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1 Long independent sequences

1a Independent events

1a1 Reminder. Fair coin: finite probability space Ω = Ωn = {0, 1}n with
p(ω) = pn(ω) = 2−n for all ω ∈ Ω; the number of “heads” — random
variable H = Hn : Ωn → R, H(ω) = a1 + · · ·+ an for ω = (a1, . . . , an) ∈ Ω;
its distribution

P
(
H = k

)
= Pn

(
{ω : H(ω) = k}

)
=

∑

ω:H(ω)=k

p(ω) .

1a2 Reminder. Binomial distribution (the fair case):

P
(
H = k

)
= 2−n

(
n

k

)

,

(
n

k

)

=
n!

k!(n− k)!
; Hn ∼ Binom(n, 0.5) .

1a3 Reminder. Random signs : random variables X1, . . . , Xn : Ωn → R,
Xk(ω) = 2ak − 1 for ω = (a1, . . . , an) ∈ Ω.

Simple random walk: random variables S0, . . . , Sn : Ω → R, Sk = X1 +
· · ·+Xk.

k

S

n

1a4 Remark.

Sn = 2Hn − n ;

P
(
Sn = k

)
= P

(
Hn =

n+ k

2

)
=

1

2n
n!

(
n−k
2

)
!
(
n+k
2

)
!

for k = −n,−n + 2, . . . , n .
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1a5 Proposition. 1 For every ε > 0,

P
(

1
n
|Sn| ≤ ε

)
→ 1 as n→∞ .

Thus, P
(
| 1
n
Hn − 1

2
| ≤ ε

)
→ 1 as n → ∞. The frequency is close to the

probability. . .
This is a special case of the Weak Law of Large Numbers, see 1c1. See

also 1a24.
How to prove 1a5? Cumbersome sums of binomial coefficients? No, this

is the old way. The newer way: via Pythagorean theorem in the (2n-dimen-
sional) Euclidean space of random variables!

The Euclidean space L2(Ω) = L2(Ωn, Pn) consists of all functions X :
Ω→ R and is endowed with the norm and scalar product

(1a6)

‖X‖ =
√
∑

ω∈Ω
|X(ω)|2p(ω) =

√

〈X,X〉 ,

〈X, Y 〉 =
∑

ω∈Ω
X(ω)Y (ω)p(ω) .

Its dimension is equal to the number of points in Ω (think, why; any restric-
tion on p(·)?).

Recall the expectation EX of a random variable X :

(1a7) EX =
∑

ω∈Ω
X(ω)p(ω) = 〈X, 1l〉 ,

an important linear functional on L2(Ω). Note that

(1a8)
‖X‖2 = EX2 , (that is, E (X2))

〈X, Y 〉 = EXY . (that is, E (XY ))

1a9 Exercise. The random signs X1, . . . , Xn are orthonormal, that is,

EXiXj =

{

1 for i = j,

0 otherwise.

Prove it. Are they a basis?

1a10 Exercise. ‖Sk‖ =
√
k for k = 0, 1, . . . , n.

Prove it.

1[KS, Sect. 2.1, Th. 2.5].
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1a11 Exercise. P
(
|X| ≥ ε

)
≤

(
1
ε
‖X‖

)
2 for all ε > 0 and X ∈ L2(Ω).

Prove it.

1a12 Exercise. Prove Proposition 1a5.

Here is the normal approximation to the binomial distribution.

1a13 Proposition. 1

P
(
Sn = k

)
=

2√
2πn

exp
(

− k2

2n

)

·
(

1 + αn

( k√
n

))

for k + n even ,

where αn(·)→ 0 uniformly on bounded intervals.

(Clearly, P
(
Sn = k

)
vanishes if n+ k is odd.)

1a14 Remark. The convergence αn(·) → 0 cannot be uniform on R, since
αn

(√
n + 1√

n

)
= −1 (think, why). What about αn(

√
n)? Well, it is −1 +

1
2

√
2πn en/22−n → −1 (think, why).

How to prove Prop. 1a13? Some calculations with binomial coefficients
(but not their sums. . . ) are needed.

1a15 Reminder.

n! = nne−n
√
2πn β(n) , β(n)→ 1 ; β(n) = 1 +O(1/n) . (Stirling)

Thus,

(1a16) lnn! = n lnn− n+ 1
2
lnn + 1

2
ln(2π) + ln β(n)

︸ ︷︷ ︸

O(1/n)

.

1a17 Exercise.

lnP
(
Sn = cn

)
= −1

2
lnn− n

2

(
(1− c) ln(1− c) + (1 + c) ln(1 + c)

)
−

− 1

2
ln(1−c2)+ln 2− 1

2
ln(2π)+lnβ(n)− ln β

(n(1− c)

2

)

− ln β
(n(1 + c)

2

)

whenever cn ∈ {−n,−n + 2, . . . , n}.
Prove it. (Combine 1a4 with 1a15 and enjoy many cancellations!)

1[KS, Sect. 2.2, Th. 2.10]; [D, Sect. 2.1, Th. (14)].
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We introduce a function γ : [−1, 1]→ R by

(1a18)
γ(c) =

1

2
(1 + c) ln(1 + c) +

1

2
(1− c) ln(1− c) for c ∈ (−1, 1) ,

γ(−1) = γ(+1) = ln 2 .

γ

Now 1a17 becomes

lnP
(
Sn = cn

)
= −nγ(c)− 1

2
lnn− 1

2
ln(1− c2) + ln 2− 1

2
ln(2π) + o(1) ,

if n(1± c)≫ 1; moreover,

(1a19) P
(
Sn = cn

)
=

2√
n

1√
1− c2

1√
2π

e−nγ(c) ·
(

1 +O
( 1

n(1− |c|)
))

.

