 a13

$$
\begin{aligned}
& \left|\ln \mathbb{P}\left(S_{n}=k\right)-\ln \left(\frac{2}{\sqrt{2 \pi n}} \exp \left(-\frac{k^{2}}{2 n}\right)\right)\right| \leq \quad(k=c n) \\
& \quad \leq\left|\ln \mathbb{P}\left(S_{n}=c n\right)-\ln \left(\frac{2}{\sqrt{n}} \frac{1}{\sqrt{1-c^{2}}} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-n \gamma(c)}\right)\right|+ \\
& +\left|\ln \left(\frac{2}{\sqrt{n}} \frac{1}{\sqrt{1-c^{2}}} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-n \gamma(c)}\right)-\ln \left(\frac{2}{\sqrt{2 \pi n}} \mathrm{e}^{-n c^{2} / 2}\right)\right| \leq \\
& \quad \leq O\left(\frac{1}{n(1-|c|)}\right)+\underbrace{\ln \frac{1}{\sqrt{1-c^{2}}}}_{O\left(c^{2}\right)}+\underbrace{\left|n \gamma(c)-n c^{2} / 2\right|}_{O\left(n c^{4}\right)} .
\end{aligned}
$$

Claim:

$$
O\left(\frac{1}{n(1-|c|)}\right)+O\left(c^{2}\right)+O\left(n c^{4}\right)=O\left(n c^{4}+\frac{1}{n}\right) .
$$

Proof of the claim. If $n c^{4}+\frac{1}{n} \leq \delta \leq \frac{1}{4}$ then: $n c^{4} \leq \delta ; \frac{1}{n} \leq \delta ; c^{4} \leq \frac{1}{n} \delta \leq \delta^{2}$; $c^{2} \leq \delta ;|c| \leq \frac{1}{2} ; \frac{1}{n(1-|c|)} \leq \frac{2}{n} \leq 2 \delta$.

Thus,

$$
\mathbb{P}\left(S_{n}=k\right)=\frac{2}{\sqrt{2 \pi n}} \mathrm{e}^{-\frac{k^{2}}{2 n}} \cdot(1+\underbrace{O\left(\frac{k^{4}}{n^{3}}+\frac{1}{n}\right)}_{\alpha_{n}(k / \sqrt{n})}) .
$$

If $|k|=O(\sqrt{n})$ then $\frac{k^{4}}{n^{3}}=O\left(\frac{n^{2}}{n^{3}}\right)=O\left(\frac{1}{n}\right)$. Thus, $\sup _{[a, b]}|\alpha(\cdot)|=O(1 / n)$ for all a, b.

End of proof of 1a13

Proposition 1 a13 is a special case of the Local Limit Theorem. In contrast, the next result is global.

1a20 Theorem. ${ }^{1}$

$$
\mathbb{P}\left(a \sqrt{n}<S_{n}<b \sqrt{n}\right) \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{a}^{b} \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x \quad \text { as } n \rightarrow \infty
$$

whenever $-\infty \leq a \leq b \leq \infty$.
This is the De Moivre-Laplace theorem, a special case of the Central Limit Theorem.

Proof of 1 a20

First, assume that $-\infty<a<b<\infty$. Then:

$$
\begin{gathered}
\mathbb{P}\left(a \sqrt{n}<S_{n}<b \sqrt{n}\right)=\sum_{k \in(a \sqrt{n}, b \sqrt{n}), k+n \text { even }} \mathbb{P}\left(S_{n}=k\right) ; \\
\text { let } \varphi(x)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2} ; \\
\mathbb{P}\left(S_{n}=k\right)=\frac{2}{\sqrt{n}} \varphi\left(\frac{k}{\sqrt{n}}\right)\left(1+\alpha_{n}\left(\frac{k}{\sqrt{n}}\right)\right) ;
\end{gathered}
$$

[^2]\[

$$
\begin{gathered}
\frac{2}{\sqrt{n}} \varphi\left(\frac{k}{\sqrt{n}}\right)\left(1+\inf _{[a, b]} \alpha_{n}\right) \leq \mathbb{P}\left(S_{n}=k\right) \leq \frac{2}{\sqrt{n}} \varphi\left(\frac{k}{\sqrt{n}}\right)\left(1+\sup _{[a, b]} \alpha_{n}\right) \\
\underbrace{\left(1+\inf _{[a, b]} \alpha_{n}\right)}_{\rightarrow 1} \sum_{k \in(a \sqrt{n}, b \sqrt{n}), k+n \text { even }} \frac{2}{\sqrt{n}} \varphi\left(\frac{k}{\sqrt{n}}\right) \leq \mathbb{P}\left(a \sqrt{n}<S_{n}<b \sqrt{n}\right) \leq \\
\leq \underbrace{\left(1+\sup _{[a, b]} \alpha_{n}\right)}_{\rightarrow 1} \sum_{k \in(a \sqrt{n}, b \sqrt{n}), k+n \text { even }} \frac{2}{\sqrt{n}} \varphi\left(\frac{k}{\sqrt{n}}\right) .
\end{gathered}
$$
\]

It remains to prove that the sum converges to the integral. We divide $[a, b]$ into intervals of length $2 / \sqrt{n}$ and get an integral sum; only the first and last terms differ, but contribute only $O(1 / \sqrt{n})$ anyway.

The case $-\infty<a<b<\infty$ is done. The case $a=b$ is trivial. It is sufficient (think, why) to consider the case $-\infty<a<b=\infty$. We could do it via the equality $\int_{-\infty}^{\infty} \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x=\sqrt{2 \pi}$ well-known in analysis, but it is instructive to do it differently, and get the integral equality as a by-product. ${ }^{1}$ (The argument introduced below will be reused in the proof of 1a21.)

We note that

$$
\liminf _{n \rightarrow \infty} \mathbb{P}\left(a \sqrt{n}<S_{n}\right) \geq \frac{1}{\sqrt{2 \pi}} \int_{a}^{\infty} \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x
$$

since it exceeds $\liminf _{n \rightarrow \infty} \mathbb{P}\left(a \sqrt{n}<S_{n}<b \sqrt{n}\right)=\frac{1}{\sqrt{2 \pi}} \int_{a}^{b} \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x$ for every $b \in(a, \infty)$. It remains to prove that

$$
\limsup _{n \rightarrow \infty} \mathbb{P}\left(a \sqrt{n}<S_{n}\right) \leq \frac{1}{\sqrt{2 \pi}} \int_{a}^{\infty} \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x
$$

We have

$$
\mathbb{P}\left(a \sqrt{n}<S_{n}\right)=\mathbb{P}\left(S_{n}=k_{n}\right)+\mathbb{P}\left(S_{n}=k_{n}+2\right)+\ldots
$$

where $k_{n}=\min (\mathbb{Z} \cap(a \sqrt{n}, \infty)) ;$ and

$$
\begin{aligned}
& \mathbb{P}\left(S_{n}=k+2\right)=2^{-n} \frac{n!}{\left(\frac{n-k-2}{2}\right)!\left(\frac{n+k+2}{2}\right)!}=\frac{n-k}{n+k+2} \mathbb{P}\left(S_{n}=k\right) \leq \\
& \leq \frac{1-\frac{k}{n}}{1+\frac{k}{n}} \mathbb{P}\left(S_{n}=k\right) \leq \frac{1-a / \sqrt{n}}{1+a / \sqrt{n}} \mathbb{P}\left(S_{n}=k\right)
\end{aligned}
$$

