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This is basically a discrete-time introduction to Freidlin-Wentzell theory.

6a Adding drift to a random walk

Let Sn and An be as in Sect. 5c, 5d; in particular, Sn is a random piecewise-
linear function of C0[0, 1],

Sn

(k
n

)
= X1 + · · ·+Xk ;

it is driftless: EXk = 0. Let

η : R× [0, 1]→ R

be a continuous function satisfying, for a given L,

∀x, y ∈ R ∀t ∈ [0, 1] |η(x, t)− η(y, t)| ≤ L|x− y| .

We introduce another random piecewise-linear function Rn of C0[0, 1] via the
difference equation1
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=
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That is,

Rn

(k
n

)
= Y1 + · · ·+ Yk ,

Yk+1 = Xk+1 + εη
(Y1 + · · ·+ Yk

nε
,
k

n

)
.

1A discrete-time counterpart of the stochastic differential equation d 1
nεRn(t) =

1√
nε

d 1√
n
Sn(t) + η( 1

nεRn(t), t) dt.



Tel Aviv University, 2015 Large and moderate deviations 62

Clearly, the difference equation has one and only one solution. Note the drift:
E
(
Yk
∣∣Y1, . . . , Yk−1) = εη

(Y1+···+Yk−1

nε
, k−1

n

)
.

What about large and moderate deviations of Rn? The case ε = 1,
n → ∞ leads to large deviations, while the case ε → 0, n → ∞, nε2 → ∞
leads to moderate deviations. But the relation between 1

nε
Rn and 1

nε
Sn does

not depend on ε; thus we postpone ε till Sect. 6b. Generating functions for
Rn are hardly useful. Rather, we hope to transfer the rate function of Sn
to Rn via the difference equation, or rather, its scaling limit; not quite a
differential equation, because of lack of differentiability, rather, an integral
equation.

We introduce a mapping ϕ : C0[0, 1]→ C0[0, 1],

ϕ(f) = g ⇐⇒ ∀t g(t) = f(t)−
∫ t

0

η
(
f(s), s

)
ds

(basically, f ′ = g′ + η(f, ·), but without differentiability). It is easy to guess
that 1

nε
Sn ≈ ϕ

(
1
nε
Rn

)
for large n, and so, the rate function for Rn at f is

equal to the rate function for Sn at g = ϕ(f). But wait; is ϕ one-to-one? Is
ϕ onto? Is ϕ a homeomorphism?

6a1 Proposition. ϕ is a homeomorphism of C0[0, 1] onto itself.

6a2 Lemma. For all f1, f2 ∈ C0[0, 1],

e−L‖f1 − f2‖ ≤ ‖ϕ(f1)− ϕ(f2)‖ ≤ (1 + L)‖f1 − f2‖

(all norms being in C0[0, 1]).

The upper bound is easy. The lower bound will be proved soon.
We introduce a discrete-time counterpart ϕn of ϕ; ϕn : AnC0[0, 1] →

AnC0[0, 1] (the n-dimensional subspace {f : f = Anf} of piecewise-linear
functions),

ϕn(f) = g ⇐⇒ ∀k g
(k
n

)
= f

(k
n

)
− 1

n

k−1∑
i=0

η
(
f
( i
n

)
,
i

n

)
.

That is,

ϕn(f) = g ⇐⇒ ∀k g
(k + 1

n

)
−g
(k
n

)
= f

(k + 1

n

)
−f
(k
n

)
− 1

n
η
(
f
(k
n

)
,
k

n

)
.

Note that ϕn is a bijection (since the difference equation has one and only
one solution), and

(6a3) ϕn

( 1

nε
Rn

)
=

1

nε
Sn .
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6a4 Exercise. For all f ∈ C0[0, 1],

‖ϕn(Anf)− ϕ(f)‖ → 0 .

Prove it.

In the next exercise M = maxt∈[0,1] |η(0, t)|; note that |η(x, t)| ≤ L|x|+M .

