8 Fubini's theorem and Kuratowski-Ulam theorem

8a Fubini's theorem 68
8b Kuratowski-Ulam theorem 70
8c Some zero-one laws 72
Hints to exercises 74
Index 74

8a Fubini's theorem

Roughly, Fubini's theorem states that

$$
\int \mathrm{d} x \int \mathrm{~d} y f(x, y)=\iint f(x, y) \mathrm{d} x \mathrm{~d} y=\int \mathrm{d} y \int \mathrm{~d} x f(x, y)
$$

for every integrable $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
Tonelli's theorem states the same equality for every measurable $f: \mathbb{R}^{2} \rightarrow$ $[0, \infty)$; in this case the integrals belong to $[0,+\infty]$. In particular, for f : $\mathbb{R}^{2} \rightarrow\{0,1\}$ we see that three measures are equal: ${ }^{1}$

* the two-dimensional Lebesgue measure,
* the measure $A \mapsto \int \mathrm{~d} x \int \mathrm{~d} y \mathbb{1}_{A}(x, y)=\int m\left(A^{y}\right) \mathrm{d} y$,
* the measure $A \mapsto \int \mathrm{~d} y \int \mathrm{~d} x \mathbb{1}_{A}(x, y)=\int m\left(A_{x}\right) \mathrm{d} x ;$
here

$$
A_{x}=\{y:(x, y) \in A\}, \quad A^{y}=\{x:(x, y) \in A\}
$$

These three measures are evidently equal on product sets $A=B \times C$ (be $B, C \subset \mathbb{R}$ arbitrary Lebesgue measurable sets or only intervals) and on the algebra generated by these product sets. By (the uniqueness part of) the Extension theorem ${ }^{2}$ they are equal on the generated σ-algebra, and therefore on its completion, the two-dimensional Lebesgue σ-algebra.

[^0]All said holds on the product of two finite or σ-finite measure spaces. However, it fails for $m \times \nu$ where m is the Lebesgue measure on \mathbb{R} and ν is the counting measure on \mathbb{R}, that is, $\nu(\{x\})=1$ for all $x \in \mathbb{R}$ (be it on the Borel σ-algebra, or the σ-algebra of all subsets of \mathbb{R}, or any intermediate σ-algebra). The measures

$$
\begin{aligned}
& A \mapsto \int m(\mathrm{~d} x) \int \nu(\mathrm{d} y) \mathbb{1}_{A}(x, y)=\int \nu\left(A_{x}\right) \mathrm{d} x=\int \mathrm{d} x \sum_{y} \mathbb{1}_{A}(x, y), \\
& A \mapsto \int \nu(\mathrm{~d} y) \int m(\mathrm{~d} x) \mathbb{1}_{A}(x, y)=\sum_{y} m\left(A^{y}\right),
\end{aligned}
$$

being equal on the algebra generated by product sets, differ on the generated σ-algebra. For example, take $A=\{(x, x): 0 \leq x \leq a\}$, then $\int \nu\left(A_{x}\right) \mathrm{d} x=a$ but $\sum_{y} m\left(A^{y}\right)=0$. By the way, the outer measure (w.r.t. the algebra generated by product sets) of A is infinite (whenever $a>0$).

Everyone knows that Fubini's theorem is useful when calculating twodimensional integrals. This is the "quantitative" aspect. And here is the "qualitative" aspect.

8a1 Theorem. The following three conditions on a Lebesgue measurable set $A \subset \mathbb{R}^{2}$ are equivalent:
(a) for almost every $x \in \mathbb{R}$ the set

$$
A_{x}=\{y:(x, y) \in A\}
$$

is a null set (in \mathbb{R});
(b) A is a null set (in \mathbb{R}^{2});
(c) for almost every $y \in \mathbb{R}$ the set

$$
A^{y}=\{x:(x, y) \in A\}
$$

is a null set (in \mathbb{R}).
Similarly to the category quantifiers \forall^{*}, \exists^{*} (recall Sect. 4d) we may introduce measure quantifiers

$\forall^{m} x$	for almost all x
$\exists^{m} x$	for non-negligible set of x

and rewrite 8 al (for the complement of A) as

$$
\forall^{m} x \forall^{m} y(x, y) \in A \quad \Longleftrightarrow \quad \forall^{m \times m}(x, y)(x, y) \in A \quad \Longleftrightarrow \quad \forall^{m} y \forall^{m} x(x, y) \in A
$$

Or, equivalently (the negated claims for A itself)

$$
\exists^{m} x \exists^{m} y(x, y) \in A \quad \Longleftrightarrow \quad \exists^{m \times m}(x, y)(x, y) \in A \quad \Longleftrightarrow \quad \exists^{m} y \exists^{m} x(x, y) \in A
$$

The same holds on the product of two finite or σ-finite measure spaces (but fails for $m \times \nu$).

