9 More on differentiation

9a Finite Taylor expansion 75
9b Continuous and nowhere differentiable 78
9c Differentiable and nowhere monotone 79
Hints to exercises 82

9a Finite Taylor expansion

An infinitely differentiable function $\mathbb{R} \rightarrow \mathbb{R}$ need not be analytic. It has a formal Taylor expansion, but maybe of zero radius of convergence, or maybe converging to a different function. An example:

$$
f(x)=\mathrm{e}^{-1 / x} \quad \text { for } x>0, \quad f(x)=0 \quad \text { for } x \leq 0
$$

9a1 Theorem. ${ }^{12}$ If an infinitely differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ is not a polynomial then there exists $x \in \mathbb{R}$ such that $f^{(n)}(x)$ is irrational for all n.

Thus, $\exists x \forall n \quad f^{(n)}(x) \neq 0$.
The set of rational numbers may be replaced with any other countable set.

We'll prove the theorem via iterated Baire category theorem.
9a2 Lemma. If f is a polynomial on $[a, b]$ and $\forall n f\left(b+\varepsilon_{n}\right)=f(b)$ for some $\varepsilon_{n} \rightarrow 0+$ then f is constant on $[a, b]$.

[^0]Proof. We have $f^{(n)}(b)=0$ for $n=1,2, \ldots$ since otherwise $f(b+\varepsilon)=$ $f(b)+c \varepsilon^{k}+o\left(\varepsilon^{k}\right)$ for some $k \geq 1$ and $c \neq 0$.

The same holds for $f\left(a-\varepsilon_{n}\right)$, of course.
Assume that f is a counterexample to Theorem 9a1.
Consider a (maybe empty) set P_{f} of all maximal nondegenerate intervals $I \subset \mathbb{R}$ such that f is a polynomial on I. Note that intervals of P_{f} are closed and pairwise disjoint.

9a3 Lemma. The open set

$$
G_{f}=\bigcup_{I \in P_{f}} \operatorname{Int} I
$$

is dense (in \mathbb{R}).
Proof. Closed sets

$$
F_{n, r}=\left\{x: f^{(n)}(x)=r\right\} \quad \text { for } r \in \mathbb{Q} \text { and } n=0,1,2, \ldots
$$

cover \mathbb{R}. By (5b7), $\cup_{n, r} \operatorname{Int} F_{n, r}$ is dense. Clearly, f is a polynomial on each interval contained in this dense open set.

It follows that P_{f}, treated as a totally (in other words, linearly) ordered set, is dense (that is, if $I_{1}, I_{2} \in P_{f}, I_{1}<I_{2}$ then $\exists I \in P_{f} I_{1}<I<I_{2}$). It may contain minimal and/or maximal element (unbounded intervals), but the rest of P_{f}, being an unbounded dense countable totally ordered set, is order isomorphic to $\mathbb{Q} \cap(0,1)$ (the proof is similar to the proof of Lemma 2d4; so-called back-and-forth method).

Now we want to contract each interval of P_{f} into a point. (We could consider a topological quotient space...)

We take an order isomorphism $\varphi: P_{f} \rightarrow \mathbb{Q}$ between P_{f} and one of $\mathbb{Q} \cap(0,1), \mathbb{Q} \cap[0,1), \mathbb{Q} \cap(0,1], \mathbb{Q} \cap[0,1]$, and construct an increasing ψ : $\mathbb{R} \rightarrow[0,1]$ such that $\psi(x)=\varphi(I)$ whenever $x \in I$. Clearly, such ψ exists and is unique. It is continuous. The image $\psi(\mathbb{R})$ is one of $(0,1),[0,1),(0,1],[0,1]$. In every case $\psi(\mathbb{R})$ is completely metrizable. Note that $\psi^{-1}(\mathbb{Q})=\cup_{I \in P_{f}} I$, and ψ is one-to-one on $\mathbb{R} \backslash \cup_{I \in P_{f}} I$.

We define $E_{n, r} \subset \psi(\mathbb{R})$ for $r \in \mathbb{Q}$ and $n=0,1,2, \ldots$ as follows:

$$
E_{n, r}=\left\{x: \psi^{-1}(x) \subset F_{n, r}\right\} .
$$

9a4 Lemma. Each $E_{n, r}$ is closed in $\psi(\mathbb{R})$.