6a5 Exercise. Let f ∈ AnC0[0, 1] and g = ϕn(f); denote ak =
∣∣g( k

n

)∣∣ and
bk =

∣∣f( k
n

)
− g
(
k
n

)∣∣; prove that
(a)
∣∣f( k

n

)∣∣ ≤ ak + bk;
(b) bk+1 ≤ bk + L

n
(ak + bk) + M

n
;

(c) bk+1 + ‖g‖+ M
L
≤
(
1 + L

n

)
(bk + ‖g‖+ M

L
);

(d) bk ≤ (eL − 1)
(
‖g‖+ M

L

)
;

(e) ‖f‖ ≤ eL‖g‖+ eL−1
L
M .

By 6a4 and 6a5,

‖f‖ ≤ eL‖ϕ(f)‖+
eL − 1

L
M

for all f ∈ C0[0, 1]. That is,

L‖f‖+M ≤ eL(L‖ϕ(f)‖+M) .

6a6 Exercise. Let f1, f2 ∈ AnC0[0, 1] and g1 = ϕn(f1), g2 = ϕn(f2); denote
ak =

∣∣g1( kn)− g2( kn)∣∣ and bk =
∣∣f1( kn)− f2( kn)− g1( kn)+ g2

(
k
n

)∣∣; prove that
(a)
∣∣f1( kn)− f2( kn)∣∣ ≤ ak + bk;

(b) bk+1 ≤ bk + L
n

(ak + bk);
(c) bk+1 + ‖g1 − g2‖ ≤

(
1 + L

n

)
(bk + ‖g1 − g2‖);

(d) bk ≤ (eL − 1)‖g1 − g2‖;
(e) ‖f1 − f2‖ ≤ eL‖g1 − g2‖.

Now, Lemma 6a2 follows easily from 6a4 and 6a6. And in addition, for
all f1, f2 ∈ AnC0[0, 1],

e−L‖f1 − f2‖ ≤ ‖ϕn(f1)− ϕn(f2)‖ ≤ (1 + L)‖f1 − f2‖ .

6a7 Remark. Alternatively, the lower bound of Lemma 6a2 may be derived
from the Gronwall(-Bellmann) lemma:1 if u(t) ≤ α(t) + L

∫ t
0
u(s) ds for all

t ∈ [0, 1], then u(t) ≤ α(t) + L
∫ t
0
α(s)eL(t−s) ds. To this end, take u(t) =

|f1(t)− f2(t)− g1(t) + g2(t)|, α(t) = L
∫ t
0
|g1(s)− g2(s)| ds, and obtain u(t) ≤

α(t) +L
∫ t
0
α(s)eL(t−s) ds = L

∫ t
0

eL(t−s)|g1(s)− g2(s)| ds ≤ ‖g1− g2‖
(
eLt− 1

)
;

|f1(t)− f2(t)| ≤ |g1(t)− g2(t)|+ u(t) ≤ eL‖g1 − g2‖.
1See “Grönwall’s inequality” in Wikipedia.

http://en.wikipedia.org/wiki/Gronwall's_inequality
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In order to prove Prop. 6a1 it remains to check that ϕ is onto.
If g = ϕ(f), then

(6a8) ‖f − g‖Lip ≤ L‖f‖+M ≤ eL(L‖g‖+M)

(since f − g is the indefinite integral of η(f, ·)); here

‖f‖Lip = sup
0≤s<t≤1

|f(t)− f(s)

t− s
for f ∈ C0[0, 1] .

The same holds whenever g = ϕn(f).
We introduce continuous ψn : C0[0, 1]→ AnC0[0, 1] by

ψn(g) = ϕ−1n (Ang) .

6a9 Lemma. For every g ∈ C0[0, 1] the limit

f = lim
n→∞

ψn(g)

exists, and ϕ(f) = g.

Proof. Functions fn = ψn(g) satisfy

‖fn − Ang‖Lip ≤ eL(L‖g‖+M)

by 6a8, since ϕn(fn) = Ang and ‖Ang‖ ≤ ‖g‖. Thus, the sequence (fn−Ang)n
is contained in a compact set (a Hölder ball RBα, α = 1); therefore it contains
a convergent subsequence (fnk−Ankg)k, and then (fnk)k also converges (since
Ang → g). It is sufficient to prove that the limit f = limk fnk satisfies ϕ(f) =
g (since such f is unique). By 6a4, limk ϕnk(Ankf) = limn ϕn(Anf) = ϕ(f);
it remains to prove that ϕnk(Ankf)→ g. We have ‖g−Ang‖ → 0 and ‖Ang−
ϕn(Anf)‖ = ‖ϕn(fn) − ϕn(Anf)‖ ≤ (1 + L)‖fn − Anf‖ ≤ (1 + L)‖fn − f‖,
thus, ‖g − ϕnk(Ankf)‖ → 0.

