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6a Lebesgue measurable sets

Lebesgue measurable subsets of [0, 1] are a σ-algebra1 2 Am that contains the
σ-ideal of null sets. It is generated by open sets (or just open intervals) and
null sets. It contains the Borel σ-algebra, generated by open sets (or just
open intervals) only. All subsets of the Cantor set are Lebesgue measurable,
but only some of them are Borel measurable.

The measure of symmetric difference, (A,B) 7→ m(A4B) for A,B ∈ Am,
is a pseudometric on Am. The corresponding metric space Am/

m∼ consists
of equivalence classes [A] = {B ∈ Am : m(A4B) = 0} with the metric
ρ([A], [B]) = m(A4B).

Operations of complement, difference and finite or countable intersection
and union are well-defined for equivalence classes. If [An] = [Bn] for all n then
[∪nAn] = [∪nBn], etc. Also the partial order is well-defined for equivalence
classes: [A] ≤ [B] ⇐⇒ [A \B] = [∅].

In practice one often deals with equivalence classes only indirectly, via
their (arbitrary) representatives.

The metric space Am/
m∼ is separable and complete. It may be treated as

a closed subset of the (separable and complete) Hilbert space L2([0, 1]) (with
an equivalent metric). Anyway, I recall you the proof. Separability: rational
intervals and their finite unions are dense in Am/

m∼, since their closure leads
to a σ-algebra containing all intervals and all null sets. Completeness: every
Cauchy sequence contains a subsequence (An)n such that

∑
n ρ(An, An+1) <

∞. By the first Borel-Cantelli lemma, lim supn(An4An+1) is a null set.
That is, 1lAn(x) converge for almost all x ∈ [0, 1] to 1lA for some A. We
have lim infnAn ⊂ A ⊂ lim supnAn (up to a null set), therefore A ∈ Am.

1That is, closed under finite and countable unions (and intersections) and complement.
2Here m stands for Lebesgue measure.
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Now,
∫
|1lAn − 1lA| dm → 0 by the bounded convergence theorem; that is,

m(An4A)→ 0.
Every countable subset of Am has a supremum in Am; that is, for

A1, A2, · · · ∈ Am there exists (necessarily unique) the least A ∈ Am such
that ∀n An ⊂ A; namely, A = ∪nAn. For uncountable subset of Am the
supremum need not exist; ∪i∈IAi may be nonmeasurable (even if each Ai is
a singleton) and then the supremum does not exist (think, why).

In contrast, every subset of Am/
m∼ has a supremum! (You see, for the sin-

gletons [Ai] = [∅].) The reason is simple: the supremum of a dense countable
subset is also the supremum of the whole set (think, why).

Thus, Am/
m∼ is a complete Boolean algebra; it is well-known as the mea-

sure algebra (and can be defined axiomatically). It is (or was?) somewhat
controversial, whether or not probability theory can use the measure algebra
instead of probability space.1

Some equivalence classes of Am/
m∼ contain both open sets and closed

sets; for example, intervals (and their finite unions). These closed sets are
not unique: one may (at least) add a point. Similarly, from an open set one
may delete a point.

Some equivalence classes contain open sets but no closed sets; for example,
a dense open set not of full measure. The complement contains closed sets
but no open sets.

Some equivalence classes satisfy 0 < m(
(
A∩ (s, t)

)
< t− s for all (s, t) ⊂

[0, 1]; these contain neither open sets nor closed sets.
Lebesgue measure is regular:

(6a1) m(A) = sup
compact K⊂A

m(K) = inf
open G⊃A

m(G) .

It follows readily that each equivalence class contains both Fσ sets and Gδ

sets.
Similarly to the relation U  A we may introduce a relation U m A (or

equivalently, U m [A]), “A is of full measure on U”, by

U m A ⇐⇒ m(U \ A) = 0 .

The union of all such U is the greatest such U (due to 5d5), that is, the
greatest U such that U ⊂ A up to a null set (“interior” of [A]). If [A]
contains open sets, we get the greatest one. But generally this is not the
case, and it may happen that the “interior” is empty both for [A] and for
the complement. And even if [A] contains open sets, the greatest one need

1See: “Measure algebra” in Encyclopedia of mathematics wiki, and references there-
from.

http://www.encyclopediaofmath.org/index.php/Measure_algebra_(measure_theory)
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not be regular as defined in Sect. 6b. (If [A] contains a dense open set not
of full measure then it cannot contain a regular open set, since all sets of [A]
are dense).

