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4a Vitali set

The choice axiom implies existence of sets that are not Lebesgue measurable,
as well as sets such that the corresponding Banach-Mazur game is not deter-
mined, that is, has no winning strategy, neither for Alice nor Bob. In fact,
the same set can serve both cases.

Recall that a Vitali set is a set V ⊂ [0, 1) such that for every x ∈ R
there exists one and only one v ∈ V such that x − v is rational. That is,
V chooses one element in each equivalence class Q + x of the equivalence
relation x ∼ y ⇐⇒ x− y ∈ Q; here Q is the set of all rational numbers.
Existence of such V follows immediately from the choice axiom.

Clearly, the (countably many of uncountable) sets V + q for q ∈ Q are a
partition of R. In addition,

[0, 1) ⊂
⋃

q∈Q∩(−1,1)

V + q ⊂ (−1, 2) .

It follows easily that V cannot be Lebesgue measurable. First, it cannot be
a null set, since ∪q∈Q∩(−1,1)V + q is not a null set. Second, it cannot be a
(measurable) set of positive measure, since ∪q∈Q∩(−1,1)V + q is not a set of
infinite measure.

Similarly, V cannot be meager, since ∪q∈Q∩(−1,1)V + q is not meager.

4a1 Lemma. A Vitali set cannot be comeager in a nonempty open set.

Recall the relation U  A; note its evident properties: monotonicity,

U1 ⊂ U2 , U2  A =⇒ U1  A ;

A1 ⊂ A2 , U  A1 =⇒ U  A2 ;
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intersection,

U  A1, U  A2, . . . =⇒ U  A1 ∩ A2 ∩ . . . ,

invariance under homeomorphisms (in particular, shifts of R), and a nonev-
ident property: in a completely metrizable space

U  A =⇒ A 6= ∅ ,

just another formulation of the Baire category theorem.

Proof of 4a1. Assume that (a, a + 2ε)  V . Take q ∈ Q ∩ (0, ε). On one
hand, (a + ε, a + 2ε) ⊂ (a + q, a + 2ε + q)  V + q. On the other hand,
(a+ ε, a+ 2ε) ⊂ (a, a+ 2ε)  V . Thus, (a+ ε, a+ 2ε)  V ∩ (V + q) = ∅; a
contradiction.

By the way, a similar argument may be used when proving that V cannot
be of positive measure. Indeed, for every set V of positive measure there
exists an interval (a, a+ ε) such that m

(
V ∩ (a, a+ ε)

)
≥ 0.9ε. . .

We summarize.

4a2 Proposition. If V is a Vitali set then the corresponding Banach-Mazur
game is not determined.

The possibility of indeterminateness makes the Banach-Mazur
game particularly interesting for the general theory of games. It
also raises some interesting questions. If a game is determined in
favor of one of the players, should it be called a game of ”skill”?
If neither player can control the outcome, is the outcome a matter
of ”chance”? What does ”chance” mean in this connection?

Oxtoby1

4b No choice

The Baire category theorem in a Polish2 space can be proved without any
choice axiom,3 in ZF (the Zermelo-Fraenkel set theory).

First of all, a clarification (for non-experts in logic). Saying “this set is
nonempty; we choose one of its elements and denote it by x” we do not use

1“Measure and category”, near the end of Sect. 6.
2Not just completely metrizable!
3Why “any choice axiom” rather than “the choice axiom”? Wait for Sect. 4c. . .
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any choice axiom. Rather, we use the first order logic (predicate calculus),
namely, existential elimination (=instantiation):

∀x
(
P (x) =⇒ Q

)
& ∃xP (x) =⇒ Q .

Here is an example.
Claim: let X be a countable set; then there exists a function f : 2X → X

such that f(A) ∈ A for all nonempty A ⊂ X. Proof: we choose a numbering
of X, that is, a bijection ϕ : X → {1, 2, . . . } and define f by f(A) =
ϕ−1

(
minϕ(A)

)
. (No choice axiom needed.)

On the other hand, saying “each Ai is nonempty; we choose an element
in each Ai and denote it by xi” we need a choice axiom (unless i runs over a
finite set). Here is an example.

