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the normal approximation
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1a Mathematical prelude

Tossing n fair coins we get a random variable Sn distributed binomially,

P
(
Sn = k

)
= 2−n

(
n

k

)
=

n!

2nk!(n− k)!
for k = 0, 1, . . . , n ;

it is asymptotically normal: for all x ∈ R,

P
(2Sn − n√

n
≥ x

)
→
∫ ∞
x

1√
2π

e−u
2/2 du︸ ︷︷ ︸

1−Φ(x)

as n→∞ ;

and on the other hand,

1− Φ(x) =
1

x
· 1√

2π
e−x

2/2︸ ︷︷ ︸
ϕ(x)=Φ′(x)

·
(
1 + o(1)

)
as n→∞ .

Does it mean that P
(

2Sn−n√
n
≥ x

)
≈ 1

x
ϕ(x) for large n and x? Yes and no.

“Yes” if “≈” means a small absolute error; but this is trivial: both sides are
≈ 0. “No” if it means a small relative error; indeed, for x >

√
n the binomial

probability is 0, while its normal approximation is not. Well, what happens
for x =

√
n? The binomial probability is 2−n, while its normal approximation

is roughly e−n/2; quite bad: 1
2
6= 1√

e
.

The Stirling formula

n! = nne−n
√

2πn

(
1 +O

( 1

n

))
leads to

P
(
Sn = k

)
=

2√
n

1√
1− a2

1

2π
e−nγ(a)

(
1+O

( 1

n(1− |a|

))
where a =

2k − n
n
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for all n and k = 0, 1, . . . , n; here

(1a1)
γ(a) =

1

2
(1 + a) ln(1 + a) +

1

2
(1− a) ln(1− a) for a ∈ (−1, 1) ,

γ(−1) = γ(+1) = ln 2 .

γ

Taking into account that

P
(
Sn = k + 1

)
P
(
Sn = k

) =
n− k
k + 1

≤ 1− a
1 + a

,
P
(
Sn = k + 2

)
P
(
Sn = k

) ≤
(1− a

1 + a

)2

, . . .

we get for k > n/2

1 ≤
P
(
Sn ≥ k

)
P
(
Sn = k

) ≤ 1 + a

2a
,

thus, e−nγ(a) as an approximation to P
(

2Sn−n
n
≥ a

)
is rather crude, but

still much better than the normal approximation in the limit n → ∞, a =
const > 0. Some numeric data for n = 50:

k 26 30 40 44 46 48
P 0.444 0.101 1.19 · 10−5 1.62 · 10−8 2.23 · 10−10 1.13 · 10−12

MD/P 0.9998 1.0022 1.72 5.2 15 87
LD/P 2.2 3.6 5.5 5.1 4.5 3.5

Here P = P
(
Sn ≥ k

)
, MD = 1− Φ

(
2k−1−n√

n

)
, LD = exp

(
−nγ(2k−n

n
)
)
.

We see that the normal approximation is better for k ≤ 40 (“moderate
deviations”) and worse for k ≥ 46 (“large deviations”).1

Much better approximations are available, the so-called strong moderate
deviations and strong large deviations:2

sMD = MD · exp

(
x2

2
− nγ

( x√
n

))
where x =

2k − 1− n√
n

;

1There is no “official” definition of “moderate”. In the context of sums of i.i.d. random
variables (with exponential moments) “moderate” means a = o(1). For more general
thoughts, see: Inglot et al. 1992, Ann. Prob. 20:2, 987–1003.

2The word “strong” is overloaded. Here I use it, following Chaganty and Sethuraman
1993, Ann. Prob. 21:3, 1671–1690. But sometimes it means that convergence of distribu-
tions results from convergence of random variables (as in: Inglot et al. 1992).
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sLD = LD · 1√
2πn

1

a

√
1 + a

1− a
where a =

2k − n
n

.

Now, for n = 50 again,

k 26 30 40 44 46 48
P 0.444 0.101 1.19 · 10−5 1.62 · 10−8 2.23 · 10−10 1.13 · 10−12

sMD/P 0.9998 0.9978 0.9942 0.9916 0.9887 0.9815
sLD/P 3.2 1.25 1.029 1.022 1.025 1.044

and for n = 1000,

k 501 511 561 600 800 950
P 0.487 0.253 6.39 · 10−5 1.36 · 10−10 8.23 · 10−86 9.32 · 10−217

sMD/P 0.999 998 0.999 945 0.999 795 0.999 765 0.999 660 0.999 049
sLD/P 12.9 1.82 1.053 1.019 1.0015 1.0018

A wonder: sMD looks better than sLD in all cases.1

Also a wonder: we can compute easily such probability as 9.32 · 10−217.
However, what is it really good for? Does it matter that P

(
S1000 ≥ 950

)
is 9.32 · 10−217 rather than 9.35 · 10−217? Moreover, does it matter that it is
not 0? Tossing 1000 fair coins we may be pretty sure that “heads” will not
appear 950 times. Not even once in any feasible number of trials.