6a2 Theorem. (Lebesgue’s density theorem) If A ⊂ R is Lebesgue measur-
able then

1

2δ
m
(
A ∩ [x− δ, x+ δ]

)
→ 1 as δ → 0

for almost all x ∈ A.

(For a null set A this holds vacuously.) The same applies to R \A, giving

1

2δ
m
(
A ∩ [x− δ, x+ δ]

)
→ 0 as δ → 0

for almost all x /∈ A.
Thus, the set

ϕ(A) =
{
x ∈ R :

1

2δ
m
(
A ∩ [x− δ, x+ δ]

)
→ 1

}
belongs to [A]. We have a selector, [A] 7→ ϕ(A) ∈ [A].

6a3 Exercise. If A ⊂ R is Lebesgue measurable then the set ϕ(A) is Borel
measurable.

Prove it.

Note that ϕ(A∩B) = ϕ(A)∩ϕ(B), but inclusions ϕ(A∪B) ⊃ ϕ(A)∪ϕ(B)
and ϕ(R \ A) ⊂ R \ ϕ(A) are generally strict.

Proof of Th. 6a2. 1 We have to prove that A \ ϕ(A) is a null set. We note
that A \ ϕ(A) = ∪εAε where

Aε =
{
x ∈ A : lim inf

δ→0

1

2δ
m
(
A ∩ [x− δ, x+ δ]

)
< 1− ε

}
;

it is sufficient to prove that each Aε is a null set. A set B = Aε satisfies
Bε = B (think, why). Now we may forget A, assume that a number ε > 0
and a set B of positive measure satisfy Bε = B, and seek a contradiction. In
addition we assume that B is bounded (otherwise consider B∩ (−n, n)) and,
for simpler notation, that m(B) = 1 (otherwise rescale).

Using (6a1) we take open G ⊃ B such that (1 − ε)m(G) < 1. Let us
define a “good” interval as a closed interval I such that I ⊂ G, m(I) > 0
and

m(B ∩ I) ≤ (1− ε)m(I) .

1Following Oxtoby, Sect. 3.
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The equality Bε = B ensures, for every x ∈ B, existence of arbitrarily short
good intervals centered at x. On the other hand, B cannot be covered by
disjoint good intervals I1, I2, . . . , not even up to a null set, since

m

(
B ∩

⋃
n

In

)
=
∑
n

m(B ∩ In) ≤ (1− ε)
∑
n

m(In) =

= (1− ε)m
(⋃

n

In

)
≤ (1− ε)m(G) < 1 = m(B) .

Seeking a contradiction we try to construct such In by a (sub)greedy algo-
rithm as follows.

On each step n we choose a good In disjoint to I1 ∪ · · · ∪ In−1 and sub-
optimal in the sense that

m(In) ≥ 1

2
sup

{
m(I) : I is good, disjoint to I1 ∪ · · · ∪ In−1

}
.

The process never stops, but misses a set

C = B \
⋃
n

In , m(C) ≥ 1− (1− ε)m(G) > 0 .

We introduce (not just good) intervals Jn by

Jn = [tn − 3rn, tn + 3rn] if In = [tn − rn, tn + rn] .

We take N such that ∑
k

m(IN+k) <
1

3
m(C) ,

then
∑

km(JN+k) < m(C); we choose

x̃ ∈ C \
⋃
k

JN+k = B \ (I1 ∪ · · · ∪ IN ∪ JN+1 ∪ JN+2 + . . . )

and a good interval Ĩ centered at x̃ and disjoint to the closed set I1∪· · ·∪IN .
We wonder, why does the greedy algorithm prefer the short intervals IN+k

to Ĩ. The only possible reason is that Ĩ intersects some IN+k. We consider
the least such k;

Ĩ ∩ (I1 ∪ · · · ∪ IN+k−1) = ∅ , Ĩ ∩ IN+k 6= ∅ .

