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5a Discontinuous derivatives

Let me start this section with a quote from Wikipedia:1

An example of a differentiable function whose derivative is not
continuous (at x = 0) is the function equal to x2 sin(1/x) when
x 6= 0, and 0 when x = 0. An infinite sum of similar functions
(scaled and displaced by rational numbers) can even give a dif-
ferentiable function whose derivative is not continuous anywhere.

So, we consider the function α(x) = x2 sin 1
x
, α(0) = 0, note that α′(x) =

2x sin 1
x
− cos 1

x
, α′(0) = 0, and

lim inf
x→0

α′(x) = −1 , lim sup
x→0

α′(x) = 1 .

We choose some an, cn ∈ R such that an are pairwise distinct (possibly dense)
and

∑
n(1 + |an|)|cn| <∞. The series

β(x) =
∞∑
n=1

cnα(x− an)

converges locally uniformly,2 since |α(x)| ≤ |x|. That is, βn =
∑n

k=1 ckα(· −
ak) → β locally uniformly. Clearly, β′n is discontinuous at a1, . . . , an and
continuous at every other point. Does it mean that β′ is discontinuous at
a1, a2, . . . and continuous at every other point? But first, is β differentiable?

1Article “Baire function”, old version of 1 June, 2013.
2That is, uniformly on [−M,M ] for every M > 0.

https://en.wikipedia.org/w/index.php?title=Baire_function&oldid=557868592
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Yes, β is differentiable, and β′(x) =
∑∞

n=1 cnα
′(x−an), since α′(x) ≤ 3 for

all x (therefore |α(x)−α(y)| ≤ 3|x−y|) and, denoting γn(x) = β(x)−βn(x) =∑∞
k=n+1 ckα(x− ak), we have

β(x+ h)− β(x)

h
=
βn(x+ h)− βn(x)

h
+
γn(x+ h)− γn(x)

h
;

β′n(x)︸ ︷︷ ︸
−→
n

∑∞
k=1 ckα

′(x−ak)

− 3
∞∑

k=n+1

|ck|︸ ︷︷ ︸
−→
n

0

≤ lim inf
h→0

β(x+ h)− β(x)

h
≤

≤ lim sup
h→0

β(x+ h)− β(x)

h
≤ β′n(x) + 3

∞∑
k=n+1

|ck| .

In order to examine (dis)continuity of β′ we introduce oscillation function
ωf of an arbitrary locally bounded1 f : R→ R by

ωf (x) = inf
δ>0

sup
s,t∈(x−δ,x+δ)

|f(s)− f(t)|︸ ︷︷ ︸
diam f((x−δ,x+δ))

.

Clearly, f is continuous at x if and only if ωf (x) = 0.

5a1 Exercise. The set {x : ωf (x) < ε} is open (for arbitrary f and ε).
Prove it.

The oscillation is a bit similar to a (semi)norm:

5a2 Exercise. Prove that
(a) ωcf = |c|ωf for c ∈ R, f : R→ R;
(b) ωf+g ≤ ωf + ωg;
(c) |ωf − ωg| ≤ ωf−g;
(d) sup(−M.M) ωf ≤ 2 sup(−M.M) |f |;
(e) if fn → f locally uniformly then ωfn → ωf locally uniformly.

We have ωα′ = 2 · 1l{0}. Thus, ωβ′
n

=
∑n

k=1 |ck| · 1l{ak} (since ωf−g(x) = 0
implies ωf (x) = ωg(x)). Also, β′n → β′ uniformly. Thus, ωβ′ =

∑∞
k=1 |ck| ·

1l{ak}.
We see that (not unexpectedly) β′ is discontinuous at a1, a2, . . . and only

at these points. Accordingly, the quoted phrase “whose derivative is not

1That is, bounded on [−M,M ] for all M > 0.
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continuous anywhere” should be interpreted as “whose derivative is not con-
tinuous on any interval”.

Similarly one can construct a continuous function

x 7→
∞∑
n=1

cn|x− an|

not differentiable at a1, a2, . . . (possibly a dense set) and differentiable at
every other point. However, this example is much less monstrous than the
famous monster of Weierstrass, a continuous function differentiable nowhere,
— not even at a single point.

