Let X be a reversible Markov chain, and let C be a non-empty subset of the state space S. Define the Markov chain Y on S by the transition matrix $Q=\left(q_{i j}\right)$ where

$$
q_{i j}= \begin{cases}\beta p_{i j} & \text { if } i \in C \text { and } j \notin C \\ p_{i j} & \text { otherwise }\end{cases}
$$

for $i \neq j$, and where β is a constant satisfying $0<\beta<1$. The diagonal terms $q_{i i}$ are arranged so that Q is a stochastic matrix. Show that Y is reversible in equilibrium, and find its stationary distribution. Describe the situation in the limit as $\beta \downarrow 0$.

We guess that the stationary distribution $\left(q_{i}\right)$ of Y results from the stationary distribution $\left(p_{i}\right)$ of X by

$$
q_{i}= \begin{cases}a p_{i} & \text { if } i \in C \\ b p_{i} & \text { otherwise }\end{cases}
$$

for some constants $a, b>0$. We have $p_{i} p_{i j}=p_{j} p_{j i}$ (the detailed balance for X), and we need $q_{i} q_{i j}=q_{j} q_{j i}$ for $i \neq j$ (the detailed balance for Y). If $i, j \in C$ then $q_{i j}=p_{i j}, q_{j i}=p_{j i}, q_{i}=a p_{i}$ and $q_{j}=a p_{j}$, therefore $q_{i} q_{i j}=a p_{i} p_{i j}=a p_{j} p_{j i}=q_{j} q_{j i}$. The case $i, j \notin C$ is similar. If $i \in C$ but $j \notin C$ then $q_{i j}=\beta p_{i j}, q_{j i}=p_{j i}, q_{i}=a p_{i}$ and $q_{j}=b p_{j}$; in order to get $a p_{i} \cdot \beta p_{i j}=b p_{j} \cdot p_{j i}$ we need

$$
a \beta=b .
$$

The last case, $i \notin C$ but $j \in C$. Here $q_{i j}=p_{i j}, q_{j i}=\beta p_{j i}, q_{i}=b p_{i}$ and $q_{j}=a p_{j}$; the equality $b p_{i} \cdot p_{i j}=a p_{j} \cdot \beta p_{j i}$ follows from $a \beta=b$. It remains to choose a, b such that $a \beta=b$ and $\sum q_{i}=1 ;$

$$
1=\sum_{i} q_{i}=\sum_{i \in C} q_{i}+\sum_{i \notin C} q_{i}=a \sum_{i \in C} p_{i}+b \sum_{i \notin C} p_{i}=a\left(\sum_{i \in C} p_{i}+\beta \sum_{i \notin C} p_{i}\right) .
$$

Finally,

$$
a=\frac{1}{\sum_{i \in C} p_{i}+\beta \sum_{i \notin C} p_{i}}, \quad b=\frac{\beta}{\sum_{i \in C} p_{i}+\beta \sum_{i \notin C} p_{i}} .
$$

If β is small then b is small, thus, the distribution nearly concentrates on C. And no wonder: the exit from C becomes hard, while return to C remains easy.

