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3a Cramér-Varadhan theorem

Let µ be a probability measure on Rd that is truly d-dimensional, that is,
does not sit on an affine subspace of dimension d− 1 (or less). Its cumulant
generating function Λµ is real-analytic on the interior G ⊂ Rd of the convex
set {t ∈ Rd : Λµ(t) < ∞}; we assume that G 6= ∅. For every t ∈ G the
tilted measure µt has the expectation vector ∇Λµ(t) =

(
∂
∂tj

Λµ(t)
)
j, and the

covariance matrix
(

∂2

∂ti∂tj
Λµ(t)

)
i,j, positive definite. The Legendre transform

Λ∗µ of Λµ is

Λ∗µ(x) = sup
t∈Rd

(
〈t, x〉 − Λµ(t)

)
∈ [0,∞] ;

and if x = ∇Λµ(t) for some t ∈ G, then

Λ∗µ(x) = 〈t, x〉 − Λµ(t) .

The mapping ∇Λµ : G → Rd is one-to-one (since Λµ is strictly convex on
G), real-analytic, and its differential does not degenerate. It follows that the
image ∇Λµ(G) is open, and ∇Λµ : G→ ∇Λµ(G) is a diffeomorphism.

3a1 Theorem. For every nonempty bounded open set U ⊂ Rd such that
U ⊂ ∇Λµ(G),

lnµ∗n(nU) = −n inf
x∈U

Λ∗µ(x) + o(n) as n→∞ .

(Here nU = {nx : x ∈ U}.)

Proof. Theorem 2c14, generalized to Rd (according to 2c18), gives for x ∈ U

(3a2) lnµ∗n(nx+ [−εn, εn]d) = −nΛ∗µ(x) + o(n) as n→∞ ,

provided that εn/n→ 0 and εn/
√
n→∞. We take such a sequence (εn)n.
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First, we prove the lower bound:

lim inf
n→∞

1

n
lnµ∗n(nU) ≥ − inf

x∈U
Λ∗µ(x) ,

that is, lim inf(. . . ) ≥ −Λ∗µ(x) for every x ∈ U . To this end we note that, for
n large enough,

1

n
lnµ∗n(nU) ≥ 1

n
lnµ∗n

(
nx+ [−εn, εn]d

)
≥ −Λ∗µ(x) + o(1) .

For proving the upper bound,

lim sup
n→∞

1

n
lnµ∗n(nU) ≤ − inf

x∈U
Λ∗µ(x) ,

we note that the o(n) in (3a2) is uniform in x ∈ U (since t and Λ′′µ(t) are

bounded in x ∈ U ; inspect the proof of 2c14). We cover1 U by O
(
(n/εn)d

)
cubes of the form x+ [− εn

n
, εn
n

]d with x ∈ U and get

lnµ∗n(nU) ≤ lnO
(
(n/εn)d

)
+
(
− n inf

x∈U
Λ∗µ(x) + o(n)

)
;

the upper bound follows, since n/εn = o(
√
n).

Note that the lower bound holds whenever U (rather than its closure)
is contained in ∇Λµ(G). For arbitrary open U ⊂ Rn the lower bound still
holds, but I do not prove it now; this is quite a different story, and rarely
needed. Upper bounds for larger sets are more useful.

3a3 Exercise (upper bound for a half-space). Let Λµ(t) < ∞ and c ≥ 0,
then2

µ∗n
(
{nx : 〈t, x〉 − Λµ(t) ≥ c}

)
≤ e−nc .

Prove it.

3a4 Lemma (half-space not containing the expectation). Let 0 ∈ G and
c >

∫
〈t, x〉µ(dx); then

∃ε > 0 ∀n µ∗n({nx : 〈t, x〉 ≥ c}) ≤ e−εn .

1For x /∈ U note that U ∩
(
x+ [− εn

n ,
εn
n ]d
)

can be covered by no more than 2d cubes of
the form y + [− εn

n ,
εn
n ]d with y ∈ U .

2No need to assume that G 6= ∅.
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Proof. We note that c > 〈t,∇Λµ(0)〉 = limδ→0
Λµ(δt)

δ
and take δ > 0 such

that δt ∈ G and Λµ(δt) < δc. By 3a3,

µ∗n({nx : 〈t, x〉 ≥ c} = µ∗n({nx : 〈δt, x〉 − Λµ(δt) ≥ δc− Λµ(δt)} ≤ e−εn

where ε = δc− Λµ(δt) > 0.