6a10 Remark. Alternatively, a solution f of the equation ϕ(f) = g may be
obtained by iterations:

fn+1(t) = g(t) +

∫ t

0

η
(
fn(s), s

)
ds , f0(t) = 0 .

They satisfy |fn+1(t)− fn(t)| ≤ (‖g‖+M)(Lt)n/n!.

Prop. 6a1 is now proved. In addition,

ψn(g)→ ψ(g) for all g ∈ C0[0, 1] ;

here ψ = ϕ−1 (and ψn = ϕ−1n ◦An, as before). Also, ψ and all ψn satisfy the
Lipschitz condition with a single constant (eL), which implies (think, why)
that

(6a11) ψn → ψ uniformly on compact sets.
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6b Moderate deviations

Similarly to Sect. 5d, we interpret ‖f ′‖2 as +∞ if f is not the indefinite
integral of a function of L2[0, 1]. All limits, as well as symbols o(. . . ), O(. . . )
are taken for ε → 0, n → ∞, nε2

lnn
→ ∞ (unless stated otherwise). Also,

1 < p ≤ 2 ≤ q <∞, 1
p

+ 1
q

= 1, and α ≤ 1/q.

6b1 Theorem. (a) For every nonempty closed set F ⊂ C0[0, 1],

lim sup
1

nε2
lnP

( 1

nε
Rn ∈ F

)
≤ −min

f∈F

1

2
‖ϕ(f)′‖22 .

(b) For every open set U ⊂ C0[0, 1],

lim inf
1

nε2
lnP

( 1

nε
Rn ∈ U

)
≥ − inf

f∈U

1

2
‖ϕ(f)′‖22 .

Proof of Theorem 6b1(b). For arbitrary δ > 0 we introduce the open set
U−δ = {f ∈ U : dist(f, C0[0, 1] \ U) > δ}, note that ∪δ>0U−δ = U , therefore
inff∈U I(f) = infδ>0 inff∈U−δ I(f), where I(f) = 1

2
‖ϕ(f)′‖22; it is sufficient to

prove, for all δ > 0, that

lim inf
1

nε2
lnP

( 1

nε
Rn ∈ U

)
≥ − inf

f∈U−δ
I(f) ,

that is (recall (6a3)),

lim inf
1

nε2
lnP

(
ψn

( 1

nε
Sn

)
∈ U

)
≥ − inf

f∈U−δ
I(f) .

Using the exponential tightness (for Sn) we take R > 0 such that
lim sup 1

nε2
lnP

(
‖Sn‖α > Rnε

)
< − inff∈U−δ I(f). By (6a11), ψn → ψ uni-

formly on RBα; thus, for all n large enough, for all g ∈ RBα, ‖ψn(g)−ψ(g)‖ ≤
δ, and therefore ψ(g) ∈ U−δ =⇒ ψn(g) ∈ U . We have

P
(
ψn

( 1

nε
Sn

)
∈ U

)
≥ P

( 1

nε
Sn ∈ RBα and ψ

( 1

nε
Sn

)
∈ U−δ

)
≥

≥ P
( 1

nε
Sn ∈ ϕ(U−δ)

)
− P

(
‖Sn‖α > Rnε

)
;

by Theorem 5d1(b),

lim inf
1

nε2
lnP

( 1

nε
Sn ∈ ϕ(U−δ)

)
≥ − inf

g∈ϕ(U−δ)