Proof. Given $x_{1}>x_{2}>\ldots, x_{k} \in E_{n, r}, x_{k} \downarrow x$ in $\psi(\mathbb{R})$, we take $t_{k} \in$ $\psi^{-1}\left(x_{k}\right) \subset F_{n, r}$ and note that $t_{1}>t_{2}>\ldots, t_{k} \downarrow t \in \psi^{-1}(x), f^{(n)}\left(t_{k}\right)=r$ for all k, thus $f^{(n)}(t)=r$, that is, $t \in F_{n, r}$.

If x is irrational then $x \in E_{n, r}$ since $\psi^{-1}(x)=\{t\}$.
If x is rational then $\psi^{-1}(x)=[s, t]$, and $f^{(n)}(\cdot)=r$ on $[s, t]$ by Lemma 9 a 2 (applied to $f^{(n)}$).

The case $x_{k} \uparrow x$ is similar.
9a5 Exercise. Each $E_{n, r}$ is nowhere dense in $\psi(\mathbb{R})$.
Prove it.
Now Theorem 9 a 1 follows from the Baire category theorem (applied the second time).

9a6 Corollary. If an infinitely differentiable function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ has only finitely many non-zero partial derivatives at every point then f is a polynomial.

Proof. Let $d=2$ (the general case is similar).
By Theorem 9a1, for every $x \in \mathbb{R}$ the function $f(x, \cdot): \mathbb{R} \rightarrow \mathbb{R}$ is a polynomial; similarly, each $f(\cdot, y)$ is a polynomial. Introducing the set A_{n} of all $x \in \mathbb{R}$ such that $f(x, \cdot)$ is a polynomial of degree $\leq n$ we have $A_{n} \uparrow \mathbb{R}$, therefore A_{n} is infinite (moreover, uncountable) for n large enough. The same holds for $f(\cdot, y)$ and B_{n}.

For $x \in A_{n}$ the coefficients $a_{0}(x), \ldots, a_{n}(x)$ of the polynomial $f(x, \cdot)$ are linear functions of $f\left(x, y_{0}\right), \ldots, f\left(x, y_{n}\right)$ provided that $y_{0}, \ldots, y_{n} \in B_{n}$ are pairwise different. Therefore these coefficients are polynomials (in x), of degree $\leq n$.

We get a polynomial $P: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f(x, y)=P(x, y)$ for $x \in A_{n}$, $y \in \mathbb{R}$. For every $y \in \mathbb{R}$ two polynomials $f(\cdot, y)$ and $P(\cdot, y)$ coincide on the infinite set A_{n}, therefore they coincide on the whole \mathbb{R}.

A very similar (and a bit simpler) argument gives an interesting purely topological result.

9a7 Theorem. ${ }^{1}$ If $[0,1]$ is the disjoint union of countably many closed sets then one of the sets is the whole $[0,1]$ (and others are empty).

Proof. (sketch). Assume the contrary: $[0,1]=\uplus_{n} F_{n}, F_{n} \neq \emptyset$ are closed. (Finitely many sets cannot do because of connectedness.) Then $\cup_{n} \operatorname{Int} F_{n}$ is dense in $[0,1]$.

[^1]Consider a (maybe empty) set P of all maximal nondegenerate intervals $I \subset[0,1]$ such that $\exists n \quad I \subset F_{n}$. Note that intervals of P_{f} are closed and pairwise disjoint. The open set $G=\cup_{I \in P} \operatorname{Int} I$ is dense in $[0,1]$, since it contains \cup_{n} Int F_{n}.

It follows that P, treated as a totally ordered set, is dense. Thus, the set $C=[0,1] \backslash G$ is perfect, with no interior (and in fact, homeomorphic to the Cantor set).

As before, each $F_{n} \cap C$ is nowhere dense in C. (Hint: if an endpoint of an interval $I \in P$ belongs to $F_{n} \cap C$ then $I \subset F_{n}$.)

It remains to apply the Baire category theorem (in the second time).
9a8 Corollary. If the cube $[0,1]^{d}$ is the disjoint union of countably many closed sets then one of the sets is the whole $[0,1]^{d}$ (and others are empty).

Proof. Let $d=2$ (the general case is similar).
Assume the contrary: $[0,1]^{2}=\uplus_{n} F_{n}, F_{n}$ are closed.
By Theorem 9a7, each $\{x\} \times[0,1]$ is contained in a single F_{n}. The same holds for each $[0,1] \times\{y\}$. Thus, it is a single n.