A question arises naturally: can a derivative (of a differentiable function)
be discontinuous at every point?

5b Baire class 1 (classical)

5b1 Definition. A function f : X → R on a separable metrizable space
X is of Baire class 1 if there exist continuous f1, f2, · · · : X → R such that
fn(x)→ f(x) for all x ∈ X.

5b2 Exercise. If f : R→ R is differentiable then f ′ is of Baire class 1.
Prove it.

5b3 Theorem (Baire). A Baire class 1 function on a Polish space is contin-
uous quasi-everywhere.

5b4 Corollary. If f : R → R is differentiable then f ′ is continuous quasi-
everywhere.

5b5 Corollary. The Dirichlet function 1lQ is not of Baire class 1, therefore,
not a derivative.

Before proving the theorem let us think about the interior of the union
and the union of interiors. Trivially, Int(A ∪ B) ⊃ (IntA) ∪ (IntB). It
happens readily that (IntA) ∪ (IntB) = ∅ but Int(A ∪ B) = R. On the
other hand, (IntF1) ∪ (IntF2) = ∅ implies Int(F1 ∪ F2) = ∅ for closed sets
F1, F2 by 1d4(a). The simple example F1 = [a, b], F2 = [b, c] shows that
Int(F1 ∪ F2) can exceed (IntF1) ∪ (IntF2). Indeed, (a, c) 6= (a, b) ∪ (b, c),
but the tiny distinction disappears if we take the closure. It appears that
Cl
(
Int(F1 ∪ F2)

)
= Cl

(
(IntF1) ∪ (IntF2)

)
, and moreover. . .

5b6 Exercise.

Cl

(
Int
(⋃

n

Fn

))
= Cl

(⋃
n

IntFn

)
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whenever F1, F2, . . . are closed sets in a completely metrizable space X.
(a) Prove it.
(b) If X is just metrizable (not completely) then it can happen that

Cl
(
Int
(
∪nFn

))
= X but Cl

(
∪n IntFn

)
= ∅; find an example.

(c) For an uncountable family (Fi)i∈I of closed subsets of R it can happen
that Cl

(
Int
(
∪i∈IFi

))
= R but Cl

(
∪i∈I IntFi

)
= ∅; find an example.

In every case, Int
(
∪i∈IFi

)
⊃ ∪i∈I IntFi trivially. The point is that

(5b7)
⋃
n

IntFn is dense in Int

(⋃
n

Fn

)
due to completeness.

Proof of Theorem 5b3. We have continuous fn : X → R, fn → f pointwise,
and want to prove that {x : ωf (x) = 0} is comeager. It is sufficient to prove
for every ε > 0 that the set {x : ωf (x) ≥ 3ε} is nowhere dense.

We consider sets

Fn =
{
x : diam{fn(x), fn+1(x), . . . } ≤ ε

}
=
⋂
k,l

{x : |fn+k(x)− fn+l(x)| ≤ ε} ;

they are closed, F1 ⊂ F2 ⊂ . . . , and ∪nFn = X (since fn converge pointwise).
By (5b7), ∪n IntFn is dense (in X). It remains to prove that this dense open
set does not intersect {x : ωf (x) ≥ 3ε}.

Let x ∈ ∪n IntFn, that is, x ∈ IntFn for some n. We note that |fn(·) −
f(·)| ≤ ε on Fn. Thus, ωf−fn(·) ≤ 2ε on IntFn, and finally, ωf = ωf−fn ≤
2ε < 3ε on IntFn (by continuity of fn; recall 5a2 and the paragraph after
it).

The converse (to 5b3) fails. For example, consider the Cantor set C ⊂ R
and a countable A ⊂ C dense in C. Introduce the indicator function 1lA (a
bit like the Dirichlet function on C). Its discontinuity points are exactly the
points of C. Thus, 1lA is continuous quasi-everywhere on R. Nevertheless it
is not of Baire class 1, since its restriction to C is not!

5b8 Corollary (to 5b3). If f is a Baire class 1 function on a Polish space
X then for every closed F ⊂ X the restriction f |F is continuous quasi-
everywhere on F .