[^3]for $k=k_{n}, k_{n}+2, \ldots$; therefore
$\frac{\mathbb{P}\left(S_{n}>a \sqrt{n}\right)}{\mathbb{P}\left(S_{n}=k_{n}\right)} \leq 1+\frac{1-a / \sqrt{n}}{1+a / \sqrt{n}}+\left(\frac{1-a / \sqrt{n}}{1+a / \sqrt{n}}\right)^{2}+\cdots=\frac{1+a / \sqrt{n}}{2 a / \sqrt{n}}=\frac{\sqrt{n}}{2 a}+\frac{1}{2}$,
and we get
$$
\limsup _{n \rightarrow \infty} \mathbb{P}\left(a \sqrt{n}<S_{n}\right) \leq \limsup _{n \rightarrow \infty} \frac{\sqrt{n}}{2 a} \mathbb{P}\left(S_{n}=k_{n}\right)=\frac{1}{a} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-a^{2} / 2}
$$
by 1a13, since $k_{n} / \sqrt{n} \rightarrow a$. It follows that
\[

$$
\begin{gathered}
\limsup _{n \rightarrow \infty} \mathbb{P}\left(a \sqrt{n}<S_{n}\right) \leq \limsup _{n \rightarrow \infty} \mathbb{P}\left(a \sqrt{n}<S_{n}<b \sqrt{n}\right)+\limsup _{n \rightarrow \infty} \mathbb{P}\left(b \sqrt{n} \leq S_{n}\right) \leq \\
\leq \frac{1}{\sqrt{2 \pi}} \int_{a}^{b} \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x+\frac{1}{b} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-b^{2} / 2}
\end{gathered}
$$
\]

for every $b \in(a, \infty)$; we take $b \rightarrow \infty$.

$$
\text { End of proof of } 1 \text { a20 }
$$

1a21 Proposition. ${ }^{1}$ For every $c \in(0,1)$,

$$
\frac{1}{n} \ln \mathbb{P}\left(S_{n}>c n\right) \rightarrow-\gamma(c) \quad \text { as } n \rightarrow \infty
$$

where $\gamma(c)=\frac{1}{2}(1+c) \ln (1+c)+\frac{1}{2}(1-c) \ln (1-c)$.
This is a special case of the Large Deviations Principle. ${ }^{2}$
Proposition 1 a21 suggests the approximation (for large c and n)

$$
\mathbb{P}\left(S_{n}>c\right) \approx \mathrm{e}^{-n \gamma(c / n)}=\frac{n^{n}}{\sqrt{(n-c)^{n-c}(n+c)^{n+c}}} .
$$

However, Theorem $1 a 20$ suggests another approximation,

$$
\mathbb{P}\left(S_{n}>c\right) \approx \frac{1}{\sqrt{2 \pi}} \int_{c / \sqrt{n}}^{\infty} \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x \approx \exp \left(-\frac{c^{2}}{2 n}\right)
$$

A paradox! What do you think? A clue: for $n=200$,

c	0	30	60	90	120	150	180
$2_{n}^{-n}\binom{n}{(n+c) / 2}$	$6 \cdot 10^{-2}$	$6 \cdot 10^{-3}$	$6 \cdot 10^{-6}$	$5 \cdot 10^{-11}$	$1 \cdot 10^{-18}$	$3 \cdot 10^{-29}$	$1 \cdot 10^{-44}$
$\frac{2}{\sqrt{2 \pi n}} \exp \left(-\frac{c^{2}}{2 n}\right)$	$6 \cdot 10^{-2}$	$6 \cdot 10^{-3}$	$7 \cdot 10^{-6}$	$9 \cdot 10^{-11}$	$1 \cdot 10^{-17}$	$2 \cdot 10^{-26}$	$4 \cdot 10^{-37}$
$\exp \left(-n \gamma\left(\frac{c}{n}\right)\right)$	1	$1 \cdot 10^{-1}$	$1 \cdot 10^{-4}$	$8 \cdot 10^{-10}$	$2 \cdot 10^{-17}$	$3 \cdot 10^{-28}$	$1 \cdot 10^{-43}$

[^4]
Proof of 1 a21

We reuse the argument of the last part of the proof of 1a20, $\mathbb{P}\left(S_{n}>\right.$ $c n)=\mathbb{P}\left(S_{n}=k_{n}\right)+\mathbb{P}\left(S_{n}=k_{n}+2\right)+\ldots$ where $k_{n}=\min (\mathbb{Z} \cap(c n, \infty)) ;$

$$
\mathbb{P}\left(S_{n}=k+2\right) \leq \frac{1-c}{1+c} \mathbb{P}\left(S_{n}=k\right)
$$

for $k=k_{n}, k_{n}+2, \ldots$; therefore

$$
1 \leq \frac{\mathbb{P}\left(S_{n}>c n\right)}{\mathbb{P}\left(S_{n}=k_{n}\right)} \leq 1+\frac{1-c}{1+c}+\left(\frac{1-c}{1+c}\right)^{2}+\cdots=\frac{1+c}{2 c}
$$

and we get $\frac{1}{n} \ln \mathbb{P}\left(S_{n}>c n\right)-\frac{1}{n} \ln \mathbb{P}\left(S_{n}=k_{n}\right) \rightarrow 0$. By (1a19),

$$
\begin{aligned}
\frac{1}{n} \ln \mathbb{P}\left(S_{n}=k_{n}\right)=\frac{1}{n} \ln \left(\frac{2}{\sqrt{n}} \frac{1}{\sqrt{1-c^{2}}} \frac{1}{\sqrt{2 \pi}}\right) & \left.-\gamma\left(\frac{k_{n}}{n}\right)+\frac{1}{n} O\left(\frac{1}{n(1-|c|)}\right)\right)= \\
& =-\gamma\left(\frac{k_{n}}{n}\right)+o(1) \rightarrow-\gamma(c)
\end{aligned}
$$

since $\frac{k_{n}}{n} \rightarrow c$.
End of proof of 1 1a21

1a22 Reminder. Unfair coin: The same Ω and H as in 1a1, but different probabilities
$p_{n}\left(a_{1}, \ldots, a_{n}\right)=p^{a_{1}+\cdots+a_{n}}(1-p)^{n-\left(a_{1}+\cdots+a_{n}\right)}=\prod_{k=1}^{n} p_{1}\left(a_{k}\right) \quad$ for $a_{1}, \ldots, a_{n} \in\{0,1\}$.
It is convenient to write $H=H_{n, p}$; this function on Ω does not depend on p, but its distribution depends on p.

1a23 Reminder. Binomial distribution:

$$
\mathbb{P}\left(H_{n, p}=k\right)=\binom{n}{k} p^{k}(1-p)^{n-k} ; \quad H_{n} \sim \operatorname{Binom}(n, p) .
$$

1a24 Proposition. ${ }^{1}$ For every $p \in[0,1]$ and $\varepsilon>0$,

$$
\mathbb{P}\left(\left|\frac{1}{n} H_{n, p}-p\right| \leq \varepsilon\right) \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

[^5]This is more general than (the corollary of) 1a5, but still, a special case of the Weak Law of Large Numbers, see 1 Cl .

It is easy to prove 1 a24 similarly to 1 a5, but anyway, 1 a24 will follow from [1c1.