I wonder, is it true for an arbitrary continuum (that is, a compact connected metrizable space)?

9b Continuous and nowhere differentiable

9b1 Theorem. There exists a continuous function $f:[0,1] \rightarrow \mathbb{R}$ such that for every $x \in(0,1), f$ is not differentiable at x.

We consider the complete metric space $C[0,1]$ of all continuous $f:[0,1] \rightarrow$ \mathbb{R} (separable, in fact). We define continuous functions $\varphi_{n}: C[0,1] \rightarrow \mathbb{R}$ by

$$
\varphi_{n}(f)=\min _{k=1, \ldots, n}\left|f\left(\frac{k}{n}\right)-f\left(\frac{k-1}{n}\right)\right| .
$$

Clearly, $\varphi_{n} \rightarrow 0$ pointwise. What about the rate of convergence? We take arbitrary $\varepsilon_{n} \rightarrow 0$ and examine $\frac{1}{\varepsilon_{n}} \varphi_{n}$.

9b2 Exercise. $\limsup _{n \rightarrow \infty, g \rightarrow f} \frac{1}{\varepsilon_{n}} \varphi_{n}(g)=\infty$ for all $f \in C[0,1]$.
Prove it.
By Prop. 5b9,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{1}{\varepsilon_{n}} \varphi_{n}(f)=\infty \tag{9b3}
\end{equation*}
$$

for quasi all $f \in C[0,1]$.
On the other hand, if f is differentiable at $x_{0} \in(0,1)$ then $f(x)-f\left(x_{0}\right)=$ $O\left(\left|x-x_{0}\right|\right)$, that is,

$$
\exists C \forall x \in[0,1]\left|f(x)-f\left(x_{0}\right)\right| \leq C\left|x-x_{0}\right| .
$$

Taking k such that $\frac{k-1}{n}, \frac{k}{n} \in\left[x_{0}-\frac{1}{n}, x_{0}+\frac{1}{n}\right]$ we get $\left|f\left(\frac{k}{n}\right)-f\left(\frac{k-1}{n}\right)\right| \leq \frac{2 C}{n}$. Thus,

$$
\forall n \varphi_{n}(f) \leq \frac{2 C}{n}
$$

By (9b3), such f are a meager set, which proves Theorem 9b1.
9b4 Exercise. There exists a continuous function $f:[0,1] \rightarrow \mathbb{R}$ such that for every $x \in(0,1)$

$$
\begin{aligned}
& \limsup _{y \rightarrow x-}|f(y)-f(x)| \log \log \log \frac{1}{|y-x|}=\infty, \\
& \limsup _{y \rightarrow x+}|f(y)-f(x)| \log \log \log \frac{1}{|y-x|}=\infty .
\end{aligned}
$$

Prove it.
However, $|f(y)-f(x)|$ cannot be replaced with $f(y)-f(x)$. If $C>$ $f(1)-f(0)$ then there exists $x \in(0,1)$ such that

$$
\limsup _{y \rightarrow x+} \frac{f(y)-f(x)}{y-x} \leq C
$$

and moreover, $\sup _{y \in(x, 1]} \frac{f(y)-f(x)}{y-x} \leq C$. Proof (sketch): choose $b \in(f(1)-$ $C, f(0))$ and take the greatest x such that $f(x) \geq C x+b$.

9c Differentiable and nowhere monotone

9c1 Theorem. ${ }^{1}$ There exists a differentiable function $f:[0,1] \rightarrow \mathbb{R}$ such that for every $(a, b) \subset[0,1], f$ is not monotone on (a, b).
$\mathbf{9 c} \mathbf{2}$ Lemma. ${ }^{2}$ There exists a strictly increasing differentiable function f : $[0,1] \rightarrow \mathbb{R}$ such that $f^{\prime}(\cdot)=0$ on a dense set.

[^2]Proof. We'll construct a continuous strictly increasing surjective $g:[0,1] \rightarrow$ $[0,1]$ such that the inverse function $f=g^{-1}:[0,1] \rightarrow[0,1]$ has the needed properties. It is sufficient to ensure that (finite or infinite) derivative $g^{\prime}(\cdot) \in$ $(0, \infty]$ exists everywhere (and never vanishes), and is infinite on a dense set.