3a5 Proposition (exponential concentration near the expectation).
If 0 ∈ G, and U ⊂ Rd is a neighborhood of the point

∫
xµ(dx), then

∃ε > 0 ∀n µ∗n(nU) ≥ 1−O(e−εn) .

Proof. Lemma 3a4 applied to t = ±e1, . . . ,±ed (where (e1, . . . , ed) is the
usual basis of Rd) gives

∀δ > 0 ∃ε > 0 ∀n µ∗n
(
n
(∫

xµ(dx) + [−δ, δ]d
))
≥ 1− 2de−εn .

It remains to take δ such that
∫
xµ(dx) + [−δ, δ]d ⊂ U .

3a6 Proposition. Assume that K ⊂ Rd is a compact set, and the restriction
Λ∗µ|K is continuous. Then

lnµ∗n({nx : x ∈ K,Λ∗µ(x) ≥ c}) ≤ −nc+ o(n) as n→∞
for every c ∈ (0,∞).

Proof. We’ll prove that

lim sup
n→∞

1

n
lnµ∗n({nx : x ∈ K,Λ∗µ(x) ≥ c}) ≤ −(c− ε)

for arbitrary ε > 0.
For t ∈ Rd such that Λµ(t) <∞ the half-space

Ht = {x ∈ Rd : 〈t, x〉 − Λµ(t) > c− ε}
satisfies

µ∗n(nHt) ≤ exp
(
−n(c− ε)

)
by 3a3. It is sufficient to cover the set {x : x ∈ K,Λ∗µ(x) ≥ c} by finitely
many half-spaces Ht. The union of all Ht is an open covering of this compact
set (recall the definition of Λ∗µ); it has a finite subcovering.

3a7 Exercise (minimum of Λ∗ on half-space). If t ∈ G and x = ∇Λµ(t),
then Λ∗(y)− Λ∗(x) ≥ 〈t, y〉 − 〈t, x〉 for all y; and therefore

min
y:〈t,y〉≥〈t,x〉

Λ∗(y) = Λ∗(x) .

Prove it.
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3b Relative entropy

Let µ, ν be two probability measures on a measurable space Ω, such that

ν = µu for some measurable function u : Ω→ R .

By the Radon-Nikodym theorem, this happens if and only if µ and ν are
mutually absolutely continuous (in other words, equivalent), that is, have
the same sets of measure zero.

By 2a6, µ = ν−u, and Λν(−u) = −Λµ(u). Note that, for arbitrary c ∈ R,
µu+c = µu and Λµ(u + c) = Λµ(u) + c. We may replace the given u with
u− Λµ(u), getting

ν = µu , µ = ν−u , Λµ(u) = 0 = Λν(−u) , u = ln
dν

dµ
= − ln

dµ

dν
.

This is closely related to the so-called Neyman-Pearson (statistical) test:1

given a sample (ω1, . . . , ωn) ∈ Ωn from a partially known distribution (either
µ or ν), a statistician needs to decide, is it sampled from µ or ν. It is
well-known (and easy to see) that the optimal test is based on the so-called
observed log-likelihood ratio

Sn = ln
dνn

dµn
(ω1, . . . , ωn) = ln

dν

dµ
(ω1) + · · ·+ ln

dν

dµ
(ωn) .

The statistician compares Sn/n with a chosen threshold γn; if Sn/n ≥ γn, the
decision is ν, and if2 Sn/n < γn, the decision is µ. Of course, the decision can
be erroneous. The decision ν is wrong with probability βn = µn{Sn/n ≥ γn};3
the decision µ is wrong with probability αn = νn{Sn/n < γn}. If ν is the
null hypothesis and µ is the alternative hypothesis, then the wrong decision
µ is called the type I error (“false positive”, “false alarm”), and the wrong
decision ν is called the type II error (“false negative”, “miss”). Often, one
chooses a small α (the size of the test) and takes the greatest γn such that
αn ≤ α.4 The corresponding 1− βn is called the power of the test.

The large deviations theory can help in estimating βn for large n. To this
end, tilting on Ω may be replaced with tilting on R (recall Sect. 2a); that is,
we replace Ω with R, µ with u∗(µ) (renamed to µ), and ν with u∗(ν), getting

ν = µ1 , µ = ν−1 , Λµ(1) = 0 = Λν(−1) ,
dν

dµ
(x) = ex ;

1See Sect. 3.4 in Dembo and Zeitouni, and “Neyman-Pearson lemma” in Wikipedia.
2When Sn/n = γn, the decision may be randomized. Never mind.
3That is, µn

(
{(ω1, . . . , ωn) ∈ Ωn : Sn(ω1, . . . , ωn)/n ≥ γn}

)
, of course.