A numerical example: n = 200, c = −0.9, P
(
S200 = −180

)
=? Really

1.397·10−44; approximately (as above) 1.409·10−44; by normal approximation:
3.7 · 10−37 (oops. . . ).

About the function γ:

γ(−c) = γ(c) ; γ′(0) = 0;

γ′′(0) = 1 since (x ln x)′ = 1 + lnx , (x ln x)′′ =
1

x
;

γ′′′(0) = 0 ; thus γ(c) =
1

2
c2 +O(c4) as c→ 0 .

Proof of 1a13

∣
∣
∣
∣
lnP

(
Sn = k

)
− ln

( 2√
2πn

exp
(

− k2

2n

))
∣
∣
∣
∣
≤ (k = cn)

≤
∣
∣
∣
∣
lnP

(
Sn = cn

)
− ln

( 2√
n

1√
1− c2

1√
2π

e−nγ(c)
)
∣
∣
∣
∣
+

+

∣
∣
∣
∣
ln
( 2√

n

1√
1− c2

1√
2π

e−nγ(c)
)

− ln
( 2√

2πn
e−nc2/2

)∣∣
∣
∣
≤

≤ O
( 1

n(1− |c|)
)

+ ln
1√

1− c2
︸ ︷︷ ︸

O(c2)

+ |nγ(c)− nc2/2|
︸ ︷︷ ︸

O(nc4)

.
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Claim:

O
( 1

n(1− |c|)
)

+O(c2) +O(nc4) = O
(

nc4 +
1

n

)

.

Proof of the claim. If nc4 + 1
n
≤ δ ≤ 1

4
then: nc4 ≤ δ; 1

n
≤ δ; c4 ≤ 1

n
δ ≤ δ2;

c2 ≤ δ; |c| ≤ 1
2
; 1

n(1−|c|) ≤ 2
n
≤ 2δ.

Thus,

P
(
Sn = k

)
=

2√
2πn

e−
k
2

2n ·
(

1 +O
(k4

n3
+

1

n

)

︸ ︷︷ ︸

αn(k/
√
n)

)

.

If |k| = O(
√
n) then k4

n3 = O
(
n2

n3

)
= O( 1

n
). Thus, sup[a,b] |α(·)| = O(1/n) for

all a, b.

End of proof of 1a13

Proposition 1a13 is a special case of the Local Limit Theorem. In contrast,
the next result is global.

1a20 Theorem. 1

P
(
a
√
n < Sn < b

√
n
)
→ 1√

2π

∫ b

a

e−x2/2 dx as n→∞

whenever −∞ ≤ a ≤ b ≤ ∞.

This is the De Moivre-Laplace theorem, a special case of the Central
Limit Theorem.

Proof of 1a20

First, assume that −∞ < a < b <∞. Then:

P
(
a
√
n < Sn < b

√
n
)
=

∑

k∈(a√n,b
√
n), k+n even

P
(
Sn = k

)
;

let ϕ(x) =
1√
2π

e−x2/2 ;

P
(
Sn = k

)
=

2√
n
ϕ
( k√

n

)(

1 + αn

( k√
n

))

;

1[KS, Sect. 2.2]; [D, Sect. 2.1, (1.5)].
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2√
n
ϕ
( k√

n

)(

1 + inf
[a,b]

αn

)

≤ P
(
Sn = k

)
≤ 2√

n
ϕ
( k√

n

)(

1 + sup
[a,b]

αn

)

;

(

1 + inf
[a,b]

αn

)

︸ ︷︷ ︸

→1

∑

k∈(a√n,b
√
n), k+n even

2√
n
ϕ
( k√

n

)

≤ P
(
a
√
n < Sn < b

√
n
)
≤

≤
(

1 + sup
[a,b]

αn

)

︸ ︷︷ ︸

→1

∑

k∈(a√n,b
√
n), k+n even

2√
n
ϕ
( k√

n

)

.

It remains to prove that the sum converges to the integral. We divide [a, b]
into intervals of length 2/

√
n and get an integral sum; only the first and last

terms differ, but contribute only O(1/
√
n) anyway.

The case −∞ < a < b < ∞ is done. The case a = b is trivial. It is
sufficient (think, why) to consider the case −∞ < a < b = ∞. We could
do it via the equality

∫∞
−∞ e−x2/2 dx =

√
2π well-known in analysis, but it is

instructive to do it differently, and get the integral equality as a by-product.1

(The argument introduced below will be reused in the proof of 1a21.)
We note that

lim inf
n→∞

P
(
a
√
n < Sn

)
≥ 1√

2π

∫ ∞

a

e−x2/2 dx ,

since it exceeds lim infn→∞ P
(
a
√
n < Sn < b

√
n
)
= 1√

2π

∫ b

a
e−x2/2 dx for every

b ∈ (a,∞). It remains to prove that

lim sup
n→∞

P
(
a
√
n < Sn

)
≤ 1√

2π

∫ ∞

a

e−x2/2 dx .

We have

P
(
a
√
n < Sn

)
= P

(
Sn = kn

)
+ P

(
Sn = kn + 2

)
+ . . .

where kn = min(Z ∩ (a
√
n,∞)); and

P
(
Sn = k + 2

)
= 2−n n!