Is this useful? Yes, it is! Here is an example from my recent work. ${ }^{1}{ }^{2}$
If a random compact subset K of the square $[0,1] \times[0,1]$ has almost surely uncountable first projection $\{x: \exists y(x, y) \in K\}$ then there exists a continuous function $f:[0,1] \rightarrow[0,1]$ whose graph $G_{f}=\{(x, f(x)): 0 \leq x \leq 1\}$ meets K with positive probability.

For proving this claim I construct a random f that meets K with positive probability (when f and K are independent random objects) and apply 8 a1 to the event $K \cap G_{f} \neq \emptyset$; condition (b) is violated, therefore (a) is violated; that is, the set of functions with the required property is not null, therefore not empty.

Measurability of $A \subset \mathbb{R}^{2}$ is crucial. The choice axiom ensures existence of a well-order " \prec " on \mathbb{R} such that for every $y \in \mathbb{R}$ the set $\{x: x \prec y\}$ is of cardinality less than continuum. Assuming the continuum hypothesis we get a set $A=\{(x, y): x \prec y\} \subset \mathbb{R}^{2}$ such that each A^{y} is (at most) countable, and each $\mathbb{R} \backslash A_{x}$ is (at most) countable. Thus, A violates 8a1(a) but satisfies $8 \mathrm{a1}(\mathrm{c})$.

8b Kuratowski-Ulam theorem

8b1 Theorem. The following three conditions on a set $A \in \mathrm{BP}\left(\mathbb{R}^{2}\right)$ are equivalent:
(a) for quasi all $x \in \mathbb{R}$ the set A_{x} is meager (in \mathbb{R});
(b) A is meager (in \mathbb{R}^{2});
(c) for quasi all $y \in \mathbb{R}$ the set A^{y} is meager (in \mathbb{R}).

That is,
$\forall^{*} x \forall^{*} y(x, y) \in A \quad \Longleftrightarrow \quad \forall^{*}(x, y)(x, y) \in A \quad \Longleftrightarrow \quad \forall^{*} y \forall^{*} x(x, y) \in A$.

[^1]Or, equivalently,
$\exists^{*} x \exists^{*} y(x, y) \in A \quad \Longleftrightarrow \quad \exists^{*}(x, y)(x, y) \in A \quad \Longleftrightarrow \quad \exists^{*} y \exists^{*} x(x, y) \in A$.
The conclusion may fail on $\mathbb{R} \times(\mathbb{R}, d)$ (d being the discrete metric). Consider the closed set $A=\{(x, y): x=y\} \subset \mathbb{R} \times(\mathbb{R}, d)$; it is nowhere dense, each A^{y} is meager, but no A_{x} is meager.

Theorem 8 b 1 holds on the product of two Polish spaces.
8b2 Lemma. Let X be completely metrizable and Y Polish. If $G \subset X \times Y$ is a dense open set then $G_{x} \subset Y$ is a dense open set for quasi all $x \in X$.

Proof. Clearly, each G_{x} is open.
The projection $\{x: \exists y(x, y) \in G\}$ is a dense open set (think, why). Given a nonempty open $U \subset Y$, the set $G \cap(X \times U)$ is dense open in $X \times U$, therefore (as before) its projection is dense open in X. For quasi all x we have $\exists y \in U \quad(x, y) \in G$, that is, $G_{x} \cap U \neq \emptyset$.

We take a countable base $\left(U_{n}\right)_{n}$ in Y. For quasi all x we have $\forall n G_{x} \cap U_{n} \neq$ \emptyset, thus G_{x} is dense.

8b3 Exercise. Let X be completely metrizable and Y Polish.
(a) If $A \subset X \times Y$ is nowhere dense then $A_{x} \subset Y$ is nowhere dense for quasi all $x \in X$.
(b) If $A \subset X \times Y$ is meager then $A_{x} \subset Y$ is meager for quasi all $x \in X$.
(c) If $[A]=[B]$ (that is, $A \triangle B$ is meager) then $\left[A_{x}\right]=\left[B_{x}\right]$ for quasi all $x \in X$.
(d) If $A \in \mathrm{BP}(X \times Y)$ then $A_{x} \in \mathrm{BP}(Y)$ for quasi all $x \in X$.

Prove it.
Remark. Similarly to 8 b 3 (d), if $A \subset \mathbb{R}^{2}$ is Lebesgue measurable then A_{x} is Lebesgue measurable for almost all $x \in \mathbb{R}$.