4This is the Neyman-Pearson approach. There is also Bayesian approach.

http://en.wikipedia.org/wiki/Neyman-Pearson_lemma
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t
−1

−H(µ|ν)
H(ν|µ)

Λν
1

−H(µ|ν)
H(ν|µ)

Λµ

Λν(t− 1) = Λµ(t)

Sn is distributed either µ∗n or ν∗n, thus,1

αn = ν∗n(−∞, nγn) , βn = µ∗n[nγn,∞) .

3b1 Exercise. If µ 6= ν then
∫
xµ(dx) = Λ′µ(0) ∈ [−∞, 0) and

∫
x ν(dx) =

Λ′ν(0) ∈ (0,∞].
Prove it. Show by examples that all cases (finite or infinite) are possible.

We have ∫
x ν(dx) =

∫
ln

dν

dµ
dν = H(ν|µ) ∈ (0,∞] ;∫

xµ(dx) =

∫
ln

dν

dµ
dµ = −

∫
ln

dµ

dν
dµ = −H(µ|ν) ∈ [−∞, 0) ;

H(ν|µ) is the well-known relative entropy of ν relative to µ, called also the
Kullback-Leibler divergence2 D(η||µ). Note that the transition from Ω to R
does not change the relative entropy.

By a well-known result of Chernoff,3 βn is exponentially small, as follows.

3b2 Proposition. If 1
n

lnαn → 0 and lim supn αn < 1, then 1
n

ln βn →
−H(ν|µ).

That is, a large part of the measure νn sits on a set whose measure µn is
exp
(
−nH(η|µ) + o(n)

)
(and cannot be smaller).

In particular, when µ is the uniform distribution on a finite Ω, we have

(3b3) H(ν|µ) = ln(#Ω)−H(ν) ;

1I write just ν∗n(−∞, nγn) instead of ν∗n
(
(−∞, nγn)

)
, of course.

2See “Kullback-Leibler divergence” in Wikipedia.
3Strangely, it is well-known under the name “Chernoff-Stein lemma” or even “Stein’s

lemma”! Here is a quote from page 85 of “Statistical signal processing” by Don Johnson:
“The attribution to statistician Charles Stein is probably incorrect. Herman Chernoff
wrote a paper providing a derivation of this result. A reviewer stated that he thought
Stein had derived the result in a technical report, which Chernoff had not seen. Chernoff
modified his paper to include the reference without checking it. Chernoff’s paper provided
the link to Stein. However, Stein later denied he had proved the result; so much for not
questioning reviewers! Stein’s Lemma should be known as Chernoff’s Lemma.”

http://en.wikipedia.org/wiki/Kullback-Leibler_divergence
http://www.ece.rice.edu/~dhj/courses/elec531/notes.html
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here1

H(ν) = −
∑
ω

ν(ω) ln ν(ω)

is the (Shannon) entropy of ν. Thus, a large part of the measure νn sits on
a set of exp

(
nH(ν) + o(n)

)
points (and cannot be smaller).

Proof. First we prove that lim infn γn ≥ H(ν|µ) (be it finite or not). Given
a < H(ν|µ), we’ll prove that γn > a for all n large enough. We cannot use
Lemma 3a4, since Λν(0+) may be∞, but we can adapt that proof as follows.

We note that Λ′ν(0−) = H(ν|µ) > a, and take δ > 0 such that Λν(−δ) <
−δa. By 3a3, for ε = −δa− Λν(−δ) > 0 (and t = −δ),

e−εn ≥ ν∗n
(
{nx : −δx− Λν(−δ) ≥ ε}

)
=

= ν∗n
(
{nx : −δx ≥ −δa}

)
= ν∗n(−∞, na] ,

thus, 1
n

ln ν∗n(−∞, na] ≤ −ε < 1
n

lnαn = 1
n

ln ν∗n(−∞, nγn) for all n large
enough, therefore na < nγn, that is, γn > a, which proves that lim infn γn ≥
H(ν|µ).