(
n−k−2

2

)
!
(
n+k+2

2

)
!
=

n− k

n+ k + 2
P
(
Sn = k

)
≤

≤ 1− k
n

1 + k
n

P
(
Sn = k

)
≤ 1− a/

√
n

1 + a/
√
n
P
(
Sn = k

)

1The doubt is: maybe a part 1 − 1√
2π

∫∞

−∞
e−x2/2 dx > 0 of the distribution of Sn

escapes to infinity when n→∞ ?
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for k = kn, kn + 2, . . . ; therefore

P
(
Sn > a

√
n
)

P
(
Sn = kn

) ≤ 1+
1− a/

√
n

1 + a/
√
n
+
(1− a/

√
n

1 + a/
√
n

)2

+· · · = 1 + a/
√
n

2a/
√
n

=

√
n

2a
+
1

2
,

and we get

lim sup
n→∞

P
(
a
√
n < Sn

)
≤ lim sup

n→∞

√
n

2a
P
(
Sn = kn

)
=

1

a

1√
2π

e−a2/2

by 1a13, since kn/
√
n→ a. It follows that

lim sup
n→∞

P
(
a
√
n < Sn

)
≤ lim sup

n→∞
P
(
a
√
n < Sn < b

√
n
)
+lim sup

n→∞
P
(
b
√
n ≤ Sn

)
≤

≤ 1√
2π

∫ b

a

e−x2/2 dx+
1

b

1√
2π

e−b2/2

for every b ∈ (a,∞); we take b→∞.

End of proof of 1a20

1a21 Proposition. 1 For every c ∈ (0, 1),

1

n
lnP

(
Sn > cn

)
→ −γ(c) as n→∞ ,

where γ(c) = 1
2
(1 + c) ln(1 + c) + 1

2
(1− c) ln(1− c).

This is a special case of the Large Deviations Principle.2

Proposition 1a21 suggests the approximation (for large c and n)

P
(
Sn > c

)
≈ e−nγ(c/n) =

nn

√

(n− c)n−c(n + c)n+c
.

However, Theorem 1a20 suggests another approximation,

P
(
Sn > c

)
≈ 1√

2π

∫ ∞

c/
√
n

e−x2/2 dx ≈ exp

(

− c2

2n

)

.

A paradox! What do you think? A clue: for n = 200,

c 0 30 60 90 120 150 180
2−n

(
n

(n+c)/2

)
6 · 10−2 6 · 10−3 6 · 10−6 5 · 10−11 1 · 10−18 3 · 10−29 1 · 10−44

2√
2πn

exp(− c2

2n
) 6 · 10−2 6 · 10−3 7 · 10−6 9 · 10−11 1 · 10−17 2 · 10−26 4 · 10−37

exp(−nγ( c
n
)) 1 1 · 10−1 1 · 10−4 8 · 10−10 2 · 10−17 3 · 10−28 1 · 10−43

1[D, Sect. 2.1, Exercise 1.3].
2[KS, Sect. 10.4]; [D, Sect. 1.9].
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Proof of 1a21

We reuse the argument of the last part of the proof of 1a20: P
(
Sn >

cn
)
= P

(
Sn = kn

)
+ P

(
Sn = kn + 2

)
+ . . . where kn = min(Z ∩ (cn,∞));

P
(
Sn = k + 2

)
≤ 1− c

1 + c
P
(
Sn = k

)

for k = kn, kn + 2, . . . ; therefore

1 ≤ P
(
Sn > cn

)

P
(
Sn = kn

) ≤ 1 +
1− c

1 + c
+
(1− c

1 + c

)2

+ · · · = 1 + c

2c
,

and we get 1
n
lnP

(
Sn > cn

)
− 1

n
lnP

(
Sn = kn

)
→ 0. By (1a19),

1

n
lnP

(
Sn = kn

)
=

1

n
ln

(
2√
n

1√
1− c2

1√
2π

)

−γ
(kn
n

)

+
1

n
O
( 1

n(1− |c|)
))

=

= −γ
(kn
n

)

+ o(1)→ −γ(c) ,

since kn
n
→ c.

End of proof of 1a21

1a22 Reminder. Unfair coin: The same Ω and H as in 1a1, but different
probabilities

pn(a1, . . . , an) = pa1+···+an(1−p)n−(a1+···+an) =

n∏

k=1

p1(ak) for a1, . . . , an ∈ {0, 1} .

It is convenient to write H = Hn,p; this function on Ω does not depend on p,
but its distribution depends on p.

1a23 Reminder. Binomial distribution:

P
(
Hn,p = k

)
=

(
n

k

)

pk(1− p)n−k ; Hn ∼ Binom(n, p) .

1a24 Proposition. 1 For every p ∈ [0, 1] and ε > 0,

P
(
| 1
n
Hn,p − p| ≤ ε

)
→ 1 as n→∞ .

1[KS, Sect. 2.1, Th. 2.5].
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This is more general than (the corollary of) 1a5, but still, a special case
of the Weak Law of Large Numbers, see 1c1.

It is easy to prove 1a24 similarly to 1a5, but anyway, 1a24 will follow
from 1c1.

Rather unexpectedly, 1a24 can be used for proving Weierstrass’s approx-
imation theorem: polynomials are dense in C[0, 1].1

Here is the idea of the probabilistic proof of Weierstrass’s approximation
theorem. Consider the distribution µn,p of 1

n
Hn,p,

µn,p =

n∑

k=0

(
n

k

)

pk(1− p)n−kδk/n ;

it belongs to the (n + 1)-dimensional linear space of signed measures on
{0, 1

n
, 2
n
, . . . , 1}, and the vector-function p 7→ µn,p is polynomial (of degree

n). By 1a24, µn,p is close to δp (the unit mass at p). Thus, the map p 7→ δp is
approximately polynomial! Now, given a continuous function f : [0, 1] → R

we have f(p) =
∫
f dδp ≈

∫
f dµn,p = Pn(p), Pn being a polynomial. Namely,

|f(p)− E f( 1
n
Hn,p)| ≤ E |f( 1

n
Hn,p)− f(p)| ≤

≤ max
[p−ε,p+ε]

|f(·)− f(p)|+ P
(
| 1
n
Hn,p − p| > ε

)
· 2max

[0,1]
|f(·)| ;

the former summand is made small using uniform continuity of f , the latter
summand — using E | 1

n
Hn,p − p|2 = p(1−p)

n
≤ 1

4n
.