Proof of Theorem 861 (for Polish X, Y). (b) $\Longrightarrow(\mathrm{a})$ by 8b3(b); similarly, $(\mathrm{b}) \Longrightarrow(\mathrm{c})$. We have to prove that $(\mathrm{a}) \Longrightarrow(\mathrm{b})$.

If $A \in \mathrm{BP}(X \times Y)$ is not meager then $[A]=[G]$ for some open $G \neq \emptyset$; by 8 b 3 (c), $\left[A_{x}\right]=\left[G_{x}\right]$ for quasi all $x \in X$. The projection $G_{1}=\{x: \exists y(x, y) \in$ $G\} \subset X$ is a nonempty open set, and G_{x} is nonempty open for all $x \in G_{1}$. Thus, A_{x} is not meager for all x of the non-meager set G_{1}.

Remark. The proof of the equivalence $(\mathrm{a}) \Longleftrightarrow$ (b) uses separability of Y only. Separability of X ensures the other equivalence, $(\mathrm{b}) \Longleftrightarrow$ (c).

The Baire property of $A \subset \mathbb{R}^{2}$ is crucial. Once again, ZFC does not exclude existence of A such that each A^{y} is (at most) countable, and each $\mathbb{R} \backslash A_{x}$ is (at most) countable. Thus, A violates 8b1(a) but satisfies 8b1(c).

8c Some zero-one laws

Functions of the form $\lim \sup _{n} f_{n} \circ T_{n}$ appeared in Sect. 2, T being the shift on $\{0,1\}^{\infty}$. They are tail functions, as defined below.

Let X_{1}, X_{2}, \ldots be nonempty sets and $X=X_{1} \times X_{2} \times \ldots$ their product. Consider an equivalence relation

$$
x \sim y \Longleftrightarrow \exists n \forall k x(n+k)=y(n+k)
$$

and the corresponding equivalence classes $[x]$ (called germs).
A function $f: X \rightarrow Y(Y$ being another set) is called a tail function if $x \sim y \Longrightarrow f(x)=f(y)$.

A set $A \subset X$ is called a tail set if its indicator $\mathbb{1}_{A}$ is a tail function. That is,

$$
x \sim y \quad \Longrightarrow \quad(x \in A \Longleftrightarrow y \in A)
$$

Note that $\left(f\right.$ is a tail function) $\Longleftrightarrow \forall y \in Y\left(f^{-1}(y)\right.$ is a tail set $)$ $\Longleftrightarrow \forall B \subset Y\left(f^{-1}(B)\right.$ is a tail set $)$.

Every function $f: X \rightarrow \mathbb{R}$ of the form

$$
f\left(x_{1}, x_{2}, \ldots\right)=\limsup _{n} f_{n}\left(x_{n}, x_{n+1}, \ldots\right)
$$

(with $f_{n}: X_{n} \times X_{n+1} \times \cdots \rightarrow \mathbb{R}$) is a tail function. Also, every function $f: X \rightarrow Y$ (Y being a metrizable space) of the form

$$
f\left(x_{1}, x_{2}, \ldots\right)=\lim _{n} f_{n}\left(x_{n}, x_{n+1}, \ldots\right)
$$

(with $f_{n}: X_{n} \times X_{n+1} \times \cdots \rightarrow Y$) is a tail function.
Here is a special case of Kolmogorov's zero-one law.
8 c1 Theorem. Every measurable tail set in $\{0,1\}^{\infty}$ is either a null set or a set of full measure.

The same holds on the product of arbitrary probability spaces.
Here is a special case of the second topological zero-one law.
$8 \mathbf{c} 2$ Theorem. Every tail set in $\operatorname{BP}\left(\{0,1\}^{\infty}\right)$ is either meager or comeager.
The same holds on the product of arbitrary Polish spaces.
8c3 Exercise. Let Y be a separable metrizable space and $f:\{0,1\}^{\infty} \rightarrow Y$ a Borel measurable tail function. Then there exist $y_{1}, y_{2} \in Y$ such that $f(x)=y_{1}$ for almost all x and $f(x)=y_{2}$ for quasi all x.

Deduce it from 8c1, 8c2. Can it happen that $y_{1} \neq y_{2}$?

8c4 Exercise. (a) Using the choice axiom prove existence of a tail function $f:\{0,1\}^{\infty} \rightarrow\{0,1\}$ such that

$$
f\left(1-x_{1}, 1-x_{2}, \ldots\right)=1-f\left(x_{1}, x_{2}, \ldots\right) \text { for all }\left(x_{n}\right)_{n} \in\{0,1\}^{\infty}
$$

(b) Deduce from 8c1, 8c2 that such function cannot be Lebesgue measurable, and cannot have the Baire property.