Rather unexpectedly, 1 a 24 can be used for proving Weierstrass's approximation theorem: polynomials are dense in $C[0,1] .^{1}$

Here is the idea of the probabilistic proof of Weierstrass's approximation theorem. Consider the distribution $\mu_{n, p}$ of $\frac{1}{n} H_{n, p}$,

$$
\mu_{n, p}=\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k} \delta_{k / n} ;
$$

it belongs to the $(n+1)$-dimensional linear space of signed measures on $\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, 1\right\}$, and the vector-function $p \mapsto \mu_{n, p}$ is polynomial (of degree n). By 1a24, $\mu_{n, p}$ is close to δ_{p} (the unit mass at p). Thus, the map $p \mapsto \delta_{p}$ is approximately polynomial! Now, given a continuous function $f:[0,1] \rightarrow \mathbb{R}$ we have $f(p)=\int f \mathrm{~d} \delta_{p} \approx \int f \mathrm{~d} \mu_{n, p}=P_{n}(p), P_{n}$ being a polynomial. Namely,

$$
\begin{aligned}
\mid f(p)-\mathbb{E} f(& \left.\frac{1}{n} H_{n, p}\right) \left.|\leq \mathbb{E}| f\left(\frac{1}{n} H_{n, p}\right)-f(p) \right\rvert\, \leq \\
& \leq \max _{[p-\varepsilon, p+\varepsilon]}|f(\cdot)-f(p)|+\mathbb{P}\left(\left|\frac{1}{n} H_{n, p}-p\right|>\varepsilon\right) \cdot 2 \max _{[0,1]}|f(\cdot)| ;
\end{aligned}
$$

the former summand is made small using uniform continuity of f, the latter summand - using $\mathbb{E}\left|\frac{1}{n} H_{n, p}-p\right|^{2}=\frac{p(1-p)}{n} \leq \frac{1}{4 n}$.

1a25 Proposition. ${ }^{2}$ For every $\lambda \in(0, \infty)$ and $k=0,1,2, \ldots$

$$
\mathbb{P}\left(H_{n, \lambda / n}=k\right) \rightarrow \frac{\lambda^{k}}{k!} \mathrm{e}^{-\lambda} \quad \text { as } n \rightarrow \infty .
$$

This is the Poisson Limit Theorem.
Proof.

$$
\begin{aligned}
\mathbb{P}\left(H_{n, \lambda / n}=k\right) & =\frac{n!}{k!(n-k)!}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k}= \\
& =\underbrace{\frac{n}{n} \frac{n-1}{n} \ldots \frac{n-k+1}{n}}_{\rightarrow 1} \frac{\lambda^{k}}{k!} \underbrace{\left(1-\frac{\lambda}{n}\right)^{n}}_{\rightarrow \mathrm{e}^{-\lambda}} \underbrace{\left(1-\frac{\lambda}{n}\right)^{-k}}_{\rightarrow 1} \rightarrow \frac{\lambda^{k}}{k!} \mathrm{e}^{-\lambda} .
\end{aligned}
$$

[^6]
1b Measure-theoretic foundations

Some measure theory

1b1 Reminder. An algebra of sets (on X): a set \mathcal{E} of subsets of X such that

$$
\emptyset, X \in \mathcal{E} ; \quad \forall E \in \mathcal{E} \quad X \backslash E \in \mathcal{E} ; \quad \forall E, F \in \mathcal{E} \quad E \cap F, E \cup F \in \mathcal{E} .
$$

A σ-algebra of sets (on X): an algebra \mathcal{A} such that

$$
\forall A_{1}, A_{2}, \cdots \in \mathcal{A} \bigcap_{n} A_{n}, \bigcup_{n} A_{n} \in \mathcal{A}
$$

A measurable space: (X, \mathcal{A}).
A probability measure (on \mathcal{A}, or on (X, \mathcal{A})): a map $\mu: \mathcal{A} \rightarrow[0,1]$ such that $\mu(X)=1$ and

$$
\mu\left(\bigcup_{n} A_{n}\right)=\sum_{n} \mu\left(A_{n}\right)
$$

whenever $A_{1}, A_{2}, \cdots \in \mathcal{A}$ are pairwise disjoint. (In such case we may write $\uplus_{n} A_{n}$.)

A probability space: (X, \mathcal{A}, μ).
1b2 Reminder. A box (in \mathbb{R}^{d}): a set of the form $I_{1} \times \cdots \times I_{d}$ where $I_{1}, \ldots, I_{d} \subset \mathbb{R}$ are bounded intervals (open, closed, or neither).

An elementary set (in \mathbb{R}^{d}): a finite union of boxes.
The elementary algebra (on \mathbb{R}^{d}): the algebra generated by all boxes; consists of all elementary sets and their complements ("co-elementary sets").

The Borel σ-algebra $\mathcal{B}\left(\mathbb{R}^{d}\right)$: the σ-algebra generated by all boxes, or equivalently, by all open sets.

1b3 Theorem. ${ }^{1}$ (Hahn-Kolmogorov) Let \mathcal{E} be an algebra on $X, \mathcal{A}=\sigma(\mathcal{E})$ the σ-algebra generated by \mathcal{E}, and $\mu_{0}: \mathcal{E} \rightarrow[0,1]$ a map. Then the following are equivalent:
(a) there exists one and only one probability measure μ on \mathcal{A} such that $\left.\mu\right|_{\mathcal{E}}=\mu_{0} ;$
(b) there exists at least one such μ;
(c) $\mu_{0}(X)=1$, and $\mu_{0}\left(\cup_{n} E_{n}\right)=\sum_{n} \mu_{0}\left(E_{n}\right)$ whenever $E_{1}, E_{2}, \cdots \in \mathcal{E}$ are pairwise disjoint and $\cup_{n} E_{n} \in \mathcal{E}$.

[^7]Clearly, $(\mathrm{a}) \Longrightarrow(\mathrm{b}) \Longrightarrow(\mathrm{c})$. In order to prove ${ }^{1}(\mathrm{c}) \Longrightarrow(\mathrm{a})$ we assume (c); define the outer measure

$$
\mu^{*}(Z)=\inf \left\{\sum_{n} \mu_{0}\left(E_{n}\right): E_{1}, E_{2}, \cdots \in \mathcal{E}, \cup_{n} E_{n} \supset Z\right\}
$$

for arbitrary $Z \subset X$; and call a set $A \subset X \mu$-measurable if

$$
\inf _{E \in \mathcal{E}} \mu^{*}(A \triangle E)=0
$$

1b4 Exercise. $\mu^{*}\left(\cup_{n} Z_{n}\right) \leq \sum_{n} \mu^{*}\left(Z_{n}\right)$ for arbitrary $Z_{1}, Z_{2}, \cdots \subset X$.
Prove it. (Do you need (c)?)
1b5 Exercise. $\mu^{*}(E)=\mu_{0}(E)$ for all $E \in \mathcal{E}$.
Prove it. (Do you need (c)?)
1b6 Exercise. μ-measurable sets are a σ-algebra.
Prove it.
Taking into account that all sets of \mathcal{E} are μ-measurable we conclude that all sets of $\mathcal{A}=\sigma(\mathcal{E})$ are μ-measurable.

We define μ as the restriction of μ^{*} to \mathcal{A}.
1b7 Exercise. $\left|\mu^{*}(Z)-\mu^{*}(W)\right| \leq \mu^{*}(Z \triangle W)$ for arbitrary $Z, W \subset X$.
Prove it.
1b8 Exercise. $\mu^{*}(A \cup B)+\mu^{*}(A \cap B)=\mu^{*}(A)+\mu^{*}(B)$ for all μ-measurable A, B.