Here is a generalization of Lemma 2b1 (based on Th. 5b3).
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5b9 Proposition. Let X be a Polish space and fn : X → R continuous
functions. Then

lim sup
n→∞,y→x

fn(y) = lim sup
n→∞

fn(x) ∈ (−∞,+∞]

for quasi all x ∈ X.

5b10 Exercise. It can happen for continuous fn : [0, 1] → [0, 1] that
lim supn→∞,y→x fn(y) = 1 for all x ∈ [0, 1], but lim supn→∞ fn(x) = 0 for
almost all x ∈ [0, 1].

Find an example.

Proof of 5b9. For every n the function gn : x 7→ supk fn+k(x) is of Baire
class 1. By Theorem 5b3 quasi all x are points of continuity of all gn. It is
sufficient to check the equality for such x. Assume the contrary:

lim sup
n→∞,y→x

fn(y) > a > lim sup
n→∞

fn(x)

for some a ∈ R. We note that gn(x) ↓ lim supn fn(x) and take n such that
gn(x) < a. Using continuity of gn at x we take a neighborhood U of x
such that supy∈U gn(y) < a. We get a contradiction: lim supn; y→x fn(y) >
supy∈U ; k fn+k(y).

Lemma 2b1 follows immediately: if lim supn; y→x fn(y) ≥ c for all x then
lim supn fn(x) ≥ c for quasi all x.

5c Baire class 1 (modern)

Given two separable metrizable spaces X, Y , we consider maps f : X → Y
and wonder, what could “Baire class 1” mean in this case? An example
R→ {0, 1} shows that we should not follow 5b1.

Recall that an Fσ set in a separable metrizable space is, by definition,
a countable union of closed sets. Thus, a closed set is an Fσ set, and a
countable union of Fσ sets is an Fσ set.

5c1 Exercise. (a) The intersection of two (or finitely many) Fσ sets is an
Fσ set;

(b) Every open set is an Fσ set;
(c) if F1, F2 are closed then F1 \ F2 is an Fσ set.

Prove it.
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The complement of an Fσ set is a Gδ set, that is, a countable intersection
of open sets; and every Gδ set is an Fσδ set (countable intersection of Fσ sets)
due to 5c1(b).

Some sets are both Fσ and Gδ; in particular, all closed sets are, and all
open sets are. This class of sets (that are both Fσ and Gδ) is closed under
finite unions, finite intersections, and complement (it is an algebra of sets).

A dense Gδ set is comeager.

5c2 Exercise. If A ⊂ R is both Fσ and Gδ then (IntA)∪ Int(R\A) is dense.
Prove it.

In particular, for such A it cannot happen that A is dense and R \ A is
also dense. For example, Q (the rationals) is Fσ and not Gδ. Also, R \Q is
Gδ (and therefore Fσδ) but not Fσ.

5c3 Exercise. (a) For every f : R→ R the set of all continuity points of f
is a Gδ set.1

(b) The same holds for f : X → Y .
Prove it.

5c4 Definition. A map f : X → Y between separable metrizable spaces is
of Baire class 1 if f−1(V ) is an Fσ set for every open V ⊂ Y .

5c5 Exercise. If f : X → R is of Baire class 1 according to Definition 5b1
then it is of Baire class 1 according to Definition 5c4.

Prove it.

The converse needs more effort.

5c6 Lemma. (“Reduction property for Fσ”) For arbitrary Fσ sets A1, . . . , An
there exist pairwise disjoint Fσ sets B1, . . . , Bn such that B1 ⊂ A1, . . . , Bn ⊂
An and B1 ∪ · · · ∪Bn = A1 ∪ · · · ∪ An.

Proof (sketch). Bk = ∪iSk,i where Sk,i
are differences of closed sets, therefore
Fσ sets.

S1,1 S2,1

S2,2S1,2

If in addition A1 ∪ · · · ∪ An = X then each Bk must be both Fσ and Gδ.

5c7 Lemma. If B ⊂ X is both Fσ and Gδ then 1lB is of Baire class 1
according to Definition 5b1.