Claim: the countable union of countable sets is a countable set. Proof
(sketch): given countable Xn for n = 1, 2, . . . we choose bijections ϕn : Xn →
{1, 2, . . . } and note that the set {(n, x) : n = 1, 2, . . . ;x ∈ Xn;n + ϕn(x) =
M} is finite for every M = 2, 3, . . . (A choice axiom needed.)

Nevertheless the set of rational numbers is provably countable, still (with
no choice); think, why.

So, a Polish space X is given, nowhere dense sets A1, A2, · · · ⊂ X and a
nonempty open set U0 ⊂ X. We have to prove that U0 \ ∪nAn 6= ∅ (with no
choice).

Proof. We take a countable base (Un)n of X (its existence, proved in 3a6,
does not need a choice). We consider1 the least n1 such that diamUn1 ≤
2−1 and Cl(Un1) ⊂ U0 \ Cl(A1). Then we consider the least n2 such that
diamUn2 ≤ 2−2 and Cl(Un2) ⊂ Un1 \ Cl(A2). And so on.2 We get (nk)k, and
∩kUnk

= {x}, x ∈ U0 \ ∪nAn.

4c Dependent choice

The Baire category theorem in a completely metrizable3 space can be proved
with an axiom weaker than the choice axiom, the so-called dependent choice
axiom.

Axiom of dependent choice (DC). Let A be a nonempty set and R ⊂ A×A
satisfy ∀a ∈ A ∃b ∈ A (a, b) ∈ R. Then there exists an infinite sequence
(an)n such that (an, an+1) ∈ R for n = 1, 2, . . . .

1Not “choose”!
2By induction. It is crucial that no arbitrary choice is involved on n-th step.
3Generally, nonseparable.
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Existence of a finite sequence of this kind is easy to prove by induction.
Also, existence of an infinite sequence is evident if A is countable. However,
DC is not provable in ZF.1

The choice axiom (AC) implies DC as follows: it gives a function f :
A → A such that

(
a, f(a)

)
∈ R for all a ∈ A (a “choice function”); we

choose a1 ∈ A and define (an)n recursively: an+1 = f(an).
On the other hand, DC does not imply AC (that is, AC is not provable

in ZF+DC unless the latter is inconsistent).
You may ask: why bother? The choice axiom is widely accepted in math-

ematics.

Here is my attitude. I do not doubt that AC is true, and
still, I discriminate mathematical objects obtainable in
ZF+DC (call them “tame”) from these obtainable in
ZFC (=ZF+AC) but not ZF+DC (call them “wild”).
Note that I discriminate objects, not theorems. If a
property of tame objects is proved using wild objects,
it does not bother me. I only want to mark the wild
objects by a warning “for internal use only”.2

Mathematics provides models for other sciences. Normally, only tame
objects are used in these models.3 A Vitali set is wild. Recall also the
Banach-Tarski paradox.

4c1 Lemma. (ZF+DC)4 Let A1, A2, . . . be nonempty sets and Rn ⊂ An ×
An+1 satisfy ∀a ∈ An ∃b ∈ An+1 (a, b) ∈ Rn for n = 1, 2, . . . Then there
exists (an)n such that (an, an+1) ∈ Rn for n = 1, 2, . . .

Proof. We consider the set A of all finite sequences (a1, . . . , an) ∈ A1×· · ·×An

(for all n = 1, 2, . . . ) satisfying (a1, a2) ∈ R1, . . . , (an−1, an) ∈ Rn−1. (For
n = 1 these are just (a1) for a1 ∈ A1.) We note that (a1, . . . , an+1) ∈ A
implies (a1, . . . , an) ∈ A, and consider the set R ⊂ A × A of all pairs of the
form

(
(a1, . . . , an), (a1, . . . , an+1)

)
in A×A. DC gives (for some n) an infinite

1Unless ZF is inconsistent, of course. Proofs of such negative metamathematical claims
are far beyond our course.