Second, we prove the upper bound: lim supn
1
n

ln βn ≤ −H(ν|µ) (finite or
not). Given a < H(ν|µ), we’ll prove that 1

n
ln βn ≤ −a, that is, βn ≤ e−an,

for all n large enough. We have γn > a; by 3a3 (for t = 1),

βn = µ∗n[nγn,∞) ≤ µ∗n[na,∞) = µ∗n
(
{nx : x− Λµ(1) ≥ a}

)
≤ e−an .

Third, assuming H(ν|µ) < ∞ (otherwise all is done already), we prove
the lower bound: lim infn

1
n

ln βn ≥ −H(ν|µ). Given a > H(ν|µ), we’ll prove
that 1

n
ln βn ≥ −a + o(1) for n → ∞. We have a >

∫
x ν(dx); by the weak

law of large numbers, ν∗n[an,∞)→ 0; therefore

βn = µ∗n[nγn,∞) ≥ µ∗n[nγn, an] ≥
≥Mµ∗n(1)e−anµ∗n1 [nγn, an] = e−anν∗n[nγn, an] ;

lim inf
n

ν∗n[nγn, an] = lim inf
n

(
ν∗n[nγn,∞)− ν∗n(an,∞)

)
≥

≥ 1− lim sup
n

αn > 0 ;

1
n

ln ν∗n[nγn, an]→ 0; 1
n

ln βn ≥ −a+ o(1).

1Strangely, the relative entropy and the entropy differ by the sign; I do not know why.
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3c Sanov’s theorem

We return to the empirical distribution (ν−1, ν0, ν+1) mentioned in Sect. 2a.
More generally, now we consider d possible values of a random variable, with
probabilities p1, . . . , pd > 0, p1 + · · · + dd = 1. The frequencies η1, . . . , ηd
satisfy η1 + · · ·+ ηd = 1 and are distributed multinomially,1

P
(
η1 =

a1

n
, . . . , ηd =

ad
n

)
=

n!

a1! . . . ad!
pa11 . . . padd ,

and we could use the Stirling formula (as in Sect. 1a). But instead, we
introduce such a probability measure µ on Rd:

µ
({
ej −

e1 + · · ·+ ed
d

})
= pj for j = 1, . . . , d ,

where (e1, . . . , ed) is the usual basis of Rd. That is, we use the vectors ej −
e1+···+ed

d
as the possible values of the random variable. These vectors span

a (d − 1)-dimensional vector subspace (a hyperplane) E = {(x1, . . . , xd) :
x1 + · · · + xd = 0} in Rd, and we may apply the Cramer-Varadhan theorem
within this subspace.2 Indeed, the measure µ∗n is the distribution of

(
nη1 −

n
d
, . . . , nηd − n

d

)
.

The convex hull of the vectors e1, . . . , ed is the simplex {(x1, . . . , xd) ∈
[0,∞)d : x1 + · · ·+ xd = 1}, thus, the convex hull of the vectors ej − e1+···+ed

d

is the simplex {(x1 − 1
d
, . . . , xd − 1

d
) : x1, . . . , xd ≥ 0, x1 + · · · + xd = 1} =

E ∩ [−1
d
,∞)d. The expectation of µ,∫

xµ(dx) = p1

(
e1 −

e1 + · · ·+ ed
d

)
+ · · ·+ pd

(
ed −

e1 + · · ·+ ed
d

)
=

=
(
p1 −

1

d

)
e1 + · · ·+

(
pd −

1

d

)
ed ∈ E ∩

(
− 1

d
,∞
)d

is an interior point of the simplex. And every interior point of the simplex
corresponds to some p1, . . . , pd, thus, to some µ.

A tilted measure µt also sits on these d vertices of the simplex, with
probabilities qj = 1

Mµ(t)
etjpj (j = 1, . . . , d). Interestingly, when t runs over

E, the tilted measure runs over all strictly positive probability measures on
these vertices. Indeed, given q1, . . . , qd > 0, q1 + · · ·+ qd = 1, we take

sj = ln qj − ln pj , tj = sj −
s1 + · · ·+ sd

d
,

1The binomial distribution, treated in Sect. 1a, is a special case.
2You may choose an orthonormal basis in E, thus turning E into a copy of Rd−1.
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then µt corresponds to q1, . . . , qd (since etjpj = const · qj).
We have Mµ : E → (0,∞),

Mµ(t) =

∫
e〈t,x〉 µ(dx) = p1et1 + · · ·+ pde

td ;

∇Λµ : E → E,

∇Λµ(t) =
1

Mµ(t)
∇Mµ(t) =

( p1et1

Mµ(t)
− 1

d
, . . . ,

pde
td

Mµ(t)
− 1

d

)
.