1This set may be empty, of course.
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Proof (sketch). We take closed F ′n ↑ B, F ′′n ↑ X \B and define

fn(x) =
dist(x, F ′′n )

dist(x, F ′n) + dist(x, F ′′n )
,

then fn are continuous, and fn → 1lB pointwise.

5c8 Lemma. Let εn > 0,
∑

n εn < ∞, and fn : X → [−εn, εn] are of Baire
class 1 according to Definition 5b1. Then f = f1 + f2 + . . . also is of Baire
class 1 according to Definition 5b1.

Proof. Having continuous gn,i : X → [−εn, εn], gn,i −→
i
gn we introduce gi =

g1,i + g2,i + · · ·+ gi,i, then

lim inf
i

(g1,i + g2,i + · · ·+ gn,i)︸ ︷︷ ︸
=f1+···+fn−→

n
f

−
∑
k

εn+k︸ ︷︷ ︸
−→
n

0

≤ lim inf
i

gi ≤

≤ lim sup
i

gi ≤ lim sup
i

(g1,i + g2,i + · · ·+ gn,i)︸ ︷︷ ︸
=f1+···+fn−→

n
f

+
∑
k

εn+k︸ ︷︷ ︸
−→
n

0

,

therefore gi −→
i
f .

5c9 Corollary. If f, fn : X → R, fn → f uniformly, and each fn is of Baire
class 1 according to Definition 5b1 then f also is.

5c10 Proposition. Definition 5c4 for Y = R is equivalent to Definition 5b1.

Proof (sketch). By 5c5, 5b1 =⇒5c4.
Assume 5c4 for f : X → R. We may assume in addition that f is bounded

(otherwise we turn to, say, arctan f and force fn into (−π/2, π/2)). We
cover f(X) ⊂ R by small open intervals V1, . . . , Vn (they overlap, of course),
consider Fσ sets Ak = f−1(Vk) and note that A1 ∪ · · · ∪ An = X. Lemma
5c6 given B1, . . . , Bn, and we approximate f (uniformly) by a function fn
constant on each Bk. Due to 5c7, fn is of Baire class 1 according to Definition
5b1. It remains to apply 5c9.

So, Definition 5b1 is generalized. Now we’ll generalize Theorem 5b3.

5c11 Theorem (Baire). A Baire class 1 map from a Polish space to a sep-
arable metrizable space is continuous quasi-everywhere.
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Proof. Given f : X → Y , we choose a countable base (Vn)n of Y and note
that f is continuous at x if and only if

∀n
(
f(x) ∈ Vn =⇒ f(·) ∈ Vn near x

)
,

that is,
∀n

(
x ∈ f−1(Vn) =⇒ x ∈ Int(f−1(Vn))

)
.

We write the set of all discontinuity points of f as⋃
n

(
f−1(Vn) \ Int f−1(Vn)

)
and note that each f−1(Vn) \ Int f−1(Vn) is an Fσ set with no interior points,
therefore, a meager set.

Finally, we generalize 5b8.

5c12 Corollary. Let X be Polish. If f : X → Y is of Baire class 1 then for
every closed F ⊂ X the restriction f |F is continuous quasi-everywhere on F .

Guess, what about the converse?

5d The converse holds

Now we deal with a map f : X → Y between separable metrizable spaces
X, Y (and use Def. 5c4, not 5b1).

5d1 Theorem (Baire). If for every nonempty closed set F ⊂ X the re-
striction f |F has a point of continuity (at least one) then f is of Baire class
1.

In combination with 5c12 it gives the following.

5d2 Corollary. If X is a Polish space then the following three conditions
on f are equivalent:

(a) f is of Baire class 1;
(b) f |F is continuous quasi-everywhere on F , for every nonempty closed

set F ⊂ X;
(c) f |F has a point of continuity, for every nonempty closed set F ⊂ X.