2Image from Scout’s Honor co.
3For an attempt to use a “wild” object outside mathematics, see: I. Pitowsky (1982)

“Resolution of the Einstein-Podolsky-Rosen and Bell paradoxes.” Phys. Rev. Lett. 48:19,
1299-1302. Not unexpectedly, the attempt failed; see: N.D. Mermin (1982) “Comment on
’Resolution of the Einstein-Podolsky-Rosen and Bell paradoxes’.” Phys. Rev. Lett. 49:16,
1214.

4It means, the lemma is proved in the theory ZF+DC.
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sequence of finite sequences

(a1, . . . , an) ,

(a1, . . . , an, an+1) ,

(a1, . . . , an, an+1, an+2) ,

. . .

satisfying (ak, ak+1) ∈ Rk for all k = 1, 2, . . . It remains to take (ak)k.

4c2 Exercise. Prove in ZF+DC that
(a) if sets A1, A2, . . . are nonempty then their product A1 × A2 × . . . is

nonempty;1

(b) if pairwise disjoint sets A1, A2, . . . are countable then their union
A1 ∪ A2 ∪ . . . is countable.

4c3 Exercise. Prove in ZF+DC that
(a) if An, Rn are as in 4c1 and a1 ∈ A1 is given then there exist a2, a3, . . .

such that (an, an+1) ∈ Rn for n = 1, 2, . . . ;
(b) if A and R are as in Axiom of dependent choice, and a ∈ A is given,

then there exists (an)n such that a1 = a and (an, an+1) ∈ Rn for n = 1, 2, . . .

4c4 Exercise. Prove in ZF+DC the Baire category theorem for a completely
metrizable space.

4d The converse holds, but is not simple

Can the Baire category theorem for completely metrizable spaces be proved
without DC (in ZF, or ZF plus some choice axiom weaker than DC)? No, it
cannot, since the Baire theorem implies DC, as we’ll see.

To this end we need to familiarize ourselves with (co)meager sets in non-
separable spaces. (Till now we treated only separable spaces.) We really
need only a straightforward generalization of the space {0, 1}∞, the space
S∞ where S is an arbitrary set (maybe uncountable). We endow S with the
discrete metric,

d(x, y) =

{
1 if x 6= y,

0 if x = y.

On the set S∞ of all infinite sequences we want to introduce a metrizable
topology such that, similarly to 1d2(b), the convergence is pointwise:

xn −−−→
n→∞

x ⇐⇒ ∀k
(
xn(k) −−−→

n→∞
x(k)

)
1This is the so-called countable choice axiom, strictly weaker than DC but strictly

stronger than nothing.
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for x, x1, x2, · · · ∈ S∞; here “xn(k)→ x(k)” means d
(
xn(k), x(k)

)
→ 0, which

means just xn(k) = x(k) for all n large enough (that is, n ≥ Nk).

4d1 Exercise. Each of the following two metrics on S∞ corresponds to the
pointwise convergence:

(a) ρ(x, y) =
∑

k:x(k)6=y(k)

2−k;

(b) ρ(x, y) = 1/ inf{k : x(k) 6= y(k)} = sup
k:x(k)6=y(k)

1

k
= sup

k

1

k
d
(
x(k), y(k)

)
.

Prove it.

Still, a neighborhood of x may be takes as {y : y(1) = x(1), . . . , y(n) =
x(n)}; and 1d5 still applies.

4d2 Exercise. The space S∞ is separable if and only if S is (at most)
countable.

Usually [0, 1]∞ denotes a separable (moreover, compact) metrizable space,
since by default [0, 1] is endowed with its usual metric |x−y|, and accordingly,
one of compatible metrics on [0, 1]∞ is ρ(x, y) = supk

1
k
|x(k) − y(k)|. An

additional precaution is needed for R∞, since R is not bounded; in this
case ρ(x, y) = supk

1
k

min
(
1, |x(k) − y(k)|

)
. In order to avoid confusion, the

corresponding nonseparable spaces will be denoted by
(
[0, 1], d

)∞,
(
R, d

)∞
etc.