Prove it.
Hint: $\mu_{0}(E \cup F)+\mu_{0}(E \cap F)=\mu_{0}(E)+\mu_{0}(F)$ for all $E, F \in \mathcal{E}$.
Thus, $\mu(A \uplus B)=\mu(A)+\mu(B)$.
1b9 Exercise. $\mu^{*}\left(\uplus_{n} A_{n}\right)=\sum_{n} \mu^{*}\left(A_{n}\right)$ for μ-measurable A_{n}.
Prove it.
Hint: $\mu^{*}\left(\uplus_{n=1}^{\infty} A_{n}\right)-\mu^{*}\left(\uplus_{n=1}^{N} A_{n}\right) \leq \mu^{*}\left(\uplus_{n=N+1}^{\infty} A_{n}\right)$.
Thus, μ is a probability measure, which completes the proof of existence.
Here is uniqueness. Let μ_{1} be another such measure. Then $\mu_{1}(A) \leq$ $\mu^{*}(A)=\mu(A)$ for all $A \in \mathcal{A}$ (since $A \subset \cup_{n} E_{n}$ implies $\mu_{1}(A) \leq \sum_{n} \mu_{1}\left(E_{n}\right)=$ $\left.\sum_{n} \mu\left(E_{n}\right)\right)$. The same holds for $X \backslash A$, thus, $\mu_{1}(A)=1-\mu_{1}(X \backslash A) \geq$ $1-\mu(X \backslash A)=\mu(A)$ and finally $\mu_{1}(A)=\mu(A)$.

Theorem 1b3 is proved.

[^8]$1 b 10$ Corollary. If two probability measures are equal on an algebra \mathcal{E} then they are equal on the generated σ-algebra $\sigma(\mathcal{E})$.

1 b 11 Corollary. A probability measure on $\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)$ is uniquely determined by its values on boxes. The same holds for closed boxes, and for open boxes.

1b12 Exercise. A probability measure μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is uniquely determined by its cumulative distribution function (CDF)

$$
F_{\mu}(x)=\mu((-\infty, x]) \quad \text { for } x \in \mathbb{R} .
$$

Prove it.
1b13 Exercise. (Lebesgue-Stieltjes measure) Let $F: \mathbb{R} \rightarrow[0,1]$ be an increasing function, $F(-\infty)=0, F(+\infty)=1$. Then
(a) there exists one and only one additive function μ_{0} on the elementary algebra \mathcal{E} (of \mathbb{R}) such that

$$
\begin{gathered}
\mu_{0}((a, b))=F(b-)-F(a+) \quad \text { for }-\infty<a<b<\infty \\
\mu_{0}(\{a\})=F(a+)-F(a-) \quad \text { for }-\infty<a<\infty
\end{gathered}
$$

(b) for every $E \in \mathcal{E}$ and $\varepsilon>0$ there exists a compact elementary set $K \subset E$ such that $\mu_{0}(K) \geq \mu_{0}(E)-\varepsilon$;
(c) μ_{0} satisfies Condition 1b3(c).

Prove it.
1b14 Exercise. The correspondence $\mu \longleftrightarrow F_{\mu}$ is a bijective correspondence between all probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and all increasing functions $F: \mathbb{R} \rightarrow[0,1]$ such that $F(-\infty)=0, F(+\infty)=1$ and $\forall x \in \mathbb{R} \quad F(x+)=$ $F(x)$.

Prove it.
In fact, 1 b 12 generalizes readily to \mathbb{R}^{d},

$$
F_{\mu}\left(x_{1}, \ldots, x_{d}\right)=\mu\left(\left(-\infty, x_{1}\right] \times \cdots \times\left(-\infty, x_{d}\right]\right)
$$

unfortunately, 1 1b14 does not.
Discrete measures:

$$
\mu=\sum_{k} p_{k} \delta_{x_{k}} ; \quad \mu(B)=\sum_{k: x_{k} \in B} p_{k}=\sum_{x \in B} p(x) ; \quad \int f \mathrm{~d} \mu=\sum f\left(x_{k}\right) p_{k}
$$

Absolutely continuous measures:

$$
\mu=\int p(x) \delta_{x} \mathrm{~d} x ; \quad \mu(B)=\int_{B} p(x) \mathrm{d} x ; \quad \int f \mathrm{~d} \mu=\int f(x) p(x) \mathrm{d} x .
$$

Singular measures: nonatomic but concentrated on a set of zero Lebesgue measure.

The product of two measurable spaces $\left(X_{1}, \mathcal{A}_{1}\right)$ and $\left(X_{2}, \mathcal{A}_{2}\right)$ is defined to be $\left(X_{1} \times X_{2}, \mathcal{A}_{1} \times \mathcal{A}_{2}\right)$ where $\mathcal{A}_{1} \times \mathcal{A}_{2}$ is the σ-algebra generated by $A_{1} \times A_{2}$ for all $A_{1} \in \mathcal{A}_{1}, A_{2} \in \mathcal{A}_{2}$.
1 b 15 Exercise. (a) A probability measure μ on $\left(X_{1} \times X_{2}, \mathcal{A}_{1} \times \mathcal{A}_{2}\right)$ is uniquely determined by $\mu\left(A_{1} \times A_{2}\right)$ for all $A_{1} \in \mathcal{A}_{1}, A_{2} \in \mathcal{A}_{2}$.
(b) The same holds for $\mu\left(E_{1} \times E_{2}\right)$ for all $E_{1} \in \mathcal{E}_{1}, E_{2} \in \mathcal{E}_{2}$ provided that an algebra \mathcal{E}_{1} generates \mathcal{A}_{1}, and an algebra \mathcal{E}_{2} generates \mathcal{A}_{2}.

Prove it.
Hint: (b) the σ-algebra generated by $E_{1} \times E_{2}$ contains $E_{1} \times A_{2}$.
In particular, $\mathcal{B}\left(\mathbb{R}^{d_{1}}\right) \times \mathcal{B}\left(\mathbb{R}^{d_{2}}\right)=\mathcal{B}\left(\mathbb{R}^{d_{1}+d_{2}}\right)$.
1b16 Reminder. Let $\left(X_{1}, \mathcal{A}_{1}, \mu_{1}\right),\left(X_{2}, \mathcal{A}_{2}, \mu_{2}\right)$ be two probability spaces. The formula

$$
\mu(A)=\int_{X_{1}}\left(\int_{X_{2}} \mathbb{1}_{A}\left(x_{1}, x_{2}\right) \mu_{2}\left(\mathrm{~d} x_{2}\right)\right) \mu_{1}\left(\mathrm{~d} x_{1}\right)
$$

defines correctly a measure μ on $\left(X_{1} \times X_{2}, \mathcal{A}_{1} \times \mathcal{A}_{2}\right)$. Clearly, μ satisfies

$$
\begin{equation*}
\mu\left(A_{1} \times A_{2}\right)=\mu_{1}\left(A_{1}\right) \mu_{2}\left(A_{2}\right) \quad \text { for } A_{1} \in \mathcal{A}_{1}, A_{2} \in \mathcal{A}_{2} . \tag{1b17}
\end{equation*}
$$