We know that ∇Λµ(t) =
∫
xµt(dx) runs over the interior of the simplex

(when t runs over E). Thus,

∇Λµ(G) = ∇Λµ(E) = E ∩
(
− 1

d
,∞
)d
.

The Legendre transform Λ∗µ(x) for x ∈ E ∩
(
−1
d
,∞
)
d is 〈t, x〉 − Λµ(t) when

∇Λµ(t) = x; but let us treat it as a function of the tilted measure µt, that
is, of its probabilities q1, . . . , qd (rather than x). We have xj = qj − 1

d
,

qj =
1

Mµ(t)
etjpj ; ln

qj
pj

= tj − Λµ(t) ;

〈t, x〉=
∑
j

tj

(
qj −

1

d

)
=
∑
j

tjqj =
∑
j

qj ln
qj
pj

+Λµ(t) ; 〈t, x〉−Λµ(t)=
∑
j

qj ln
qj
pj

;

thus,

(3c1) Λ∗µ(x) = q1 ln
q1

p1

+ · · ·+ qd ln
qd
pd

=

∫
ln

dµt
dµ

dµt = H(µt|µ) ;

the relative entropy again!
Ignoring the distinction between a probability measure ν on the ver-

tices ej − e1+···+ed
d

of the (closed) simplex K = E ∩ [−1
d
,∞)d and the point∫

x ν(dx) ∈ K of this simplex, we write

Λ∗µ(ν) = H(ν|µ) for all µ ∈ K .

This equality holds on the interior of K, and therefore on the whole K, since
H(·|µ) is continuous on K (0 ln 0 = 0, of course), and Λ∗µ(·) is convex and
lower semicontinuous (being the supremum of affine functions), therefore
continuous on K, too. Prop. 3a6 gives an upper bound for the empirical
distribution η:

(3c2) lnµ∗n({nη : H(η|µ) ≥ c}) ≤ −nc+ o(n) as n→∞
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for every c ∈ (0,∞). On the other hand, Theorem 3a1 gives a lower bound:

(3c3) lnµ∗n(nU) ≥ −n inf
ν∈U∩K

H(ν|µ) + o(n) as n→∞

for every open set U .

3c4 Exercise (minimum of relative entropy on half-space). Let µ be a
strictly positive probability measure on a finite set Ω, and u : Ω → R.
Then H(ν|µ)−H(µu|µ) ≥

∫
u dν−

∫
u dµu for all probability measures ν on

Ω; and therefore
min

ν:
∫
udν≥

∫
u dµu

H(ν|µ) = H(µu|µ) .

Prove it.1

3d Conditioning and tilting

Recall the essential infimum and supremum of a measurable function u on a
probability space (Ω, µ):

ess inf u = sup{x : µ(u−1(−∞, x)) = 0} = inf{x : µ(u−1(−∞, x)) > 0} ∈ [−∞,+∞) ;

ess supu = inf{x : µ(u−1(x,∞)) = 0} = sup{x : µ(u−1(x,∞)) > 0} ∈ (−∞,+∞]

(here sup ∅ = −∞, inf ∅ = +∞).

3d1 Exercise. (a) limt→−∞
∫
u dµtu = ess inf u, limt→+∞

∫
u dµtu = ess supu.

(b) If ess inf u < ess supu, then the function t 7→
∫
u dµtu is strictly

increasing.
Prove it.2

Now we turn to measures and functions on a finite set; let it be {1, . . . , d}.
For every ω ∈ {1, . . . , d}n we define frequencies ηn,ω(x) = 1

n
·#{k : ωk =

x} for x ∈ {1, . . . , d}; these frequencies are a probability measure ηn,ω on
{1, . . . , d}. Thus, ηn maps {1, . . . , d}n to the set of probability measures on
{1, . . . , d}.

Let µ be a strictly positive probability measure on {1, . . . , d}; we en-
dow {1, . . . , d}n with the probability measure µn, and treat ηn as a random
probability measure on {1, . . . , d}.

Let u : {1, . . . , d} → R, and c ∈ R,
∫
u dµ < c < max

(
u(1), . . . , u(d)

)
.