Such sets as {x : x(10) = 0}, {x : x(10) = x(13)}, {x : x(10) = sin x(13)}
etc. are nowhere dense in [0, 1]∞ or R∞; however, in

(
[0, 1], d

)∞ or
(
R, d

)∞
these sets are clopen (that is, both closed and open), not nowhere dense. By
the way, continuity of sin is not relevant, since every map (R, d)→ (R, d) is
continuous.

Thus, a generic element of R∞ is a sequence of pairwise distinct, non-zero
numbers. The situation in

(
R, d

)∞ is strikingly different. First of all, the
set {x : ∀k x(k) 6= 0} is closed and nowhere dense! Just because it is the
product of infinitely many clopen sets R \ {0} ⊂ (R, d). (Recall the end of
Sect. 2a.) Thus, a generic sequence of (R, d)∞ contains 0, as well as 1, and
π, etc. But this is only the tip of the iceberg.

4d3 Exercise. Formulate and prove for S∞ a counterpart of 2a2. Do the
same for 2a7.

4d4 Exercise. For every s ∈ S the set {x ∈ S∞ : ∃n x(n) = s} is comeager.
Prove it.
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Imagine that we have a “nonseparable topological random number gen-
erator”, a device able to produce a generic element of (R, d)∞. Then we can
solve the equation f(x) = 0 for an arbitrary f : R → R (not just continu-
ous, not even measurable) provided that we are able to check the equality
f(x) = 0 for any given x. Here is the know-how. We exercise the “nonsep-
arable topological random number generator”, getting (xn)n, xn ∈ R, and
check the equalities f(x1) = 0, f(x2) = 0, . . . until a solution is found. If the
equation has a solution (at least one) then it should occur in the sequence!

But this is incredible. Unbelievable. Outrageous. The device does not
know our question and still produces a countable subset containing the (pos-
sibly unique) answer!

Nothing like that can happen in probability theory. It may happen that
for every r ∈ R a random set contains r almost surely. Then one applies
Fubini’s theorem and concludes that almost surely the random set is of full
Lebesgue measure. That is, we have a measurable set A ⊂ R × Ω (Ω being
a probability space) such that every section Ar = {ω : (r, ω) ∈ A} ⊂ Ω is of
probability 1, and we conclude that almost every section Aω = {r : (r, ω) ∈
A} ⊂ R is a set of full Lebesgue measure.

In contrast, consider the set A ⊂ S × S∞ of all points (s, x) such that
∃n x(n) = s. This is a dense open set, and every section As = {x : (s, x) ∈
A} ⊂ S∞ is a dense open set (therefore, comeager). Nevertheless, every
section Ax = {s : (s, x) ∈ A} ⊂ S is ridiculously small: it is (at most)
countable, while S is uncountable. Topologically, Ax is a clopen set, neither
meager nor comeager.

On the other hand, it is not fair to compare the nonseparable topological
theory with the probability theory. A sequence of independent random vari-
ables should be compared with R∞, not (R, d)∞. The discrete space (R, d)
should be compared with the non-σ-finite measure space (R, ν) where ν is the
counting measure (ν({x}) = 1 for all x). But (R, ν) is not at all a probability
space. Thus, the nonseparable S∞ has no probabilistic counterpart at all.
Bearing this fact in mind we continue our excursion to this exotic space.

4d5 Exercise. Prove the following for a generic (xn)n ∈ S∞:
for every s ∈ S the set {n : x(n) = s} is either empty or infinite.1

It is convenient to use category quantifiers:

∀∗x for comeager many x
for all generic x

∃∗x for non-meager many x
for some generic x

1Rather strange for independent xn. . . A physicist could say: like bosons?
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That is,

∀∗x x ∈ A ⇐⇒ A is comeager ;

∃∗x x ∈ A ⇐⇒ A is not meager .

Also, for a nonempty open U ,

∀∗x ∈ U x ∈ A ⇐⇒ U  A ;

∃∗x ∈ U x ∈ A ⇐⇒ ¬ U  (X \ A) .

(Here X is the given space, and ¬ is negation.) Note that

∀∗x (. . . ) ⇐⇒ ∀∗x ∈ X (. . . ) ;

∃∗x (. . . ) ⇐⇒ ∃∗x ∈ X (. . . ) ;

¬ ∃∗x ∈ U (. . . ) ⇐⇒ ∀∗x ∈ U ¬ (. . . ) .