By 1b15, μ is the only measure satisfying (1b17). It follows that $\int_{X_{1}} \int_{X_{2}} \cdots=$ $\int_{X_{2}} \int_{X_{1}} \ldots$. We write $\mu=\mu_{1} \times \mu_{2}$, say that μ is the product measure, and $\left(X_{1} \times X_{2}, \mathcal{A}_{1} \times \mathcal{A}_{2}, \mu_{1} \times \mu_{2}\right)=\left(X_{1}, \mathcal{A}_{1}, \mu_{1}\right) \times\left(X_{2}, \mathcal{A}_{2}, \mu_{2}\right)$ is the product of probability spaces.
1 b 18 Reminder. Let $(X, \mathcal{A}, \mu)=\left(X_{1}, \mathcal{A}_{1}, \mu_{1}\right) \times\left(X_{2}, \mathcal{A}_{2}, \mu_{2}\right)$.
(a) (Tonelli)

$$
\int_{X} f \mathrm{~d} \mu=\int_{X_{1}} \mu_{1}\left(\mathrm{~d} x_{1}\right) \int_{X_{2}} \mu_{2}\left(\mathrm{~d} x_{2}\right) f\left(x_{1}, x_{2}\right) \in[0,+\infty]
$$

for every measurable $f: X \rightarrow[0, \infty]$.
(b) (Fubini)

$$
\int_{X} f \mathrm{~d} \mu=\int_{X_{1}} \mu_{1}\left(\mathrm{~d} x_{1}\right) \int_{X_{2}} \mu_{2}\left(\mathrm{~d} x_{2}\right) f\left(x_{1}, x_{2}\right) \in \mathbb{R}
$$

for every integrable $f: X \rightarrow \mathbb{R}$.

In particular,

$$
\begin{equation*}
\int_{X} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \mu\left(\mathrm{d} x_{1} \mathrm{~d} x_{2}\right)=\left(\int_{X_{1}} f_{1} \mathrm{~d} \mu_{1}\right)\left(\int_{X_{2}} f_{2} \mathrm{~d} \mu_{2}\right) . \tag{1b19}
\end{equation*}
$$

The same holds for the product of three, four, ... probability spaces.
1b20 Remark. Associativity of the multiplication: the space $\left(X_{1}, \mathcal{A}_{1}, \mu_{1}\right) \times$ $\left(X_{2}, \mathcal{A}_{2}, \mu_{2}\right) \times\left(X_{3}, \mathcal{A}_{3}, \mu_{3}\right) \times\left(X_{4}, \mathcal{A}_{4}, \mu_{4}\right)$ is the same as $\left(\left(X_{1}, \mathcal{A}_{1}, \mu_{1}\right) \times\right.$ $\left.\left(X_{2}, \mathcal{A}_{2}, \mu_{2}\right)\right) \times\left(\left(X_{3}, \mathcal{A}_{3}, \mu_{3}\right) \times\left(X_{4}, \mathcal{A}_{4}, \mu_{4}\right)\right)$. That is, $\left(\mu_{1} \times \mu_{2}\right) \times\left(\mu_{3} \times \mu_{4}\right)=$ $\mu_{1} \times \mu_{2} \times \mu_{3} \times \mu_{4}$, which follows from the uniqueness; both measures satisfy $\mu\left(A_{1} \times A_{2} \times A_{3} \times A_{4}\right)=\mu_{1}\left(A_{1}\right) \mu_{2}\left(A_{2}\right) \mu_{3}\left(A_{3}\right) \mu_{4}\left(A_{4}\right)$ (think, why). The same holds for more than two factors in a group, and more than two groups.

1b21 Reminder. A measurable map from a measurable space (X, \mathcal{A}) to a measurable space (Y, \mathcal{B}) is $f: X \rightarrow Y$ such that $\forall B \in \mathcal{B} f^{-1}(B) \in \mathcal{A}$.

The composition of measurable maps, $(X, \mathcal{A}) \rightarrow(Y, \mathcal{B}) \rightarrow(Z, \mathcal{C})$, is again a measurable map.

It is sufficient to check the condition $f^{-1}(B) \in \mathcal{A}$ for all B of a set that generates \mathcal{B}.

When $Y=\mathbb{R}^{d}$, the Borel σ-algebra $\mathcal{B}=\mathcal{B}\left(\mathbb{R}^{d}\right)$ is meant by default. Thus, a map $f: X \rightarrow \mathbb{R}^{d}$ is measurable iff $f^{-1}(B) \in \mathcal{A}$ for every box $B \subset \mathbb{R}^{d}$, or equivalently, for every open set $B \subset \mathbb{R}^{d}$. A real-valued function $f: X \rightarrow \mathbb{R}$ is measurable iff $\{x: f(x) \leq a\} \in \mathcal{A}$ for all $a \in \mathbb{R}$.

If $(Y, \mathcal{B})=\left(Y_{1}, \mathcal{B}_{1}\right) \times\left(Y_{2}, \mathcal{B}_{2}\right)$ then a map $f: X \rightarrow Y$ boils down to $f_{1}: X \rightarrow Y_{1}$ and $f_{2}: X \rightarrow Y_{2} ; f(x)=\left(f_{1}(x), f_{2}(x)\right) \in Y_{1} \times Y_{2}$. In this case f is measurable iff f_{1}, f_{2} are measurable (think, why). In particular: $Y_{1}=Y_{2}=\mathbb{R}, Y=\mathbb{R}^{2}$.

Every continuous map $\mathbb{R}^{d_{1}} \rightarrow \mathbb{R}^{d_{2}}$ is measurable. (The Borel σ-algebras are meant!)

If $f, g:(X, \mathcal{A}) \rightarrow \mathbb{R}$ are measurable then $f+g$ is measurable. Here is a short and general proof:

The same holds for $f, g:(X, \mathcal{A}) \rightarrow \mathbb{R}^{d}$.
If $f, f_{1}, f_{2}, \cdots: \mathbb{R}^{d_{1}} \rightarrow \mathbb{R}^{d_{2}}, f_{n}(\cdot) \rightarrow f(\cdot)$ pointwise, and f_{n} are measurable then f is measurable. Also $\sup _{n} f_{n}(\cdot), \lim \sup _{n} f_{n}(\cdot)$ etc.

1b22 Reminder. Given a measurable map $\varphi:(X, \mathcal{A}) \rightarrow(Y, \mathcal{B})$ and a probability measure μ on (X, \mathcal{A}), the formula

$$
\nu(B)=\mu\left(\varphi^{-1}(B)\right) \quad \text { for } B \in \mathcal{B}
$$

defines a probability measure ν on (Y, \mathcal{B}), - the induced measure. We have

$$
\int_{X} f \circ \varphi \mathrm{~d} \mu=\int_{Y} f \mathrm{~d} \nu \in[0, \infty]
$$

for every measurable $f:(Y, \mathcal{B}) \rightarrow[0, \infty]$. For $f:(Y, \mathcal{B}) \rightarrow \mathbb{R}$ consider $f=f^{+}-f^{-}$.

The σ-algebra $\sigma(\varphi)=\left\{\varphi^{-1}(B): B \in \mathcal{B}\right\}$ generated by $\varphi: X \rightarrow(Y, \mathcal{B})$ is the least σ-algebra (on X) that makes φ measurable. The σ-algebra $\sigma\left(\varphi_{1}, \varphi_{2}\right)$ generated by $\varphi_{1}: X \rightarrow\left(Y_{1}, \mathcal{B}_{1}\right)$ and $\varphi_{2}: X \rightarrow\left(Y_{2}, \mathcal{B}_{2}\right)$ is, by definition, the least σ-algebra that makes φ_{1}, φ_{2} measurable. It is the same as $\sigma\left(\sigma\left(\varphi_{1}\right) \cup\right.$ $\left.\sigma\left(\varphi_{2}\right)\right)$.