1a25 Proposition. 2 For every λ ∈ (0,∞) and k = 0, 1, 2, . . .

P
(
Hn,λ/n = k

)
→ λk

k!
e−λ as n→∞ .

This is the Poisson Limit Theorem.

Proof.

P
(
Hn,λ/n = k

)
=

n!

k!(n− k)!

(λ

n

)k(

1− λ

n

)n−k

=

=
n

n

n− 1

n
. . .

n− k + 1

n
︸ ︷︷ ︸

→1

λk

k!

(

1− λ

n

)n

︸ ︷︷ ︸

→e−λ

(

1− λ

n

)−k

︸ ︷︷ ︸

→1

→ λk

k!
e−λ .

1[KS, Sect. 2.1, Th. 2.7]; [D, Sect. 1.5, Example 5.1].
2[KS, Sect. 2.3]; [D, Sect. 2.6(a)].
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1b Measure-theoretic foundations

Some measure theory

1b1 Reminder. An algebra of sets (on X): a set E of subsets of X such
that

∅, X ∈ E ; ∀E ∈ E X \ E ∈ E ; ∀E, F ∈ E E ∩ F,E ∪ F ∈ E .

A σ-algebra of sets (on X): an algebra A such that

∀A1, A2, · · · ∈ A
⋂

n

An,
⋃

n

An ∈ A .

A measurable space: (X,A).
A probability measure (on A, or on (X,A)): a map µ : A → [0, 1] such

that µ(X) = 1 and

µ
(⋃

n

An

)

=
∑

n

µ(An)

whenever A1, A2, · · · ∈ A are pairwise disjoint. (In such case we may write
⊎nAn.)

A probability space: (X,A, µ).

1b2 Reminder. A box (in R
d): a set of the form I1 × · · · × Id where

I1, . . . , Id ⊂ R are bounded intervals (open, closed, or neither).
An elementary set (in R

d): a finite union of boxes.
The elementary algebra (on R

d): the algebra generated by all boxes;
consists of all elementary sets and their complements (“co-elementary sets”).

The Borel σ-algebra B(Rd): the σ-algebra generated by all boxes, or
equivalently, by all open sets.

1b3 Theorem. 1 (Hahn-Kolmogorov) Let E be an algebra on X , A = σ(E)
the σ-algebra generated by E , and µ0 : E → [0, 1] a map. Then the following
are equivalent:

(a) there exists one and only one probability measure µ on A such that
µ|E = µ0;

(b) there exists at least one such µ;
(c) µ0(X) = 1, and µ0

(
∪nEn

)
=

∑

n µ0(En) whenever E1, E2, · · · ∈ E are
pairwise disjoint and ∪nEn ∈ E .

1[Tao, Th. 1.7.8].
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Clearly, (a)=⇒(b)=⇒(c). In order to prove1 (c)=⇒(a) we assume (c);
define the outer measure

µ∗(Z) = inf
{∑

n

µ0(En) : E1, E2, · · · ∈ E ,∪nEn ⊃ Z
}

for arbitrary Z ⊂ X ; and call a set A ⊂ X µ-measurable if

inf
E∈E

µ∗(A△ E) = 0 .

1b4 Exercise. µ∗(∪nZn) ≤
∑

n µ
∗(Zn) for arbitrary Z1, Z2, · · · ⊂ X .

Prove it. (Do you need (c)?)

1b5 Exercise. µ∗(E) = µ0(E) for all E ∈ E .
Prove it. (Do you need (c)?)

1b6 Exercise. µ-measurable sets are a σ-algebra.
Prove it.

Taking into account that all sets of E are µ-measurable we conclude that
all sets of A = σ(E) are µ-measurable.

We define µ as the restriction of µ∗ to A.
1b7 Exercise. |µ∗(Z)− µ∗(W )| ≤ µ∗(Z △W ) for arbitrary Z,W ⊂ X .

Prove it.

1b8 Exercise. µ∗(A∪B)+µ∗(A∩B) = µ∗(A)+µ∗(B) for all µ-measurable
A,B.

Prove it.
Hint: µ0(E ∪ F ) + µ0(E ∩ F ) = µ0(E) + µ0(F ) for all E, F ∈ E .
Thus, µ(A ⊎B) = µ(A) + µ(B).

1b9 Exercise. µ∗(⊎nAn

)
=

∑

n µ
∗(An) for µ-measurable An.

Prove it.
Hint: µ∗(⊎∞n=1An

)
− µ∗(⊎Nn=1An

)
≤ µ∗(⊎∞n=N+1An

)
.

Thus, µ is a probability measure, which completes the proof of existence.
Here is uniqueness. Let µ1 be another such measure. Then µ1(A) ≤

µ∗(A) = µ(A) for all A ∈ A (since A ⊂ ∪nEn implies µ1(A) ≤
∑

n µ1(En) =∑

n µ(En)). The same holds for X \ A, thus, µ1(A) = 1 − µ1(X \ A) ≥
1− µ(X \ A) = µ(A) and finally µ1(A) = µ(A).