Then, why prefer IN+k to Ĩ? Only because m(IN+k) ≥ 1
2
m(Ĩ). And here is

a contradiction:

Ĩ is centered at x̃ ; x̃ /∈ JN+k ;

m(IN+k) ≥
1

2
m(Ĩ) ; Ĩ ∩ IN+k 6= ∅ .
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Namely, denoting by y the center of IN+k (and JN+k) we have 3
2
m(IN+k) <

|x− y| ≤ 1
2
m(Ĩ) + 1

2
m(IN+k) ≤ 3

2
m(IN+k).

6b Regular open, regular closed

6b1 Definition. In a metrizable space,
(a) an open set G is regular if Int(Cl(G)) ⊂ G (and therefore Int(Cl(G)) =

G).1

(b) a closed set F is regular if Cl(Int(F )) ⊃ F (and therefore Cl(Int(F )) =
F ).

For example, the closed set {0} ⊂ R is not regular, and the open set
R \ {0} is not regular; but (0,∞) and [0,∞) are regular. The union of two
regular open sets need not be regular, but their intersection is regular (since
Int(Cl(G1 ∩G2)) ⊂ Int(Cl(G1)) ∩ Int(Cl(G2)) trivially).

Clearly, G is regular open if and only if X \G is regular closed.
We may also consider pairs (G,F ) of an open set G and closed F such

that F = Cl(G) and G = Int(F ). Calling them “regular pairs”2 we observe
canonical bijections between regular pairs, regular open sets, and regular
closed sets.

An open G is regular if and only if every neighborhood of every boundary
point contains points of all the three kinds: interior, boundary and exterior.
The same holds for closed sets.

(6b2) If G is regular open, U is open, and U \G 6= ∅ then U \ Cl(G) 6= ∅ .

(6b3) If G1, G2 are regular open and G1 6= G2 then there exists

a point interior to one of G1, G2 and exterior to the other.

6b4 Lemma. The closure of an arbitrary open set is a regular closed set.

Thus, the interior of an arbitrary closed set is a regular open set.

Proof of 6b4. Let G be open and F = Cl(G), then G is a dense subset of (F
and) Int(F ), therefore Cl(Int(F )) = Cl(G) = F .

Another proof of 6b4. Consider the “exterior” map ψ : G 7→ X \ Cl(G) =
Int(X \G) (of the set of all open sets to itself). Clearly,

(6b5) G1 ⊂ G2 =⇒ ψ(G1) ⊃ ψ(G2) .

1G ∈ RO(X) according to Kechris (Sect. 8.G).
2Not a standard terminology.
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Also, ψ(ψ(G)) = Int
(
X \ (X \ Cl(G))

)
= Int(Cl(G)), which implies, first,

(6b6) ψ(ψ(G)) ⊃ G ,

and second, that G is regular if and only if ψ(ψ(G)) ⊂ G.
Regularity of Cl(G) is equivalent to regularity of X \ Cl(G) = ϕ(G),

thus, to ψ(ψ(ψ(G))) ⊂ ψ(G). The latter follows immediately from (6b5),
(6b6).

6b7 Exercise. (a) For an open G the set Int(Cl(G)) is the least regular open
set containing G;

(b) for a closed F the set Cl(Int(F )) is the greatest regular closed set
contained in F .

Prove it.

The union of regular open sets need not be regular. Nevertheless, by
6b7, in the partially ordered set of all regular open sets every subset has the
supremum,

(6b8) sup
i∈I

Gi = Int

(
Cl

(⋃
i∈I

Gi

))
.

Similarly, in the partially ordered set of all regular closed sets every subset
has the infimum,

(6b9) inf
i∈I

Fi = Cl

(
Int

(⋂
i∈I

Fi

))
.

These two partially ordered sets are isomorphic (both being isomorphic to the
partially ordered set of regular pairs). Thus, each of these partially ordered
sets (or rather, this partially ordered set) is complete: every subset has the
infimum and the supremum.

By the way, regular pairs are closer to the ancient idea of geometric body
than sets. Speaking about a ball, ancient geometers did not mean the open
ball, nor the closed ball!

A set H ⊂ Rn is called regular-open, if it equals the interior of
its closure. H is said to be a geometric body, if it is bounded,
regular-open and Jordan measurable.