Is it reasonable to say that, for all practical purposes,

(a) 9.32 · 10−217 ≈ 10−217?

(b) 9.32 · 10−217 ≈ 0?

My answers: (b) sometimes it is, but not always; (a) I am not sure; maybe,
always.

The reason is related to statistical physics.

1b Physical prelude

To understand why rare events are impor-
tant at all, one only has to think of a lot-
tery to be convinced that rare events (such
as hitting the jackpot) can have an enor-
mous impact.

Amir Dembo and Ofer Zeitouni2

The numbers that arise in statis-
tical mechanics can defeat your
calculator. A googol is 10100 (one
with a hundred zeros after it). A
googolplex is 10googol.

James P. Sethna3

1Really, I do not know, why. A feature of the (symmetric) binomial case? Or a
manifestation of a more general phenomenon?

2See page 1 in the book “Large deviations techniques and applications”, Jones and
Bartlett Publ., 1993.

3See page 54 in the book “Statistical mechanics: entropy, order parameters, and com-
plexity”, Oxford, 2006.
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Small probabilities, such as 10−6, are important for lotteries, reliabil-
ity etc., which cannot be said about much smaller probabilities, such as
10−1 000 000 000 000 000 000 000. However, these monsters do appear in statistical
physics (as e−cn where the number of particles like n = 1020 is quite usual).

a physical question

A system of n so-called spin-1/2 particles is described by the configuration
space {−1, 1}n. Each configuration (x1, . . . , xn) ∈ {−1, 1}n has its energy1

Hn(x1, . . . , xn) = nf

(
x1 + · · ·+ xn

n

)
,

where f : [−1, 1] → R is a given smooth function (not depending on n). If
the system is in thermal equilibrium with a heat bath at temperature T , then
each configuration (x1, . . . , xn) appears with the probability

constn · exp

(
− 1

kBT
Hn(x1, . . . , xn)

)
,

where kB (= 1.38 · 10−23J/K) is the so-called Boltzmann constant. For large
n, up to small fluctuations, the energy per particle f(x1+···+xn

n
) is a function

of the temperature. Find this function.

a solution

The distribution Pβ of the number k of spins +1, corresponding to the
so-called inverse temperature β = 1

kBT
, is

Pβ(k) = P0(k) · constβ,n · exp

(
− βnf

(2k − n
n

))
,

where P0 is the “fair coin” binomial distribution (treated in Sect. 1a). We
note that

P0(k) = exp

(
− n

(
γ
(2k − n

n

)
+ o(1)

))
1Assuming that the spins interact only with the same magnetic field g((x1+· · ·+xn)/n)

that depends on the mean field (x1 + · · · + xn)/n via a function g describing (generally,
nonlinear) magnetic properties of the environment. Thus, f(s) = sg(s). See also Sect. 9 in:
R.S. Ellis, “The theory of large deviations and applications to statistical mechanics”, 2006,
http://www.math.umass.edu/∼rsellis/pdf-files/Dresden-lectures.pdf; and Sect. 7.3.2 in:
D. Yoshioka, “Statistical physics”, Springer, 2007.

http://www.math.umass.edu/~rsellis/pdf-files/Dresden-lectures.pdf
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where o(1) (as n → ∞) is uniform over all k such that |2k−n
n
| is bounded

away from 1.1 Thus,

Pβ(k) = constβ,n · exp

(
− n

(
γ
(2k − n

n

)
+ βf

(2k − n
n

)
+ o(1)

))
.

Assuming that the function γ + βf has a single minimum aβ ∈ (−1, 1) we
see that Pβ concentrates (for large n) on k such that 2k−n

n
≈ aβ. The energy

per particle is therefore f(aβ) + o(1).
Consider, for example, the simple case f(a) = a (an external magnetic

field only). We have (γ + βf)′(aβ) = 0, that is, γ′(aβ) = −β; generally

γ′(a) = 1
2

ln 1+a
1−a ; thus,

1+aβ
1−aβ

= e−2β;

aβ = −eβ − e−β

eβ + e−β
= − tanh β .

We see that aβ → −1 as β → ∞, and no wonder; at low temperature the
energy is roughly minimal.

Note that Pβ is concentrated on a set (of k) of very small probability
P0; indeed, exponentially small (in n). Taking into account that n = 1020 is
usual, we observe the probability about exp(−1020). Surely a number that
can defeat a calculator!

Why does such a tiny probability matter? Because of the interplay be-
tween different probability measures related via exponentially small or large
numbers. This is why we cannot replace a small probability with zero. On
the other hand, a rough approximation, of the form exp

(
−n
(
γ(. . . ) + o(1)

))
,

is all we need. It means that, for instance, 10−217 is a reasonably good
approximation for 9.32 · 10−217, since their logarithms are relatively close.
Likewise, exp(−1020) is a good approximation for exp(1015) exp(−1020) in
this framework.

What about the distinction between 9.32 · 10−217 and 9.35 · 10−217? Can
it matter in another framework? In principle, why not; but I did not face
such situations.

1Still, a neighborhood of ±1 does not harm; for now I do not explain, why.
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