Theorem 1b3 is proved.

1Following Terry Tao, “An alternate approach to the Carathéodory extension theorem”
(blog) and Jun Tanaka & Peter F. McLoughlin, “A Realization of Measurable Sets as Limit
Points”, The American Mathematical Monthly 117:3, 261–266 (also arXiv:0712.2270).

http://terrytao.wordpress.com/2009/01/03/
http://arxiv.org/abs/0712.2270
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1b10 Corollary. If two probability measures are equal on an algebra E then
they are equal on the generated σ-algebra σ(E).

1b11 Corollary. A probability measure on
(
R

d,B(Rd)
)
is uniquely deter-

mined by its values on boxes. The same holds for closed boxes, and for open
boxes.

1b12 Exercise. A probability measure µ on
(
R,B(R)

)
is uniquely deter-

mined by its cumulative distribution function (CDF)

Fµ(x) = µ
(
(−∞, x]

)
for x ∈ R .

Prove it.

1b13 Exercise. (Lebesgue-Stieltjes measure) Let F : R → [0, 1] be an in-
creasing function, F (−∞) = 0, F (+∞) = 1. Then

(a) there exists one and only one additive function µ0 on the elementary
algebra E (of R) such that

µ0

(
(a, b)

)
= F (b−)− F (a+) for −∞ < a < b <∞ ,

µ0

(
{a}

)
= F (a+)− F (a−) for −∞ < a <∞ ;

(b) for every E ∈ E and ε > 0 there exists a compact elementary set K ⊂ E
such that µ0(K) ≥ µ0(E)− ε;

(c) µ0 satisfies Condition 1b3(c).
Prove it.

1b14 Exercise. The correspondence µ←→ Fµ is a bijective correspondence
between all probability measures on

(
R,B(R)

)
and all increasing functions

F : R → [0, 1] such that F (−∞) = 0, F (+∞) = 1 and ∀x ∈ R F (x+) =
F (x).

Prove it.

In fact, 1b12 generalizes readily to R
d,

Fµ(x1, . . . , xd) = µ
(
(−∞, x1]× · · · × (−∞, xd]

)
;

unfortunately, 1b14 does not.
Discrete measures:

µ =
∑

k

pkδxk
; µ(B) =

∑

k:xk∈B
pk =

∑

x∈B
p(x) ;

∫

f dµ =
∑

f(xk)pk .
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Absolutely continuous measures:

µ =

∫

p(x)δx dx ; µ(B) =

∫

B

p(x) dx ;

∫

f dµ =

∫

f(x)p(x) dx .

Singular measures: nonatomic but concentrated on a set of zero Lebesgue
measure.

The product of two measurable spaces (X1,A1) and (X2,A2) is defined to
be (X1×X2,A1×A2) where A1×A2 is the σ-algebra generated by A1×A2

for all A1 ∈ A1, A2 ∈ A2.

1b15 Exercise. (a) A probability measure µ on (X1 × X2,A1 × A2) is
uniquely determined by µ(A1 × A2) for all A1 ∈ A1, A2 ∈ A2.

(b) The same holds for µ(E1×E2) for all E1 ∈ E1, E2 ∈ E2 provided that
an algebra E1 generates A1, and an algebra E2 generates A2.

Prove it.
Hint: (b) the σ-algebra generated by E1 × E2 contains E1 × A2.

In particular, B(Rd1)× B(Rd2) = B(Rd1+d2).

1b16 Reminder. Let (X1,A1, µ1), (X2,A2, µ2) be two probability spaces.
The formula

µ(A) =

∫

X1

(∫

X2

1lA(x1, x2)µ2(dx2)

)

µ1(dx1)

defines correctly a measure µ on (X1 ×X2,A1 ×A2). Clearly, µ satisfies

(1b17) µ(A1 × A2) = µ1(A1)µ2(A2) for A1 ∈ A1, A2 ∈ A2 .

By 1b15, µ is the only measure satisfying (1b17). It follows that
∫

X1

∫

X2

· · · =
∫

X2

∫

X1

. . . . We write µ = µ1 × µ2, say that µ is the product measure, and
(X1 ×X2,A1 × A2, µ1 × µ2) = (X1,A1, µ1) × (X2,A2, µ2) is the product of
probability spaces.

1b18 Reminder. Let (X,A, µ) = (X1,A1, µ1)× (X2,A2, µ2).
(a) (Tonelli)

∫

X

f dµ =

∫

X1

µ1(dx1)

∫

X2

µ2(dx2)f(x1, x2) ∈ [0,+∞]

for every measurable f : X → [0,∞].
(b) (Fubini)

∫

X

f dµ =

∫

X1

µ1(dx1)

∫

X2

µ2(dx2)f(x1, x2) ∈ R

for every integrable f : X → R.
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In particular,

(1b19)

∫

X

f1(x1)f2(x2)µ(dx1dx2) =

(∫

X1

f1 dµ1

)(∫

X2

f2 dµ2

)

.

The same holds for the product of three, four, . . . probability spaces.

1b20 Remark. Associativity of the multiplication: the space (X1,A1, µ1)×
(X2,A2, µ2) × (X3,A3, µ3) × (X4,A4, µ4) is the same as

(
(X1,A1, µ1) ×

(X2,A2, µ2)
)
×
(
(X3,A3, µ3)× (X4,A4, µ4)

)
. That is, (µ1×µ2)× (µ3×µ4) =

µ1 × µ2 × µ3 × µ4, which follows from the uniqueness; both measures satisfy
µ(A1×A2×A3×A4) = µ1(A1)µ2(A2)µ3(A3)µ4(A4) (think, why). The same
holds for more than two factors in a group, and more than two groups.