1

2
‖g′‖22 =

= − inf
f∈U−δ

1

2
‖ϕ(f)′‖22 = − inf

f∈U−δ
I(f) ,

while P
(
‖Sn‖α > Rnε

)
is exponentially smaller.
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Proof of Theorem 6b1(a). For arbitrary δ > 0 we introduce the closed set
F+δ = {f : dist(f, F ) ≤ δ} ⊂ C0[0, 1], and note that ∩δ>0F+δ = F . The
function I : f 7→ 1

2
‖ϕ(f)′‖22 is lower semicontinuous (recall 5d3), and more-

over, sets {f : I(f) ≤ c} = ψ
(
{g : ‖g′‖22 ≤ c}

)
are compact (recall Sect. 4b;

the ball B2 is compact in ‖ · ‖int).
Claim: minf∈F I(f) = supδ>0 minf∈F+δ

I(f). Proof: if c < minf∈F I(f),
then F ∩ {f : I(f) ≤ c} = ∅, that is, ∩δ>0

(
F+δ ∩ {f : I(f) ≤ c}

)
= ∅; by

compactness, for some δ > 0 we have F+δ ∩ {f : I(f) ≤ c} = ∅, that is,
minf∈F+δ

I(f) > c.
It is sufficient to prove, for all δ > 0, that

lim sup
1

nε2
lnP

( 1

nε
Rn ∈ F

)
≤ − min

f∈F+δ

I(f) ,

that is (recall (6a3)),

lim sup
1

nε2
lnP

(
ψn

( 1

nε
Sn

)
∈ F

)
≤ − min

f∈F+δ

I(f) .

Using the exponential tightness (for Sn) we take R > 0 such that
lim sup 1

nε2
lnP

(
‖Sn‖α > Rnε

)
< −minf∈F+δ

I(f). By (6a11), ψn → ψ uni-
formly on RBα; thus, for all n large enough, for all g ∈ RBα, ‖ψn(g)−ψ(g)‖ ≤
δ, and therefore ψn(g) ∈ F =⇒ ψ(g) ∈ F+δ. We have

P
( 1

nε
Sn ∈ RBα and ψn

( 1

nε
Sn

)
∈ F

)
≤ P

(
ψ
( 1

nε
Sn

)
∈ F+δ

)
≤

≤ P
( 1

nε
Sn ∈ ϕ(F+δ)

)
;

by Theorem 5d1(a),

lim sup
1

nε2
lnP

( 1

nε
Sn ∈ ϕ(F+δ)

)
≤ − min

g∈ϕ(F+δ)

1

2
‖g′‖22 =

= − min
f∈F+δ

1

2
‖ϕ(f)′‖22 = − min

f∈F+δ

I(f) ,

while P
(
‖Sn‖α > Rnε

)
is exponentially smaller.

6b2 Exercise. Assume that the amount R of a fissile material in an appara-
tus fluctuates around its equilibrium value Req according to such a discrete-
time stochastic model:

Rk −Req =
(

1− α

n

)
(Rk−1 −Req)± 1 for k = 1, . . . , n ; R0 = βReq ;
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here −1 and +1 are equiprobable, independent of the past; and
√
n� Req �

n. We need to find (in a rough approximation) the probability of reaching
a critical level γReq (during the time n). And α, β, γ are given positive
parameters.

Reformulate this problem in terms of Theorem 6b1 (but do not solve it
yet. . . )

6c Against a stream, at the speed of the stream

We consider a negative stationary drift,

η(x, t) = −v(x) , v : R→ (0,∞) continuous ,

and examine the distribution of the random variable

Mn = max
k=0,...,n

1

nε
Rn

(k
n

)
= M

( 1

nε
Rn

)
, M(f) = max

0≤t≤1
f(t) .

For every c ∈ (0,∞) the closed set Fc = {f : M(f) ≥ c} and the open set
Gc = {f : M(f) > c} satisfy

min
f∈Fc

I(f) = inf
f∈Gc

I(f) (denote it Ic)

(here I(f) = 1
2
‖ϕ(f)′‖22 = 1

2

∫ 1

0

(
f ′(t)−η(f(t), t)

)
2 dt = 1

2

∫ 1

0

(
f ′(t)+v(f(t))

)
2 dt),

which follows easily from continuity of λ 7→ I(λf). By Theorem 6b1,

P
(
Mn > c

)
= exp

(
−nε2Ic + o(nε2)