About convergence theorems (monotone, dominated) I give no reminder; I just assume that you never forget them!

Random variables

By a random variable we mean a measurable function on a given probability space (Ω, \mathcal{F}, P). (By default all random variables - on a single probability space.) Usually it maps Ω to \mathbb{R}, but can also map Ω to a given measurable space; then it may be called a random element of that space. A random element of \mathbb{R}^{d} (endowed with the Borel σ-algebra) may be called a d-dimensional random vector, or just a d-dimensional random variable, basically the same as d one-dimensional random variables (the coordinates).

Subsets of Ω belonging to \mathcal{F} are called events; $P(A)$ is called the probability of an event A.

Random variables generate σ-algebras (of events): $\sigma(X), \sigma(X, Y)$ etc.
By the distribution of a random variable $X: \Omega \rightarrow \mathbb{R}$ we mean the induced measure P_{X} on \mathbb{R},

$$
P_{X}(B)=P\left(X^{-1}(B)\right)=P(\{\omega: X(\omega) \in B\})=\mathbb{P}(X \in B)
$$

for Borel sets $B \subset \mathbb{R}$.
Random variables $X, Y: \Omega \rightarrow \mathbb{R}$ are called identically distributed if $P_{X}=$ P_{Y}; that is, $\mathbb{P}(X \in B)=\mathbb{P}(Y \in B)$ for every Borel $B \subset \mathbb{R}$, or equivalently, every interval $B \subset \mathbb{R}$; still equivalently, if $F_{X}=F_{Y}$, where F_{X} is the CDF,

$$
F_{X}(x)=\mathbb{P}(X \leq x) .
$$

For random elements, $P_{X}=P_{Y}$ still applies (in contrast to intervals and CDF). For random vectors CDF applies, and boxes may be used instead of the intervals.

A 2-dim random vector $\omega \mapsto(X(\omega), Y(\omega))$ has a 2-dim distribution $P_{X, Y}$, called also the joint distribution of X and Y. Usually $P_{X, Y}$ is far from being uniquely determined by P_{X}, P_{Y}. Two such vectors (X, Y) and (U, V) are identically distributed iff $P_{X, Y}=P_{U, V}$. Then $P_{X}=P_{U}$ and $P_{Y}=P_{V}$ (but the converse fails).

If $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is a Borel function and $X: \Omega \rightarrow \mathbb{R}$ a random variable then their composition $\varphi(X): \Omega \rightarrow \mathbb{R}$ is another random variable. Likewise, if $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a Borel function and $X, Y: \Omega \rightarrow \mathbb{R}$ random variables then $\varphi(X, Y): \Omega \rightarrow \mathbb{R}$ is a random variable.

The expectation $\mathbb{E} X$ of a random variable $X: \Omega \rightarrow \mathbb{R}$ is, by definition, the Lebesgue integral

$$
\mathbb{E} X=\int_{\Omega} X \mathrm{~d} P
$$

provided that X is integrable, that is, $\mathbb{E}|X|<\infty$. (Otherwise $\mathbb{E} X=\mathbb{E} X^{+}{ }_{-}$ $\mathbb{E} X^{-}$; the four cases...)

By 1 b 22 ,

$$
\begin{gathered}
\mathbb{E} X=\int_{\Omega} X \mathrm{~d} P=\int_{\mathbb{R}} x P_{X}(\mathrm{~d} x) \\
\mathbb{E} \varphi(X)=\int_{\Omega} \varphi(X) \mathrm{d} P=\int_{\mathbb{R}} \varphi \mathrm{d} P_{X}=\int_{\mathbb{R}} z P_{\varphi(X)}(\mathrm{d} z) ; \\
\mathbb{E} \varphi(X, Y)=\int_{\Omega} \varphi(X, Y) \mathrm{d} P=\int_{\mathbb{R}^{2}} \varphi \mathrm{~d} P_{X, Y}=\int_{\mathbb{R}} z P_{\varphi(X, Y)}(\mathrm{d} z)
\end{gathered}
$$

etc.
If X, Y are identically distributed then $\mathbb{E} X=\mathbb{E} Y$.
Using Tonelli's theorem on $\Omega \times \mathbb{R}$ (or alternatively, approximation) we get

$$
\mathbb{E} X=\int_{0}^{\infty} \mathbb{P}(X>a) \mathrm{d} a-\int_{0}^{\infty} \mathbb{P}(X<-a) \mathrm{d} a
$$

(if integrable... four cases...)
Some examples of random variables with distributions of different kind (Ω is $(0,1)$ with Lebesgue measure):

$$
\begin{gathered}
X\left(\sum_{1}^{\infty} 2^{-k} \beta_{k}\right)=\sum_{1}^{10} 2^{-k} \beta_{k} \quad-\text { discrete } ; \\
X\left(\sum_{1}^{\infty} 2^{-k} \beta_{k}\right)=\sum_{1}^{\infty} 2^{-k} \beta_{2 k} \quad-\text { absolutely continuous; } \\
X\left(\sum_{1}^{\infty} 2^{-k} \beta_{k}\right)=\sum_{1}^{\infty} 2^{-2 k} \beta_{k} \quad-\text { singular } .
\end{gathered}
$$

Independence

Random variables $X, Y: \Omega \rightarrow \mathbb{R}$ are called independent if

$$
P_{X, Y}=P_{X} \times P_{Y} ;
$$

that is, $\mathbb{P}(X \in A, Y \in B)=\mathbb{P}(X \in A) \mathbb{P}(Y \in B)$ for all Borel sets $A, B \subset$ \mathbb{R}, or equivalently, all intervals $A, B \subset \mathbb{R}$; still equivalently, if $F_{X, Y}(x, y)=$ $F_{X}(x) F_{Y}(y)$ for all $X, Y \in \mathbb{R}$. For random elements, $P_{X, Y}=P_{X} \times P_{Y}$ still applies (in contrast to intervals and CDF). For random vectors CDF applies, and boxes may be used instead of the intervals. If X, Y are independent then $f(X), g(Y)$ are independent, for arbitrary Borel functions f, g. Two 2-dim random vectors (X, Y) and (U, V) are independent iff $P_{X, Y, U, V}=P_{X, Y} \times$ $P_{U, V}$, that is, $\mathbb{P}((X, Y) \in A,(U, V) \in B)=\mathbb{P}((X, Y) \in A) \mathbb{P}((U, V) \in$ $B)$ for $A, B \subset \mathbb{R}^{2}$ (Borel sets, or only boxes). Then, $f(X, Y)$ and $g(U, V)$ are independent for all Borel $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$. In particular, X and U are independent; also X and $V ; Y$ and $U ; Y$ and V. (But the converse fails.)

Random variables X_{1}, \ldots, X_{n} are called independent, if

$$
P_{X_{1}, \ldots, X_{n}}=P_{X_{1}} \times \cdots \times P_{X_{n}}
$$

that is, $\mathbb{P}\left(X_{1} \in B_{1}, \ldots, X_{n} \in B_{n}\right)=\mathbb{P}\left(X_{1} \in B_{1}\right) \ldots \mathbb{P}\left(X_{n} \in B_{n}\right)$. (This is much stronger than the pairwise independence. A counterexample: random signs conditioned by $X_{1} \ldots X_{n}=+1$.)

Events A_{1}, \ldots, A_{n} are called independent, if their indicators $\mathbb{1}_{A_{1}}, \ldots, \mathbb{1}_{A_{n}}$ are independent random variables. For $n=2$ this boils down to $\mathbb{P}\left(A_{1}, A_{2}\right)=$ $\mathbb{P}\left(A_{1}\right) \mathbb{P}\left(A_{2}\right)$, but for $n>2$ it does not.