5d3 Lemma. f is of Baire class 1 if and only if for all open V0, V1 ⊂ Y such
that V0 ∪ V1 = Y there exist Fσ sets A0, A1 ⊂ X such that A0 ∪A1 = X and
f(A0) ⊂ V0, f(A1) ⊂ V1.
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Proof. “Only if” (“⇒”) is trivial: take A0 = f−1(V0), A1 = f−1(V1).
“If” (“⇐”): let V ⊂ Y be open; we have to prove that f−1(V ) is an

Fσ set. The closed set Y \ V being Gδ, we take open Vn ⊂ Y such that
∩nVn = Y \ V . We note that V ∪ Vn ⊃ V ∪ (Y \ V ) = Y for each n, and
choose1 Fσ sets An, Bn ⊂ X such that An∪Bn = X, f(An) ⊂ V , f(Bn) ⊂ Vn.
It remains to check that f−1(V ) = ∪nAn. “⊃” is trivial; “⊂”: if x ∈ f−1(V )
then f(x) ∈ V = Y \∩nVn = ∪n(Y \Vn), thus f(x) /∈ Vn for some n, therefore
x /∈ Bn, hence x ∈ An.

From now on, till the end of the proof of Theorem 5d1, we fix a map
f : X → Y , open sets V0, V1 ⊂ Y such that V0 ∪ V1 = Y , and call an open
U ⊂ X a “good” set,if there exist Fσ sets A0, A1 ⊂ X such that A0∪A1 = U
and f(A0) ⊂ V0, f(A1) ⊂ V1.

5d4 Exercise. If U1, U2, . . . are good then ∪nUn is good.
Prove it.

5d5 Exercise. For every family (Ui)i∈I of open sets Ui ⊂ X there exists a
(finite or) countable J ⊂ I such that2 ∪i∈IUi = ∪i∈JUi.

Prove it.

5d6 Corollary. The union of all good sets is a good set, — the greatest
good set.

Proof of Theorem 5d1. Due to 5d3 and 5d6 it is sufficient to prove that the
greatest good set Ũ is the whole X. Assume the contrary. Consider a
nonempty closed set F = X \ Ũ . The restriction f |F is continuous at some
x ∈ F . Assume that f(x) ∈ V0 (otherwise f(x) ∈ V1, which is completely
similar). We have f(U ∩ F ) ⊂ V0 for some open neighborhood U of x. In
order to get a contradiction it remains to check that Ũ ∪ U is a good set.

We have Ã0 ∪ Ã1 = Ũ , f(Ã0) ⊂ V0, f(Ã1) ⊂ V1 for some Fσ sets Ã0, Ã1.
The set A0 = Ã0 ∪ (U ∩ F ) is Fσ; A0 ∪ Ã1 = Ũ ∪ U (since U \ Ũ = U ∩ F );
f(A0) ⊂ V0; thus, Ũ ∪ U is a good set.

5e Riemann integrability

Functions that are continuous almost everywhere (rather than quasi-every-
where) appear in the well-known Lebesgue’s criterion for Riemann integra-
bility: a bounded function on [0, 1] is Riemann integrable if and only if it is

1Some choice axiom is needed; the countable choice axiom, weaker than the dependent
choice axiom, is sufficient.

2Every second-countable topological space is strongly Lindelöf.
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continuous almost everywhere. This condition can be violated by Baire class
1 functions and moreover, by bounded derivatives, as we’ll see.

An open set in R is a (finite or) countable union G = ∪n(an, bn) of
pairwise disjoint open intervals. It can be of finite (even small) measure and
nevertheless dense in R (therefore comeager). Here an interesting function
related to G:

f(x) = α

(
(x− an)(bn − x)

bn − an

)
for x ∈ (an, bn) ,

f(x) = 0 for x ∈ R \G ;

here α(x) = x2 sin 1
x
, as in Sect. 5a. It is easy to see that

|f(x)| ≤
(
dist(x,R \G)

)
2 since |α(x)| ≤ x2 ,

which implies differentiability of f ; f ′(x) = 0 for x ∈ R \G;

|f ′(x)| ≤ 3 for all x , since |α′(·)| ≤ 3 ;

lim inf
x→an+

f ′(x) = lim inf
x→bn−

f ′(x) = −1 , lim sup
x→an+

f ′(x) = lim sup
x→bn−

f ′(x) = 1 ,

which implies discontinuity of f ′ on Cl(G) \G (generally not a null set).
Countable sets (in R) are both null and meager, of course. Every in-

creasing (or piecewise monotone) function has (at most) countable set of
discontinuities. The same holds for differences of increasing functions, the
functions of locally bounded variation.