We consider events En = {
∫
u dηn ≥ c}; that is, En ⊂ {1, . . . , d}n, En = {ω :∫

u dηn,ω ≥ c}.
1Hint: use 3a7.
2Hint: the general case reduces to a measure on R and the function u(x) = x, as noted

in Sect. 2a.
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3d2 Proposition. Conditionally, given En, the random measure ηn con-
verges (as n → ∞) in probability to the tilted measure µtu where t > 0 is
such that

∫
u dµtu = c.

Why just this measure, µtu? Because (as we’ll see soon) this is the unique
minimizer of the relative entropy H(ν|µ) among all measures ν such that∫
u dν ≥ c. In particular, when µ is the uniform measure, µtu is the unique

maximizer of the Shannon entropy H(ν) (recall (3b3)).1

Proof. In the compact simplex K of all probability measures on {1, . . . , d}
we consider the closed set F = {ν :

∫
u dν ≥ c}, the open set G = {ν :∫

u dν > c}, note that F = G, and µtu ∈ F \G. Let U be a neighborhood of
µtu. The lower bound (3c3) gives

lnµn{ηn ∈ G ∩ U} ≥ −n inf
ν∈G∩U

H(ν|µ) + o(n) ≥ −nH(µtu|µ) + o(n) ,

since µtu belongs to the closure of G ∩ U . The upper bound (3c2) gives

lnµn({H(ηn|µ) > H(µtu|µ) + ε}) ≤ −n(H(µtu|µ) + ε) + o(n)

for all ε > 0. Thus, the conditional probability of the event H(ηn|µ) >
H(µtu|µ) + ε given En (that is, ηn ∈ F ) tends to 0. We’ll prove that

F \ U ⊂ {ν : H(ν|µ) > H(µtu|µ) + ε}

for some ε > 0. By compactness, it is sufficient to prove that H(ν|µ) >
H(µtu|µ) for all ν ∈ F \ {µtu}. The weaker inequality H(ν|µ) ≥ H(µtu|µ)
follows from 3c4. It remains to note that the function H(·|µ) on K is strictly
convex, since the function x 7→ x lnx on [0, 1] is strictly convex.

Of course, the set {1, . . . , d} may be replaced with any finite set.

3d3 Example. Continuing an example of Sect. 2a, we take µ uniform on
{−1, 0, 1}, u(x) = x, and c = 3/7. Then µtu is

(
1

a2+a+1
, a
a2+a+1

, a2

a2+a+1

)
where

a = et; and
∫
u dµtu = a2−1

a2+a+1
is 3/7 for a = 2.

Clearly, the conditioning on ηn ∈ F may be replaced with conditioning
on ηn ∈ A whenever A ⊂ F and A ⊃ F ∩U for some neighborhood U of µtu.
In particular, we may condition on c ≤

∫
u dν ≤ c+ ε for arbitrary ε > 0.

Treating ω = (x1, . . . , xn) ∈ {1, . . . , d}n as a configuration of a physical
system of n particles (as in Sections 1b and 2a), and n

∫
u dηn,ω = u(x1) +

1“MaxEnt” (maximization of entropy) is used widely; just see “Maximum entropy” in
Wikipedia. Regretfully, the strange sign of the relative entropy leads to “MinRelEnt” (??)

http://en.wikipedia.org/wiki/Maximum_entropy
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· · ·+ u(xn) as the energy1 H(ω) of the configuration, and taking µ to be the
uniform measure, we observe that most of configurations ω satisfying

c ≤ 1

n
H(ω) ≤ c+ ε (that is, c ≤

∫
u dηn,ω ≤ c+ ε)

satisfy
ηn,ω ≈ µtu ,

and µtu maximizes the (Shannon) entropy among all measures ν such that
c ≤

∫
u dν ≤ c+ ε.

In statistical physics, usually, a system performs2 a kind of random walk
on the set {ω : H(ω) ≈ c}. It spends most of the time in the subset {ω :
ηn,ω ≈ µtu}; and no wonder!

Index

Chernoff’s lemma, 25

entropy, 26

Neyman-Pearson, 24

relative entropy, 25

Shannon entropy, 26

simplex, 27

αn, 24
βn, 24
E, 27
ηj , 27
ηn,ω, 29
G, 21
H(ν|µ), 25

1Unfortunately, H is widely used for both the Hamiltonian and the (Shannon) entropy.
In physics, entropy is usually denoted S.

2Since H is the Hamiltonian of an isolated system, but there is also a weak interaction
with environment.
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