A function

$$
\alpha(x)=x^{1 / 3}
$$

is strictly increasing (on \mathbb{R}), with $\alpha^{\prime}(0)=+\infty$ and $\alpha^{\prime}(x) \in(0, \infty)$ for $x \neq 0$. We introduce

$$
A=\max _{h \neq 0} \frac{\alpha(1+h)-\alpha(1)}{h \alpha^{\prime}(1)} \in(0, \infty)
$$

(this continuous function vanishes on $\pm \infty$; in fact, $A=4$) and note that

$$
\begin{equation*}
\frac{\alpha(x+h)-\alpha(x)}{h \alpha^{\prime}(x)} \leq A \tag{9c3}
\end{equation*}
$$

for all $h \neq 0$ and x (since for $x \neq 0$ it equals $\frac{x^{1 / 3}\left(\alpha\left(1+\frac{h}{x}\right)-\alpha(1)\right)}{h x^{-2 / 3} \alpha^{\prime}(1)}=\frac{\alpha\left(1+\frac{h}{x}\right)-\alpha(1)}{\frac{h}{x} \alpha^{\prime}(1)}$).
Similarly to Sect. 5a we choose some $a_{n}, c_{n} \in(0,1)$ such that a_{n} are pairwise distinct, dense, and $\sum_{n} c_{n}<\infty$. The series

$$
\beta(x)=\sum_{n=1}^{\infty} c_{n} \alpha\left(x-a_{n}\right)
$$

converges uniformly on $[0,1]$ (since $|\alpha(\cdot)| \leq 1$ and $\sum_{n} c_{n}<\infty$). The series $\sum_{n=1}^{\infty} c_{n} \alpha^{\prime}\left(x-a_{n}\right)$ converges (to a finite sum) for some x and diverges (to $+\infty$) for other x (in particular, for $x \in\left\{a_{1}, a_{2}, \ldots\right\}$). We consider $\beta_{n}(x)=$ $\sum_{k=1}^{n} c_{k} \alpha\left(x-a_{k}\right)$ and $\gamma_{n}(x)=\beta(x)-\beta_{n}(x)=\sum_{k=n+1}^{\infty} c_{k} \alpha\left(x-a_{k}\right)$. By (9c3),

$$
0 \leq \frac{\gamma_{n}(x+h)-\gamma_{n}(x)}{h} \leq A \sum_{k=n+1}^{\infty} c_{k} \alpha^{\prime}\left(x-a_{k}\right)
$$

for all $h \neq 0$ and x. Thus (similarly to Sect. 5a)

$$
\begin{aligned}
\underbrace{\sum_{k=1}^{\infty} c_{k} \alpha^{\prime}\left(x-a_{k}\right)}_{\vec{n}} & \leq \liminf _{h \rightarrow 0}^{\prime \prime} \frac{\beta(x+h)-\beta(x)}{h} \leq \\
& \leq \limsup _{h \rightarrow 0} \frac{\beta(x+h)-\beta(x)}{h} \leq \beta_{n}^{\prime}(x)+A \sum_{k=n+1}^{\infty} c_{k} \alpha^{\prime}\left(x-a_{k}\right)
\end{aligned}
$$

therefore

$$
\beta^{\prime}(x)=\sum_{n=1}^{\infty} c_{n} \alpha^{\prime}\left(x-a_{n}\right) \in(0, \infty]
$$

for all x.
It remains to take $g(x)=\frac{\beta(x)-\beta(0)}{\beta(1)-\beta(0)}$.
Do not think that $\beta^{\prime}(\cdot)=\infty$ only on the countable set $\left\{a_{1}, a_{2}, \ldots\right\}$. Amazingly, $f^{\prime}(x)=0$ for quasi all $x \in[0,1]$ (and therefore $\beta^{\prime}(x)=\infty$ for quasi all $x \in[0,1]$). Here is why. By 5 b 2 and $5 \mathrm{c} 5, f^{\prime}$ is of Baire class 1 , thus, $\left\{x: f^{\prime}(x) \neq 0\right\}$ is an F_{σ} set, and $\left\{x: f^{\prime}(x)=0\right\}$ is a G_{δ} set ${ }^{1}$ being dense it must be comeager (as noted before 5 c 2).

We introduce the space D of all bounded derivatives on $(0,1)$; that is, of F^{\prime} for all differentiable $F:(0,1) \rightarrow \mathbb{R}$ such that F^{\prime} is bounded. We endow D with the metric

$$
\rho(f, g)=\sup _{x \in(0,1)}|f(x)-g(x)| .
$$

9c4 Exercise. (a) D is a complete metric space.
(b) D is not separable.