One says that σ-algebras $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n} \subset \mathcal{F}$ are independent if

$$
\forall A_{1} \in \mathcal{A}_{1} \ldots \forall A_{n} \in \mathcal{A}_{n}\left(A_{1}, \ldots, A_{n} \text { are independent events }\right) .
$$

Random variables X_{1}, \ldots, X_{n} are independent iff their σ-algebras $\sigma\left(X_{1}\right), \ldots, \sigma\left(X_{n}\right)$ are independent. The same holds for events (the σ-algebra generated by an event A being just $\{\emptyset, A, \Omega \backslash A, \Omega\}$).

If random variables $X_{1}, X_{2}, X_{3}, X_{4}$ are independent then random vectors $\left(X_{1}, X_{2}\right)$ and $\left(X_{3}, X_{4}\right)$ are independent, since

$$
\begin{aligned}
P_{\left(X_{1}, X_{2}\right),\left(X_{3}, X_{4}\right)}= & P_{X_{1}, X_{2}, X_{3}, X_{4}}=P_{X_{1}} \times P_{X_{2}} \times P_{X_{3}} \times P_{X_{4}}= \\
& =\left(P_{X_{1}} \times P_{X_{2}}\right) \times\left(P_{X_{3}} \times P_{X_{4}}\right)=P_{X_{1}, X_{2}} \times P_{X_{3}, X_{4}} .
\end{aligned}
$$

Thus, $f\left(X_{1}, X_{2}\right)$ and $g\left(X_{3}, X_{4}\right)$ are independent for all Borel $f, g: \mathbb{R}^{2} \rightarrow$ \mathbb{R}. (Pairwise independence of $X_{1}, X_{2}, X_{3}, X_{4}$ is not sufficient! The same
counterexample: $\left(X_{1} X_{2}\right)\left(X_{3}, X_{4}\right)=+1$.) The same holds for more than two factors in a group, and more than two groups.

If X, Y are independent then

$$
\begin{gathered}
\mathbb{E} f(X, Y)=\int_{\mathbb{R}^{2}} f \mathrm{~d}\left(P_{X} \times P_{Y}\right)=\iint_{\mathbb{R}^{2}} f(x, y) P_{X}(\mathrm{~d} x) P_{Y}(\mathrm{~d} y) ; \\
\mathbb{E} f(X) g(Y)=\left(\int f \mathrm{~d} P_{X}\right)\left(\int g \mathrm{~d} P_{Y}\right)=(\mathbb{E} f(X))(\mathbb{E} g(Y)) ; \\
\mathbb{E}(X Y)=(\mathbb{E} X)(\mathbb{E} Y)
\end{gathered}
$$

The same holds for more than two random variables.
Independence for discrete:

$$
\begin{gathered}
p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=p_{X_{1}}\left(x_{1}\right) \ldots p_{X_{n}}\left(x_{n}\right) \\
\mathbb{E} f\left(X_{1}, \ldots, X_{n}\right)=\sum_{x_{1}, \ldots, x_{n}} f\left(x_{1}, \ldots, x_{n}\right) p_{X_{1}}\left(x_{1}\right) \ldots p_{X_{n}}\left(x_{n}\right) .
\end{gathered}
$$

Independence for absolutely continuous:

$$
\begin{gathered}
p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=p_{X_{1}}\left(x_{1}\right) \ldots p_{X_{n}}\left(x_{n}\right) \\
\mathbb{E} f\left(X_{1}, \ldots, X_{n}\right)=\int \cdots \int f\left(x_{1}, \ldots, x_{n}\right) p_{X_{1}}\left(x_{1}\right) \ldots p_{X_{n}}\left(x_{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}
\end{gathered}
$$

1c Independent random variables

Let X_{1}, X_{2}, \ldots be independent identically distributed random variables. Their sums $S_{k}=X_{1}+\cdots+X_{k}$ are a (one-dimensional) random walk.

1c1 Theorem. ${ }^{1}$ If $\mathbb{E}\left|X_{1}\right|<\infty$ then

$$
\mathbb{P}\left(\left|\frac{1}{n} S_{n}-\mathbb{E} X_{1}\right| \leq \varepsilon\right) \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

This is the Weak Law of Large Numbers.
Clearly, 1c1 implies 1 a 5 and 1 a 24 .
Interestingly, 1 c 1 helps to integrate numerically functions of many (say, 20 or 200) variables ("Monte-Carlo method"). ${ }^{2}$

[^9]
Proof of 1 cc 1

Two main ideas: orthogonality (as for 1a5) and approximation by $L_{2} ; L_{2}$ is dense in L_{1}, but we need also independence...

Let Borel functions $\varphi_{1}, \varphi_{2}, \cdots: \mathbb{R} \rightarrow \mathbb{R}$ satisfy $\forall x \varphi_{i}(x) \rightarrow x$ as $i \rightarrow \infty$, and $\forall i \forall x\left|\varphi_{i}(x)\right| \leq|x|$. Let $X \in L_{1}=L_{1}(\Omega)$ and $Y_{i}=\varphi_{i}(X)$. Then $Y_{i} \in L_{1}$ and $Y_{i} \rightarrow X$ in L_{1} (that is, $\left\|Y_{i}-X\right\|_{1}=\mathbb{E}\left|Y_{i}-X\right| \rightarrow 0$) by the dominated convergence theorem. For example, we may take $Y_{i}=\mathbb{1}_{(-i, i)}(X) \cdot X$ or $Y_{i}=\operatorname{mid}(-i, X, i)$.

Let X_{k} be as in 1c1: however, only pairwise independence will be used. Given $\varepsilon>0$ we define $Y_{k}=\varphi\left(X_{k}\right)$ with a bounded φ such that $\left\|Y_{1}-X_{1}\right\|_{1} \leq$ ε. Then

$$
\begin{aligned}
\left\|\frac{Y_{1}+\cdots+Y_{n}}{n}-\mathbb{E} Y_{1}\right\|_{2}=\frac{1}{n}\left\|\left(Y_{1}-\mathbb{E} Y_{1}\right)+\cdots+\left(Y_{n}-\mathbb{E} Y_{n}\right)\right\|_{2}= \\
\frac{1}{n} \sqrt{n}\left\|Y_{1}-\mathbb{E} Y_{1}\right\|_{2} \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

by orthogonality ensured by the pairwise independence: $\left\langle Y_{k}-\mathbb{E} Y_{k}, Y_{l}-\right.$ $\left.\mathbb{E} Y_{l}\right\rangle=\mathbb{E}\left(\left(Y_{k}-\mathbb{E} Y_{k}\right)\left(Y_{l}-\mathbb{E} Y_{l}\right)\right)=\left(\mathbb{E}\left(Y_{k}-\mathbb{E} Y_{k}\right)\right)\left(\mathbb{E}\left(Y_{l}-\mathbb{E} Y_{l}\right)\right)=0 \cdot 0=0$ for $k \neq l$.