)
;

we want to know Ic.
For every absolutely continuous f ∈ C0[0, 1] such that f ′ ∈ L2[0, 1] we

have

1

2

(
f ′(t) + v(f(t))

)
2 − 1

2

(
f ′(t)− v(f(t))

)
2︸ ︷︷ ︸

≥0

= 2f ′(t)v(f(t)) = 2
d

dt
V (f(t))

where V (x) =
∫ x
0
v(u) du. Thus, 2V (M(f)) = max0≤t≤1 2V (f(t)) ≤ I(f);

Ic ≥ 2

∫ c

0

v(x) dx .

In order to reach equality we consider the solution f of the differential equa-
tion

f ′(t) = v(f(t)) ;



Tel Aviv University, 2015 Large and moderate deviations 68

in terms of the function W (x) =
∫ x
0

du
v(u)

we have

d

dt
W (f(t)) = 1 ; W (f(t)) = t ; f(t) = W−1(t) .

Clearly, M(f) = f(1) = W−1(1) and I(f) = 2V (M(f)) = 2V (W−1(1)).
Thus,

Ic = 2

∫ c

0

v(x) dx for c = W−1(1) .

A wonder: the least unlikely way to reach the level c against the stream is,
to move at the speed of the stream (but in the opposite direction)!

For c ∈
(
0,W−1(1)

)
we use a function fc such that

f ′c(t) =

{
v(f(t)) for t < W (c),

−v(f(t)) for t > W (c).

Clearly, fc(t) = W−1(t) for t ≤ W (c); M(fc) = fc(W (c)) = c; and I(fc) =
1
2

∫ 1

0

(
f ′c(t) + v(fc(t))

)
2 dt = 1

2

∫W (c)

0
(. . . )2 dt = 2V (fc(W (c))) = 2V (c), thus,

Ic = 2V (c) for c ≤ W−1(1); that is,

Ic = 2

∫ c

0

v(x) dx whenever

∫ c

0

dx

v(x)
≤ 1 .

6c1 Exercise. Apply this technique in the situation of Exer. 6b2. Which
values of α, β, γ are within reach?

However, for c > W−1(1) we need another approach. We introduce closed
sets

Ft,c = {f : f(t) = c} for 0 < t ≤ 1, c > 0

and note that Fc = ∪0<t≤1Ft,c (think, why); it follows (think, why) that

min
f∈Fc

I(f) = min
0<t≤1

min
f∈Ft,c

I(f) .

We’ll find minf∈Ft,c I(f); denote it It,c. Clearly, It,c <∞.

6d Against a stream, at the acceleration of the stream

We return to η(x, t) (not just −v(x)), but now we assume that η ∈ C1([0, 1]×
R).
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6d1 Lemma. Let c > 0. If f is a minimizer of I(·) on F1,c, then f ∈ C2[0, 1]
and

f ′′(t) = a
(
f(t), t

)
for 0 < t < 1 ,

where
a(x, t) = η,1(x, t)η(x, t) + η,2(x, t) .

Here η,1(x, t) = ∂
∂x
η(x, t) and η,2(x, t) = ∂

∂t
η(x, t). The function a(·, ·) is

called convective acceleration; here is why. If g satisfies g′(t) = η(g(t), t) on
some open interval of t, then g′′(t) = a(g(t), t) for these t (since d

dt
η(g(t), t) =

η,1(g(t), t)g′(t) + η,2(g(t), t)).
A wonder: against the stream, we need not move at the speed of the

stream, but we must move at the acceleration of the stream!
Our random process is Markovian (and remains Markovian if conditioned

on f(1) = c), it forgets the past (remembers only the present, a single number
f(t)); no inertia, no mass; and nevertheless, the acceleration is relevant.
Wonders never cease!

Proof of Lemma 6d1. We know that I(f) < ∞, thus, f is absolutely con-
tinuous, and f ′ ∈ L2[0, 1].