Proof of Theorem 8c2 (for Polish spaces). Given n, we may treat X as $Y \times Z$ where $Y=X_{1} \times \cdots \times X_{n}$ and $Z=X_{n+1} \times X_{n+2} \times \ldots$ We note that A_{y} does not depend on $y \in Y$ (since A is a tail set) and take $C \subset Z$ such that

$$
\forall y \in Y \quad A_{y}=C .
$$

On the other hand, $A \in \operatorname{BP}(X)$, thus $[A]=[G]$ for some open $G \subset X$. If $G=\emptyset$ then A is meager.
Otherwise, taking the product topology into account, we find n and a nonempty open $U \subset Y$ such that $G \supset U \times Z$; that is,

$$
\forall y \in U \quad G_{y}=Z
$$

By 8b3(c), $\left[A_{y}\right]=\left[G_{y}\right]$ for quasi all $y \in Y$. Thus, for quasi all $y \in U$ we have

$$
[C]=\left[A_{y}\right]=\left[G_{y}\right]=[Z] .
$$

We see that A_{y} is comeager for all y; by the Kuratowski-Ulam theorem, A is comeager.

On the set $\{0,1\}^{\infty}$ we have the algebra of "elementary" (or "cylindrical", or "clopen") sets; these are the sets of the form $\{x: x[1: n] \in E\}, E \subset$ $\{0,1\}^{n}, n=1,2, \ldots$

8c5 Lemma. If $A \subset\{0,1\}^{\infty}$ is a measurable tail set then

$$
m(A \cap B)=m(A) m(B)
$$

for all elementary sets $B \subset\{0,1\}^{\infty}$.
Proof. Given n, we may treat $\{0,1\}^{\infty}$ as $Y \times Z$ where $Y=\{0,1\}^{n}$ and $Z=\{0,1\}^{\infty}$. Accordingly, $A=Y \times C$ for some $C \subset Z ; C$ is measurable and $m_{Z}(C)=m(A)$.

If $B=\tilde{B} \times Z, \tilde{B} \subset Y$, then $m_{Y}(\tilde{B})=m(B)$, and $A \cap B=\tilde{B} \times C$, thus $m(A \cap B)=m_{Y}(\tilde{B}) m_{Z}(C)=m(B) m(A)$.

Proof of Theorem 8c1. Two measures, $B \mapsto m(A \cap B)$ and $B \mapsto m(A) m(B)$, are equal (by Lemma 8c5) on the elementary algebra. By (the uniqueness part of) the Extension theorem (again!) they are equal on the generated σ-algebra (the Borel σ-algebra) and therefore on its completion, the Lebesgue σ-algebra on $\{0,1\}^{\infty}$.

In particular (for $B=A$), $m(A \cap A)=m(A) m(A)$, therefore $m(A)$ is either 0 or 1 .

Here is another kind of zero-one laws, not related (directly) to Fubini-like theorems.

8c6 Theorem. If a measurable $A \subset \mathbb{R}$ satisfies $m(A \triangle(A+r))=0$ for all rational r then A is either a null set or a set of full measure.

8 c 7 Theorem. If a set $A \in \mathrm{BP}(\mathbb{R})$ satisfies $[A]=[A+r]$ for all rational r then A is either meager or comeager.

Proof. Recall the selector $[A] \mapsto U(A) \in[A]$ discussed in Sect. 6c; $U(A)$ is open. We have $U+r=U$ for all rational r, which evidently implies either $U=\emptyset$ or $U=\mathbb{R}$.

8c8 Exercise. Prove Theorem 8 cc 6 by examining the measure $B \mapsto m(A \cap B)$.

Hints to exercises

8b3. 8b2 $\Longrightarrow(a) \Longrightarrow(b) \Longrightarrow(c) \Longrightarrow(d)$.

Index

measure quantifiers, 69
$\exists^{m}, 69$
tail function, 72
$\forall^{m}, 69$
tail set, 72

[^0]: ${ }^{1}$ Measurability of the inner integrals is easy to check.
 2 "Warning: I've seen the following theorem called the Carathéodory extension theorem, the Carathéodory-Fréchet extension theorem, the Carathéodory-Hopf extension theorem, the Hopf extension theorem, the Hahn-Kolmogorov extension theorem, and many others that I can't remember! We shall simply call it Extension Theorem. However, I read in Folland's book (p. 41) that the theorem is originally due to Maurice René Fréchet (18781973) who proved it in 1924." Paul Loya (page 33).

[^1]: ${ }^{1}$ B. Tsirelson, "Random compact set meets the graph of nonrandom continuous function", arXiv:1308.5112
 ${ }^{2}$ Another example from my older work: a so-called spectral set is a kind of random set that contains each point with probability zero, and therefore is (almost surely) of zero Lebesgue measure; see B. Tsirelson, "Nonclassical stochastic flows and continuous products", page 274.