1b21 Reminder. A measurable map from a measurable space (X,A) to a
measurable space (Y,B) is f : X → Y such that ∀B ∈ B f−1(B) ∈ A.

The composition of measurable maps, (X,A)→ (Y,B)→ (Z, C), is again
a measurable map.

It is sufficient to check the condition f−1(B) ∈ A for all B of a set that
generates B.

When Y = R
d, the Borel σ-algebra B = B(Rd) is meant by default. Thus,

a map f : X → R
d is measurable iff f−1(B) ∈ A for every box B ⊂ R

d, or
equivalently, for every open set B ⊂ R

d. A real-valued function f : X → R

is measurable iff {x : f(x) ≤ a} ∈ A for all a ∈ R.
If (Y,B) = (Y1,B1) × (Y2,B2) then a map f : X → Y boils down to

f1 : X → Y1 and f2 : X → Y2; f(x) =
(
f1(x), f2(x)

)
∈ Y1 × Y2. In this

case f is measurable iff f1, f2 are measurable (think, why). In particular:
Y1 = Y2 = R, Y = R

2.
Every continuous map R

d1 → R
d2 is measurable. (The Borel σ-algebras

are meant!)
If f, g : (X,A) → R are measurable then f + g is measurable. Here is a

short and general proof:

R
2

(a,b)7→a+b

continuous
++❲

❲❲
❲❲

❲❲
❲❲

❲❲
❲❲

❲❲
❲❲

❲❲
❲❲

❲❲
❲❲

❲

X

x 7→(f(x),g(x))

measurable

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣
f+g

measurable
+3 R

The same holds for f, g : (X,A)→ R
d.

If f, f1, f2, · · · : Rd1 → R
d2 , fn(·)→ f(·) pointwise, and fn are measurable

then f is measurable. Also supn fn(·), lim supn fn(·) etc.
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1b22 Reminder. Given a measurable map ϕ : (X,A) → (Y,B) and a
probability measure µ on (X,A), the formula

ν(B) = µ
(
ϕ−1(B)

)
for B ∈ B

defines a probability measure ν on (Y,B), — the induced measure. We have
∫

X

f ◦ ϕ dµ =

∫

Y

f dν ∈ [0,∞]

for every measurable f : (Y,B) → [0,∞]. For f : (Y,B) → R consider
f = f+ − f−.

The σ-algebra σ(ϕ) = {ϕ−1(B) : B ∈ B} generated by ϕ : X → (Y,B) is
the least σ-algebra (onX) that makes ϕmeasurable. The σ-algebra σ(ϕ1, ϕ2)
generated by ϕ1 : X → (Y1,B1) and ϕ2 : X → (Y2,B2) is, by definition, the
least σ-algebra that makes ϕ1, ϕ2 measurable. It is the same as σ

(
σ(ϕ1) ∪

σ(ϕ2)
)
.

About convergence theorems (monotone, dominated) I give no reminder;
I just assume that you never forget them!

Random variables

By a random variable we mean a measurable function on a given prob-
ability space (Ω,F , P ). (By default all random variables — on a single
probability space.) Usually it maps Ω to R, but can also map Ω to a given
measurable space; then it may be called a random element of that space. A
random element of Rd (endowed with the Borel σ-algebra) may be called a
d-dimensional random vector, or just a d-dimensional random variable, —
basically the same as d one-dimensional random variables (the coordinates).

Subsets of Ω belonging to F are called events; P (A) is called the proba-
bility of an event A.

Random variables generate σ-algebras (of events): σ(X), σ(X, Y ) etc.
By the distribution of a random variable X : Ω→ R we mean the induced

measure PX on R,

PX(B) = P
(
X−1(B)

)
= P

(
{ω : X(ω) ∈ B}

)
= P

(
X ∈ B

)

for Borel sets B ⊂ R.
Random variables X, Y : Ω→ R are called identically distributed if PX =

PY ; that is, P
(
X ∈ B

)
= P

(
Y ∈ B

)
for every Borel B ⊂ R, or equivalently,

every interval B ⊂ R; still equivalently, if FX = FY , where FX is the CDF,

FX(x) = P
(
X ≤ x

)
.
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For random elements, PX = PY still applies (in contrast to intervals and
CDF). For random vectors CDF applies, and boxes may be used instead of
the intervals.

A 2-dim random vector ω 7→
(
X(ω), Y (ω)

)
has a 2-dim distribution PX,Y ,

called also the joint distribution of X and Y . Usually PX,Y is far from being
uniquely determined by PX , PY . Two such vectors (X, Y ) and (U, V ) are
identically distributed iff PX,Y = PU,V . Then PX = PU and PY = PV (but
the converse fails).

If ϕ : R→ R is a Borel function and X : Ω→ R a random variable then
their composition ϕ(X) : Ω → R is another random variable. Likewise, if
ϕ : R2 → R is a Borel function and X, Y : Ω → R random variables then
ϕ(X, Y ) : Ω→ R is a random variable.