We have

$$
\begin{aligned}
& \left\|\frac{X_{1}+\cdots+X_{n}}{n}-\mathbb{E} X_{1}\right\|_{1} \leq\left\|\frac{X_{1}+\cdots+X_{n}}{n}-\frac{Y_{1}+\cdots+Y_{n}}{n}\right\|_{1}+ \\
& \quad+\left\|\frac{Y_{1}+\cdots+Y_{n}}{n}-\mathbb{E} Y_{1}\right\|_{1}+\left|\mathbb{E} Y_{1}-\mathbb{E} X_{1}\right| \leq \\
& \leq\left\|X_{1}-Y_{1}\right\|_{1}+\left\|\frac{Y_{1}+\cdots+Y_{n}}{n}-\mathbb{E} Y_{1}\right\|_{2}+\left\|X_{1}-Y_{1}\right\|_{1} \leq 2 \varepsilon+o(1)
\end{aligned}
$$

$\limsup _{n}(\ldots) \leq 2 \varepsilon$ for every ε. Convergence in L_{1} is proved; convergence in probability follows (by the Markov inequality).

End of proof of $1 \mathbf{c 1}$

Recall the cumulative distribution function F defined by

$$
F(t)=\mathbb{P}\left(X_{1} \leq t\right) \quad \text { for } t \in \mathbb{R}
$$

The empirical distribution function is the random function F_{n} defined by

$$
F_{n}(t)=\frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{(-\infty, t]}\left(X_{k}\right)
$$

1c2 Theorem. ${ }^{1}$ For every $\varepsilon>0$,

$$
\mathbb{P}\left(\sup _{t}\left|F_{n}(t)-F(t)\right| \leq \varepsilon\right) \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

This is the weak form of the Glivenko-Cantelli theorem.
1c3 Lemma. For every probability measure ${ }^{2} \mu$ on \mathbb{R} and every $\varepsilon>0$ there exist m and $t_{1}<\cdots<t_{m}$ such that
$\mu\left(\left(-\infty, t_{1}\right)\right) \leq \varepsilon, \mu\left(\left(t_{1}, t_{2}\right)\right) \leq \varepsilon, \ldots, \mu\left(\left(t_{m-1}, t_{m}\right)\right) \leq \varepsilon, \mu\left(\left(t_{m},+\infty\right)\right) \leq \varepsilon$. Proof. We take $t_{1}=\sup \{t: \mu((-\infty, t)) \leq \varepsilon\}$ (the set is not empty!), then $\mu\left(\left(-\infty, t_{1}\right)\right)=\lim _{k} \mu\left(\left(-\infty, t_{1}-\frac{1}{k}\right)\right) \leq \varepsilon$ but $\mu\left(\left(-\infty, t_{1}\right]\right)=\lim _{k} \mu\left(\left(-\infty, t_{1}+\right.\right.$ $\left.\left.\frac{1}{k}\right)\right) \geq \varepsilon$. If $\varepsilon \geq 0.5$ then we are done. Otherwise, $t_{2}=\sup \left\{t: \mu\left(\left(t_{1}, t\right)\right) \leq \varepsilon\right\}$, then $\mu\left(\left(t_{1}, t_{2}\right)\right) \leq \varepsilon$ but $\mu\left(\left(t_{1}, t_{2}\right]\right) \geq \varepsilon$, thus $\mu\left(\left(-\infty, t_{2}\right]\right) \geq 2 \varepsilon$. And so on...

Proof of 1 c 2

Let $F(t)=\mu((-\infty, t])$, random functions $F_{n}(t)=\mu_{n}((-\infty, t])$, and ε be as in 1c2. Lemma 1c3 gives us t_{1}, \ldots, t_{m}. By 1a24,

$$
\mathbb{P}\left(\left|\mu_{n}\left(\left(-\infty, t_{k}\right]\right)-\mu\left(\left(-\infty, t_{k}\right]\right)\right|>\varepsilon\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

for each $k=1, \ldots, m$. Sum it over k :

$$
\mathbb{P}\left(\max _{k}\left|\mu_{n}\left(\left(-\infty, t_{k}\right]\right)-\mu\left(\left(-\infty, t_{k}\right]\right)\right|>\varepsilon\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

The same holds for open intervals $\left(-\infty, t_{k}\right)$. Assuming that $\mid \mu_{n}\left(\left(-\infty, t_{k}\right]\right)-$ $\mu\left(\left(-\infty, t_{k}\right]\right) \mid \leq \varepsilon$ and $\left|\mu_{n}\left(\left(-\infty, t_{k}\right)\right)-\mu\left(\left(-\infty, t_{k}\right)\right)\right| \leq \varepsilon$ we have for every k and 3 every $t \in\left(t_{k-1}, t_{k}\right)$

$$
\begin{aligned}
& \mu_{n}((-\infty, t]) \in\left[\mu_{n}\left(\left(-\infty, t_{k-1}\right]\right), \mu_{n}\left(\left(-\infty, t_{k}\right)\right)\right] \subset \\
& \quad \subset\left[\mu\left(\left(-\infty, t_{k-1}\right]\right)-\varepsilon, \mu\left(\left(-\infty, t_{k}\right)\right)+\varepsilon\right] \ni \mu((-\infty, t])
\end{aligned}
$$

and therefore ${ }^{4}\left|\mu_{n}((-\infty, t])-\mu((-\infty, t])\right| \leq 3 \varepsilon$. Thus,

$$
\mathbb{P}\left(\sup _{t}\left|F_{n}(t)-F(t)\right| \leq 3 \varepsilon\right)=\mathbb{P}\left(\sup _{t} \mid \mu_{n}((-\infty, t]-\mu((-\infty, t] \mid \leq 3 \varepsilon) \rightarrow 0\right.
$$

as $n \rightarrow \infty$.

End of proof of 1 c 2

[^10]
[^0]: ${ }^{1}$ [KS, Sect. 2.1, Th. 2.5].

[^1]: ${ }^{1}$ [KS, Sect. 2.2, Th. 2.10]; [D, Sect. 2.1, Th. (14)].

[^2]: ${ }^{1}[\mathrm{KS}$, Sect. 2.2]; [D, Sect. 2.1, (1.5) $]$.

[^3]: ${ }^{1}$ The doubt is: maybe a part $1-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x>0$ of the distribution of S_{n} escapes to infinity when $n \rightarrow \infty$?

[^4]: ${ }^{1}$ [D, Sect. 2.1, Exercise 1.3].
 ${ }^{2}$ [KS, Sect. 10.4]; [D, Sect. 1.9].

[^5]: ${ }^{1}$ [KS, Sect. 2.1, Th. 2.5].

[^6]: ${ }^{1}$ [KS, Sect. 2.1, Th. 2.7]; [D, Sect. 1.5, Example 5.1].
 ${ }^{2}[\mathrm{KS}$, Sect. 2.3]; [D, Sect. 2.6(a)].

[^7]: ${ }^{1}$ [Tao, Th. 1.7.8].

[^8]: ${ }^{1}$ Following Terry Tao, "An alternate approach to the Carathéodory extension theorem" (blog) and Jun Tanaka \& Peter F. McLoughlin, "A Realization of Measurable Sets as Limit Points", The American Mathematical Monthly 117:3, 261-266 (also arXiv:0712.2270).

[^9]: ${ }^{1}$ [KS, Sect. 7.1, Th. 7.2]; [D, Sect. 1.5, Corollary (5.8)].
 ${ }^{2}$ [KS, Sect. 3.8]; [D, Sect. 1.5, Exercise 5.3].

[^10]: ${ }^{1}$ [KS, Sect. 2.1, Th. 2.9].
 ${ }^{2}$ The measure may have both atoms and a continuous part, of course.
 ${ }^{3}$ The two unbounded intervals are treated similarly.
 ${ }^{4}$ You can easily improve 3ε to 2ε.