Now 4d4 and 4d5 become

∀s ∈ S ∀∗x ∈ S∞ ∃n x(n) = s ;

∀∗x ∈ S∞ ∀s ∈ S |{n : x(n) = s}| ∈ {0,∞} .

However, a claim
∀∗x ∈ S∞ ∀s ∈ S ∃n x(n) = s

fails badly for uncountable S. We observe that quantifiers ∀∗ and ∀ need not
commute. On the other hand, they commute when the “∀” quantifier has a
countable range:

∀n ∀∗x (. . . ) ⇐⇒ ∀∗x ∀n (. . . ) ,

that is,
∀n ∀∗x x ∈ An ⇐⇒ ∀∗x ∀n x ∈ An ,

since all An are comeager if and only if ∩nAn is comeager.
Given x ∈ S∞, we denote for brevity

x(1, 2, . . . ) = {x(n) : n = 1, 2, . . . } ⊂ S ,

the set of all values, an (at most) countable subset of S. By 4d5, each value
is of infinite multiplicity (generically).

4d6 Exercise. The set x(1, 2, . . . ) is infinite (generically).
Prove it.
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4d7 Exercise. For every f : S → S, the set x(1, 2, . . . ) is closed under f
(generically). That is,

∀f ∀∗x ∀s
(
s ∈ x(1, 2, . . . ) =⇒ f(s) ∈ x(1, 2, . . . )

)
.

Prove it.1

It follows for a generic x ∈ (R, d)∞ that the set x(1, 2, . . . ) is a countable
subalgebra of R, containing all rational numbers. An arbitrary countable set
may be used instead of the rationals. For example, all algebraic numbers, or
even all computable numbers. In addition, the algebra is closed under exp(·),
and even under all computable functions (also of several variables).

Likewise, for a Hilbert spaceH, for a generic x ∈ (H, d)∞ the set x(1, 2, . . . )
is a countable subgroup of H; its closure is an infinite-dimensional separable
subspace of H; and the subgroup is also a linear space over rational (as well
as algebraic) numbers.

4d8 Exercise. Let R ⊂ S × S be such that ∀s1 ∈ S ∃s2 ∈ S (s1, s2) ∈ R.
Then for a generic x ∈ S∞,

∀s1 ∈ x(1, 2, . . . ) ∃s2 ∈ x(1, 2, . . . ) (s1, s2) ∈ R .
Prove it.

4d9 Proposition. 2 (ZF) Let A be a nonempty set and R ⊂ A× A satisfy
∀a ∈ A ∃b ∈ A (a, b) ∈ R. If the Baire category theorem holds for A∞

then there exists an infinite sequence (an)n such that (an, an+1) ∈ R for
n = 1, 2, . . . .

Proof. The Baire theorem guarantees that the empty set is not comeager in
A∞. In combination with 4d8 this ensures existence of x ∈ A∞ such that

∀a ∈ x(1, 2, . . . ) ∃b ∈ x(1, 2, . . . ) (a, b) ∈ R ,
that is,

∀m ∃n
(
x(m), x(n)

)
∈ R .

Denote by Nm the least n such that
(
x(m), x(n)

)
∈ R. We take an = x(kn)

where (kn)n is defined recursively:

k1 = 1 ,

kn+1 = Nkn for n = 1, 2, . . . ;

then (an, an+1) =
(
x(kn), x(Nkn)

)
∈ R.

Thus, the Baire category theorem for completely metrizable spaces is
equivalent (in ZF) to the axiom of dependent choice.

1No, not like bosons. . .
2C.E. Blair (1977) “The Baire category theorem implies the principle of dependent

choices.” Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25:10, 933–934.
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Hints to exercises

4c2: (a) use 4c1; (b) use (a).

4c3: (a) similar to 4c1; (b) use (a).

4d1: (a) similar to 1d2 (but simpler).

4d5: use 4d4.

4d6: use 4d4.

4d7: use 4d4.

4d8: recall 4d7.
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