Prove it.
We consider a subspace D_{0} of all $f \in D$ such that $f(x)=0$ for quasi all x. As noted above, this happens if and only if $f(\cdot)=0$ on a dense set. By 9c2. D_{0} is not $\{0\}$; moreover, for every $x \in(0,1)$ there exists $f \in D_{0}$ such that $f(x) \neq 0($ try $f(a x+b))$.

9c5 Exercise. (a) D_{0} is a vector space; that is, a linear combination of two functions of D_{0} is a function of D_{0}.
(b) D_{0} is a closed subset of D.

Prove it.
Given $(a, b) \subset(0,1)$, the set

$$
E_{a, b}=\left\{f \in D_{0}: \forall x \in(a, b) f(x) \geq 0\right\}
$$

is closed (evidently). Given $f \in E_{a, b}$, we take $x \in(a, b)$ such that $f(x)=0$ and $g \in D_{0}$ such that $g(x)>0$. Then $f-\varepsilon g \in D_{0}$ and $f-\varepsilon g \notin E_{a, b}$ for all $\varepsilon>0$; thus, f is not an interior point of $E_{a, b}$. We see that $E_{a, b}$ is nowhere dense. Similarly, $-E_{a, b}=\left\{f \in D_{0}: \forall x \in(a, b) f(x) \leq 0\right\}$ is nowhere dense. It follows that quasi all functions of D_{0} change the sign on every interval. Theorem 9 c 1 is thus proved.

```
\({ }^{1}\) A straightforward representation
    \(f^{\prime}(x)=0 \Longleftrightarrow \forall \varepsilon \exists \delta \forall h(|h|<\delta \Longrightarrow|f(x+h)-f(x)| \leq \varepsilon|h|)\)
```

gives only $F_{\sigma \delta}$. Taking into account that f is differentiable we have another representation

$$
f^{\prime}(x)=0 \quad \Longleftrightarrow \quad \forall \varepsilon \exists h(|h|<\varepsilon \wedge|f(x+h)-f(x)|<\varepsilon|h|)
$$

that gives G_{δ}.

Hints to exercises

9a5: otherwise, some interval of P_{f} is not maximal.
$9 \mathrm{~b} 2 . g\left(\frac{k}{n}\right)=f\left(\frac{k}{n}\right) \pm \sqrt{\varepsilon_{n}}$.
9b4 similar to 9b1.
9c4. (a) D is closed in the space of all bounded functions; (b) try shifts of a discontinuous derivative.

[^0]: ${ }^{1}$ Exercise 10.2.9 in book: B. Thomson, J. Bruckner, A. Bruckner, "Real analysis", second edition, 2008.
 ${ }^{2}$ The theorem:
 Theorem: Let $f(x)$ be C^{∞} on (c, d) such that for every point x in the interval there exists an integer N_{x} for which $f^{\left(N_{x}\right)}(x)=0$; then $f(x)$ is a polynomial. is due to two Catalan mathematicians:
 F. Sunyer i Balaguer, E. Corominas, Sur des conditions pour qu'une fonction infiniment dérivable soit un polynôme. Comptes Rendues Acad. Sci. Paris, 238 (1954), 558-559.
 F. Sunyer i Balaguer, E. Corominas, Condiciones para que una función infinitamente derivable sea un polinomio. Rev. Mat. Hispano Americana, (4), 14 (1954).

 The proof can also be found in the book (p. 53):
 W. F. Donoghue, Distributions and Fourier Transforms, Academic Press, New York, 1969. I will never forget it because in an "Exercise" of the "Opposition" to became "Full Professor" I was posed the following problem:
 What are the real functions indefinitely differentiable on an interval such that a derivative vanish at each point?

 Juan Arias de Reyna; see Question 34059 on Mathoverflow.

[^1]: ${ }^{1}$ Exercise 10:2.8 in "Real analysis". Also Problem 13.15.3 in book: B. Thomson, J. Bruckner, A. Bruckner, "Elementary real analysis", second edition, 2008.

[^2]: ${ }^{1}$ C.E. Weil (1976) "On nowhere monotone functions", Proc. AMS 56, 388-389. (Yes, two pages!) See also Sect. 10.7.2 in "Real analysis".
 ${ }^{2}$ S. Marcus (1963) "Sur les dérivées dont les zéros forment un ensemble frontière partout dense", Rend. Circ. Mat. Palermo (2) 12, 5-40.