Miklós Laczkovich1

1“Paradoxical decompositions: a survey of recent results”, in: First European Congress
of Mathematics (Paris 1992), Vol. 2, Part 2, 159–184. (See page 180.)
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6c Sets with Baire property

Let X be a metrizable space. The σ-ideal of meager sets leads to an equiv-
alence relation1 on subsets of X, and the corresponding equivalence classes:
[A] = [B] if A4B is meager.

Once again, operations of complement, difference and finite or countable
intersection and union are well-defined for equivalence classes. If [An] = [Bn]
for all n then [∪nAn] = [∪nBn], etc. Also the partial order is well-defined
for equivalence classes: [A] ≤ [B] ⇐⇒ [A \ B] = [∅]. (These facts hold for
arbitrary σ-ideals.)

6c1 Exercise. The boundary of an open set is nowhere dense, but not always
null.

Prove it.

Thus, every open set is equivalent to its closure. Also, every closed set is
equivalent to its interior. In contrast to Sect. 6a, now an equivalence class
contains open sets if and only if it contains closed sets. Moreover, in this
case it contains regular open sets, as well as regular closed sets.

In a completely metrizable space, by 6b3 and Baire category theorem
3a11, regular open sets are never equivalent; the same holds for regular closed
sets.

6c2 Definition. A set A in a metrizable space X has the Baire property if
[A] contains open (equivalently, closed) sets. Symbolically: A ∈ BP(X).

6c3 Proposition. BP(X) is a σ-algebra.

In Sect. 6a the situation is different: sets equivalent to open sets are
a system closed under countable unions2 and finite intersections but not
countable intersections (since an equivalence class with no open sets still
contains Gδ sets.)

The σ-algebra BP(X) is generated by open sets and meager sets. It
contains the Borel σ-algebra, generated by open sets only. All subsets of
the Cantor set have the Baire property, but only some of them are Borel
measurable.

Proof of 6c3. Clearly, ∅ ∈ BP(X), and A ∈ BP(X) implies X \A ∈ BP(X).
Let A = ∪nAn and each An ∈ BP(X), that is, [An] = [Un] for some open Un.
Then [A] = [U ] where U = ∪nUn is open.

1Denoted by “=∗” by Kechris (Sect. 8.F).
2This fails for uncountable unions (think, why).
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Regretfully, BP(X) should not be called “Baire σ-algebra”, and sets with
the Baire property should not be called “Baire measurable”, since these terms
mean something different.

From now on (till the end of Sect. 6c) X is a completely metrizable
space. The corresponding set BP(X)/∼ of equivalence classes,1 as a partially
ordered set, is canonically isomorphic to the partially ordered set of regular
open sets (or pairs), since each equivalence class [A] contains exactly one
regular open set, denote it U(A). Thus, BP(X)/∼ is a complete Boolean
algebra. Also, we have a selector, [A] 7→ U(A) ∈ [A].

Compare this situation with Lebesgue’s density theorem 6a2. There,
informally, a set appears to be of full measure in an “infinitesimal neighbor-
hood” of x, for almost every x ∈ A (but generally not of full measure in any
“true” neighborhood). Here, in contrast, a set A is comeager in some (true,
not “infinitesimal”) neighborhood of x, for most of x ∈ A (and the proof here
is much simpler than that in Sect. 6a).

Also, compare the selector [A] 7→ ϕ(A) ∈ [A] of Sect. 6a with the selector
[A] 7→ U(A) ∈ [A] here. Once again, the selector respects the intersection,
but not union, nor complement. That is, U(A ∩ B) = U(A) ∩ U(B) (since
the latter is regular), while the inclusions U(A ∪ B) ⊃ U(A) ∪ U(B) and
U(X \ A) ⊂ X \ U(A) are generally strict. Also, ϕ(A) is Borel measurable
(in fact, Fσδ), while U(A) is regular open.

The relation U  A (equivalently, U  [A]) is easy to describe in terms
of the regular open set U(A) ∈ [A]. First, U  A ⇐⇒ U  U(A). Second,
this evidently holds if U ⊂ U(A). Otherwise it cannot hold (by (6b2) and
the Baire category theorem). We see that

(6c4) U  A ⇐⇒ U ⊂ U(A) .

6c5 Exercise. The following two conditions are equivalent for an arbitrary
A ⊂ X:

(a) A has the Baire property;
(b) there exist disjoint open sets U, V ⊂ X such that U ∪ V is dense and

U  A, V  X \ A.
Prove it.