For every g ∈ C1[0, 1] such that g(0) = g(1) = 0 we have I(f+λg) ≥ I(f)
for all λ ∈ R, and for λ→ 0,

I(f + λg) =
1

2

∫ 1

0

(
f ′(t) + λg′(t)− η(f(t) + λg(t), t)

)
2 dt =

=
1

2

∫ 1

0

(
f ′(t)− η(f(t), t) + λ(g′(t)− η,1(f(t), t))g(t) + o(λ)

)
2 dt ;

I(f + λg)− I(f)

λ
→
∫ 1

0

(
f ′(t)− η(f(t), t)

)(
g′(t)− η,1(f(t), t))g(t)

)
dt ;

this integral must vanish for all g.
We apply one of the “fundamental lemmas of calculus of variations”: if

ϕ, ψ ∈ L1[0, 1] satisfy
∫ 1

0
(ϕg′ + ψg) = 0 for all g ∈ C1[0, 1] such that g(0) =

g(1) = 0, then ϕ is absolutely continuous and ϕ′ = ψ (almost everywhere).
In our case, ϕ(t) = f ′(t)− η(f(t), t) and ψ(t) = −η,1(f(t), t)ϕ(t). Conti-

nuity of ϕ implies continuity of ψ (since η,1(f, ·) is continuous) and f ′ (since
η(f, ·) is continuous); thus, ϕ ∈ C1[0, 1] (since ϕ′ = ψ), and f ∈ C1[0, 1].
Hence f ′ ∈ C1[0, 1] (since η(f, ·) ∈ C1[0, 1]), that is, f ∈ C2[0, 1].

Finally,

f ′′(t) =
d

dt

(
ϕ(t) + η(f(t), t)

)
= ψ(t) + η,1(f(t), t)f ′(t) + η,2(f(t), t) =
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= η,1(f(t), t)
(
f ′(t)− ϕ(t)

)︸ ︷︷ ︸
=η(f(t),t)

+η,2(f(t), t) = a(f(t), t) .

6d2 Remark. Generalization to Ft,c is straightforward: if f is a minimizer
of I(·) on Ft,c, then f |[0,t] ∈ C2[0, t], f ′′(s) = a(f(s), s) for 0 < s < t, and
f ′(s) = η(f(s), s) for t < s < 1.

Now, let η(x, t) = −v(x) again (and v(x) > 0 as before, but in addition,
v ∈ C1). The convective acceleration being a(x, t) = a(x) = v(x)v′(x) =
−U ′(x) where U(x) = −1

2
v2(x), we get

f ′′(x) = a(f(t)) = −U ′(f(t)) ,

nothing but the motion of a particle (of mass 1) in the potential U . (Did you
know?) The energy conservation applies:

d

dt

(1

2

(
f ′(t)

)
2 + U

(
f(t)

))
= f ′(t)f ′′(t) + U ′

(
f(t)

)
f ′(t) = 0 .

Good luck: the second-order differential equation is reduced to the first-order
one,

f ′(t) =
√
v2(f(t)) + b ;

the constant b (twice the “energy”) should conform to the boundary condi-
tions f(0) = 0, f(t) = c. The value b = 0 leads to the case f ′(t) = v(f(t))
of Sect. 6c; positive b lead to faster increase of f . For b > 0, the change of
variable x = f(t) gives

It,c =
1

2

∫ c

0

(√
v2(x) + b+ v(x)

)
2 dx√

v2(x) + b
,

while b and c are related via the condition f(t) = c, that is,∫ c

0

dx√
v2(x) + b

= t .

Now you may reconsider Exer. 6c1 for other values of α, β, γ.



Tel Aviv University, 2015 Large and moderate deviations 71

Index

convective acceleration, 69

limit in n and ε, 65

An, 61
α, 65
a, 69
η, 61
η,1, η,2, 69
Fc, 67
Ft,c, 68
fc, 68
Gc, 67
I(f), 67
Ic, 67

It,c, 68
L, 61
M , 63
M(f), 67
Mn, 67
||f ′||2, 65
ϕ, 62
ψ, 64
ψn, 64
Rn, 61
Sn, 61
V , 67
v, 67
W , 68


	Small random perturbations of deterministic dynamics
	Adding drift to a random walk
	Moderate deviations
	Against a stream, at the speed of the stream
	Against a stream, at the acceleration of the stream

	Index