Some seemingly bad functions have only countably many discontinuities.
For example, functions fn defined by

fn(x) =
∞∑
k=1

2−kb(2k−1)2n for x =
∞∑
k=1

2−kbk

(where bk are the binary digits of x) on (0, 1) treated as a probability space
(with Lebesgue measure) are independent random variables distributed uni-
formly on (0, 1). They are a measure preserving map from the one-dimensional
interval to an infinite-dimensional cube. Still, they are uniform limits of step
functions, discontinuous only at points of the form k/2n. However, they are
not differences of increasing functions.

Consider the indicator of the Cantor set. Its set of discontinuity points is
exactly the Cantor set, a meager null set of cardinality continuum. However,
the “fat Cantor set” is meager but not null. Its indicator is of Baire class 1
but not Riemann integrable.
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We may also ask about existence of Riemann-Stieltjes integrals∫ 1

0
f(x) dg(x) for all increasing bijections g : [0, 1] → [0, 1] (they are home-

omorphisms). By change of variable,
∫
f(x) dg(x) =

∫
f(g−1(x)) dx; thus,

the Riemann-Stieltjes integrability of f for all g is equivalent to Riemann
integrability of f(g−1(·)) for all g; equivalently, g(Af ) must be a null set for
all g, where Af is the discontinuity set of f . Evidently, countability of Af is
sufficient. Less evidently, it is also necessary, as we’ll see.

Recall that a nonempty closed set without isolated points is called perfect.

5e1 Exercise. Every uncountable closed set (in R) contains a perfect subset.
Prove it.

5e2 Lemma. For every perfect set F ⊂ R there exists a continuous bijective1

map {0, 1}∞ → F .

Proof. We choose x0, x1 ∈ F , x0 < x1. Then we choose x00, x01, x10, x11 ∈ F
such that x00 < x01 < x10 < x11 and |xij − xi| ≤ 2−1. Then x000, . . . , x111,
|xijk − xij| ≤ 2−2. And so on. Finally, f(b1, b2, . . . ) = limn xb1,...,bn .

By the way, we see that every perfect set (and therefore every uncountable
closed set) in R is of cardinality continuum.

5e3 Corollary. For every uncountable closed set F ⊂ R there exists a
nonatomic probability measure on F . (Take the image of the “Lebesgue
measure on {0, 1}∞”.)

It follows that the same holds for every uncountable Fσ set, and therefore,
due to 5c3, for uncountable set Af of discontinuities. Having such measure
µ we take g(x) = 1

2

(
x+ µ((0, x))

)
and get m(g(Af )) = 1

2

(
m(Af ) + µ(Af )

)
≥

1
2
> 0 (m being Lebesgue measure). Thus, the Riemann-Stieltjes integral∫
f(x) dg(x) does not exist.

1Therefore, homeomorphic (by compactness).



Tel Aviv University, 2013 Measure and category 51

Hints to exercises

5a2: (c) use (b); (e) use (c), (d).

5b2: x 7→ (f(x+ h)− f(x))/h.

5b6: (a) if U = Int(∪nFn) \ Cl(∪n IntFn) 6= ∅ then Fn are meager in U but
∪nFn is not;
(b) try X = Q.

5b10: think about (say) cos2m nx.

5c1: (a) (∪kF ′k) ∩ (∪lF ′′l ) = . . . ;
(b) think about dist(x,X \ U);
(c) F1 ∩ (X \ F2).

5c2: use (5b7).

5c3: (a) use 5a1; (b) generalize.

5c5: f(x) ∈ (a, b) if and only if ∃ε, n ∀k fn+k(x) ∈ [a+ ε, b− ε].
5d4: take the union of the Fσ sets.

5d5: take a countable base (Vn)n and choose in such that Uin ⊃ Vn whenever
possible.

5e1: consider all rational open intervals that contain only a countable portion
of the given set.
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