6c6 Exercise. The Banach-Mazur game of a set with the Baire property is
determined.

Prove it.

Thus, a Vitali set does not have the Baire property.

1BP(X)/MGR(X), according to Kechris (Sect. 8.G).
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We know that [0, 1] = A]B for some A,B such that A is of full measure
but meager, while B is comeager but null. An arbitrary subset of A has
the Baire property but need not be Lebesgue measurable. An arbitrary
subset of B is Lebesgue measurable but need not have the Baire property.
In particular, let V be a Vitali set, then V ∩ A is meager but not Lebesgue
measurable, while V ∩B is null but does not have the Baire property.

6d No isomorphism

We have two complete partially ordered sets (in fact, Boolean algebras):
Am/

m∼ and BP /∼ (I mean, BP([0, 1])/∼; let both be taken over [0, 1]). They
differ in their relations to open sets on [0, 1] etc., but we still did not observe
any intrinsic distinction. Are they isomorphic as partially ordered sets? In
other words: whether there exists an order preserving bijection ϕ : BP /∼ →
Am/

m∼, or not? “Order preserving” means

a ≤ b ⇐⇒ ϕ(a) ≤ ϕ(b) for all a, b ∈ BP /∼ .

We know that BP /∼ is isomorphic to RO (regular open sets). Also, every
homeomorphism [0, 1] → [0, 1] leads readily to an automorphism (that is,
isomorphism to itself) of BP /∼ (in contrast to Am/

m∼).

6d1 Exercise. An isomorphism (that is, order preserving bijection) ϕ :
BP /∼ → Am/

m∼ preserves operations of complement, difference and finite or
countable intersection and union, as well as suprema and infima of arbitrary
sets.

Prove it.

6d2 Exercise. Let ϕ : BP /∼ → Am/
m∼ be an isomorphism. Then the

function
[0, 1] 3 t 7→ m

(
ϕ([0, t])

)
∈ [0, 1]

is a homeomorphism of [0, 1].
Prove it.

Thus, having some ϕ we can construct another ϕ satisfying

m
(
ϕ([0, t])

)
= t for all t ∈ [0, 1] ;

this is assumed from now on.

6d3 Exercise. Let an open G ⊂ [0, 1] be a finite union of open intervals;
then

m
(
ϕ([G])

)
= m(G) .

Prove it.
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We take open intervals I1, I2, · · · ⊂ [0, 1] such that G = I1 ∪ I2 ∪ . . . is
dense in [0, 1] but m(G) < 1, and consider Gn = I1 ∪ · · · ∪ In.

6d4 Exercise. Prove that supn[Gn] =
[
[0, 1]

]
(the equivalence class of the

whole [0, 1]).

On the other hand, m
(
ϕ([Gn])

)
= m(Gn), therefore

m
(

sup
n
ϕ([Gn])

)
= sup

n
m
(
ϕ([Gn])

)
= sup

n
m(Gn) = m(G) < 1 .

And we got a contradiction:

m
(
ϕ
(

sup
n

[Gn]
))

= 1 , m
(

sup
n
ϕ([Gn])

)
< 1 .

We summarize.

6d5 Proposition. The partially ordered sets Am/
m∼ and BP /∼ are not

isomorphic.

Hints to exercises

6a3: the function x 7→ m(A ∩ [x− δ, x+ δ]) is Lipschitz continuous.

6d1: start with suprema and infima.

6d2: use (6b8), (6b9).

6d3: use 6d1.

6d4: use (6b8).

Index

Baire property, 58
Borel σ-algebra, 52

equivalence class, 52

geometric body, 57

isomorphic, 59, 60

Lebesgue’s density theorem, 54

regular closed, 56
regular open, 56
regular pair, 56

σ-algebra, 52

selector, 54, 59
supremum in Am, 53
supremum in Am/

m∼, 53
symmetric difference, 52

Am, 52
Am/

m∼, 52
BP, 58
BP /∼, 59
A4B, 52
[A] ≤ [B], 52
ϕ(A), 54
ρ([A], [B]), 52
m, 53


	Good sets and their equivalence classes
	Lebesgue measurable sets
	Regular open, regular closed
	Sets with Baire property
	No isomorphism
	Hints to exercises
	Index

	Index