The expectation EX of a random variable X : Ω → R is, by definition,
the Lebesgue integral

EX =

∫

Ω

X dP

provided that X is integrable, that is, E |X| <∞. (Otherwise EX = EX+−
EX−; the four cases. . . )

By 1b22,

EX =

∫

Ω

X dP =

∫

R

xPX(dx) ;

Eϕ(X) =

∫

Ω

ϕ(X) dP =

∫

R

ϕ dPX =

∫

R

z Pϕ(X)(dz) ;

Eϕ(X, Y ) =

∫

Ω

ϕ(X, Y ) dP =

∫

R2

ϕ dPX,Y =

∫

R

z Pϕ(X,Y )(dz)

etc.
If X, Y are identically distributed then EX = EY .
Using Tonelli’s theorem on Ω × R (or alternatively, approximation) we

get

EX =

∫ ∞

0

P
(
X > a

)
da−

∫ ∞

0

P
(
X < −a

)
da

(if integrable. . . four cases. . . )
Some examples of random variables with distributions of different kind

(Ω is (0, 1) with Lebesgue measure):

X
(∑∞

1
2−kβk

)

=
∑10

1
2−kβk — discrete;

X
(∑∞

1
2−kβk

)

=
∑∞

1
2−kβ2k — absolutely continuous;

X
(∑∞

1
2−kβk

)

=
∑∞

1
2−2kβk — singular.
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Independence

Random variables X, Y : Ω→ R are called independent if

PX,Y = PX × PY ;

that is, P
(
X ∈ A, Y ∈ B

)
= P

(
X ∈ A

)
P
(
Y ∈ B

)
for all Borel sets A,B ⊂

R, or equivalently, all intervals A,B ⊂ R; still equivalently, if FX,Y (x, y) =
FX(x)FY (y) for all X, Y ∈ R. For random elements, PX,Y = PX × PY still
applies (in contrast to intervals and CDF). For random vectors CDF applies,
and boxes may be used instead of the intervals. If X, Y are independent then
f(X), g(Y ) are independent, for arbitrary Borel functions f, g. Two 2-dim
random vectors (X, Y ) and (U, V ) are independent iff PX,Y,U,V = PX,Y ×
PU,V , that is, P

(
(X, Y ) ∈ A, (U, V ) ∈ B

)
= P

(
(X, Y ) ∈ A

)
P
(
(U, V ) ∈

B
)
for A,B ⊂ R

2 (Borel sets, or only boxes). Then, f(X, Y ) and g(U, V )
are independent for all Borel f, g : R2 → R. In particular, X and U are
independent; also X and V ; Y and U ; Y and V . (But the converse fails.)

Random variables X1, . . . , Xn are called independent, if

PX1,...,Xn
= PX1

× · · · × PXn
;

that is, P
(
X1 ∈ B1, . . . , Xn ∈ Bn

)
= P

(
X1 ∈ B1

)
. . .P

(
Xn ∈ Bn

)
. (This is

much stronger than the pairwise independence. A counterexample: random
signs conditioned by X1 . . .Xn = +1.)

Events A1, . . . , An are called independent, if their indicators 1lA1
, . . . , 1lAn

are independent random variables. For n = 2 this boils down to P
(
A1, A2

)
=

P
(
A1

)
P
(
A2

)
, but for n > 2 it does not.

One says that σ-algebras A1, . . . ,An ⊂ F are independent if

∀A1 ∈ A1 . . . ∀An ∈ An

(
A1, . . . , An are independent events

)
.

Random variables X1, . . . , Xn are independent iff their σ-algebras
σ(X1), . . . , σ(Xn) are independent. The same holds for events (the σ-algebra
generated by an event A being just {∅, A,Ω \ A,Ω}).

If random variables X1, X2, X3, X4 are independent then random vectors
(X1, X2) and (X3, X4) are independent, since

P(X1,X2),(X3,X4) = PX1,X2,X3,X4
= PX1

× PX2
× PX3

× PX4
=

= (PX1
× PX2

)× (PX3
× PX4

) = PX1,X2
× PX3,X4

.

Thus, f(X1, X2) and g(X3, X4) are independent for all Borel f, g : R2 →
R. (Pairwise independence of X1, X2, X3, X4 is not sufficient! The same
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counterexample: (X1X2)(X3, X4) = +1.) The same holds for more than two
factors in a group, and more than two groups.

If X, Y are independent then

E f(X, Y ) =

∫

R2

f d(PX × PY ) =

∫∫

R2

f(x, y)PX(dx)PY (dy) ;

E f(X)g(Y ) =
(∫

f dPX

)(∫

g dPY

)

=
(
E f(X)

)(
E g(Y )

)
;

E (XY ) = (EX)(EY ) .

The same holds for more than two random variables.
Independence for discrete:

pX1,...,Xn
(x1, . . . , xn) = pX1

(x1) . . . pXn
(xn) ;

E f(X1, . . . , Xn) =
∑

x1,...,xn

f(x1, . . . , xn)pX1
(x1) . . . pXn

(xn) .

Independence for absolutely continuous:

pX1,...,Xn
(x1, . . . , xn) = pX1

(x1) . . . pXn
(xn) ;

E f(X1, . . . , Xn) =

∫

· · ·
∫

f(x1, . . . , xn)pX1
(x1) . . . pXn

(xn) dx1 . . .dxn.

1c Independent random variables

LetX1, X2, . . . be independent identically distributed random variables. Their
sums Sk = X1 + · · ·+Xk are a (one-dimensional) random walk.

1c1 Theorem. 1 If E |X1| <∞ then

P
(
| 1
n
Sn − EX1| ≤ ε

)
→ 1 as n→∞ .

This is the Weak Law of Large Numbers.
Clearly, 1c1 implies 1a5 and 1a24.
Interestingly, 1c1 helps to integrate numerically functions of many (say,

20 or 200) variables (“Monte-Carlo method”).2

1[KS, Sect. 7.1, Th. 7.2]; [D, Sect. 1.5, Corollary (5.8)].
2[KS, Sect. 3.8]; [D, Sect. 1.5, Exercise 5.3].
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Proof of 1c1

Two main ideas: orthogonality (as for 1a5) and approximation by L2; L2

is dense in L1, but we need also independence. . .
Let Borel functions ϕ1, ϕ2, · · · : R → R satisfy ∀x ϕi(x) → x as i → ∞,

and ∀i ∀x |ϕi(x)| ≤ |x|. Let X ∈ L1 = L1(Ω) and Yi = ϕi(X). Then Yi ∈ L1

and Yi → X in L1 (that is, ‖Yi −X‖1 = E |Yi −X| → 0) by the dominated
convergence theorem. For example, we may take Yi = 1l(−i,i)(X) · X or
Yi = mid(−i, X, i).

Let Xk be as in 1c1; however, only pairwise independence will be used.
Given ε > 0 we define Yk = ϕ(Xk) with a bounded ϕ such that ‖Y1−X1‖1 ≤
ε. Then

∥
∥
∥
Y1 + · · ·+ Yn

n
− EY1

∥
∥
∥
2
=

1

n
‖(Y1 − EY1) + · · ·+ (Yn − EYn)‖2 =

1

n

√
n‖Y1 − EY1‖2 → 0 as n→∞

by orthogonality ensured by the pairwise independence: 〈Yk − EYk, Yl −
EYl〉 = E

(
(Yk−EYk)(Yl−EYl)

)
=

(
E (Yk−EYk)

)(
E (Yl−EYl)

)
= 0 ·0 = 0

for k 6= l.
We have

∥
∥
∥
X1 + · · ·+Xn

n
− EX1

∥
∥
∥
1
≤

∥
∥
∥
X1 + · · ·+Xn

n
− Y1 + · · ·+ Yn

n

∥
∥
∥
1
+

+
∥
∥
∥
Y1 + · · ·+ Yn

n
− EY1

∥
∥
∥
1
+ |EY1 − EX1| ≤

≤ ‖X1 − Y1‖1 +
∥
∥
∥
Y1 + · · ·+ Yn

n
− EY1

∥
∥
∥
2
+ ‖X1 − Y1‖1 ≤ 2ε+ o(1) ;

lim supn(. . . ) ≤ 2ε for every ε. Convergence in L1 is proved; convergence in
probability follows (by the Markov inequality).

End of proof of 1c1

Recall the cumulative distribution function F defined by

F (t) = P
(
X1 ≤ t

)
for t ∈ R .

The empirical distribution function is the random function Fn defined by

Fn(t) =
1

n

n∑

k=1

1l(−∞,t](Xk) .
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1c2 Theorem. 1 For every ε > 0,

P
(
sup
t
|Fn(t)− F (t)| ≤ ε

)
→ 1 as n→∞ .

This is the weak form of the Glivenko-Cantelli theorem.

1c3 Lemma. For every probability measure2 µ on R and every ε > 0 there
exist m and t1 < · · · < tm such that

µ
(
(−∞, t1)

)
≤ ε , µ

(
(t1, t2)

)
≤ ε , . . . , µ

(
(tm−1, tm)

)
≤ ε , µ

(
(tm,+∞)

)
≤ ε .

Proof. We take t1 = sup{t : µ((−∞, t)) ≤ ε} (the set is not empty!), then
µ((−∞, t1)) = limk µ((−∞, t1− 1

k
)) ≤ ε but µ((−∞, t1]) = limk µ((−∞, t1+

1
k
)) ≥ ε. If ε ≥ 0.5 then we are done. Otherwise, t2 = sup{t : µ((t1, t)) ≤ ε},

then µ((t1, t2)) ≤ ε but µ((t1, t2]) ≥ ε, thus µ((−∞, t2]) ≥ 2ε. And so
on. . .

Proof of 1c2

Let F (t) = µ
(
(−∞, t]

)
, random functions Fn(t) = µn

(
(−∞, t]

)
, and ε be

as in 1c2. Lemma 1c3 gives us t1, . . . , tm. By 1a24,

P
(
|µn

(
(−∞, tk]

)
− µ

(
(−∞, tk]

)
| > ε

)
→ 0 as n→∞

for each k = 1, . . . , m. Sum it over k:

P
(
max

k
|µn

(
(−∞, tk]

)
− µ

(
(−∞, tk]

)
| > ε

)
→ 0 as n→∞ .

The same holds for open intervals (−∞, tk). Assuming that |µn

(
(−∞, tk]

)
−

µ
(
(−∞, tk]

)
| ≤ ε and |µn

(
(−∞, tk)

)
− µ

(
(−∞, tk)

)
| ≤ ε we have for every k

and3 every t ∈ (tk−1, tk)

µn

(
(−∞, t]

)
∈ [µn

(
(−∞, tk−1]

)
, µn

(
(−∞, tk)

)
] ⊂

⊂ [µ
(
(−∞, tk−1]

)
− ε, µ

(
(−∞, tk)

)
+ ε] ∋ µ

(
(−∞, t]

)

and therefore4 |µn

(
(−∞, t]

)
− µ

(
(−∞, t]

)
| ≤ 3ε. Thus,

P
(
sup
t
|Fn(t)− F (t)| ≤ 3ε

)
= P

(
sup
t
|µn

(
(−∞, t]− µ

(
(−∞, t]| ≤ 3ε

)
→ 0

as n→∞.

End of proof of 1c2

1[KS, Sect. 2.1, Th. 2.9].
2The measure may have both atoms and a continuous part, of course.
3The two unbounded intervals are treated similarly.
4You can easily improve 3ε to 2ε.
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