4 More on Brownian rotations

4a Moment method on the circle

We return to the process $Y_t = \exp(i\sigma B_t + ivt)$, $\sigma, v \in \mathbb{R}$ (as in 3a23). The distribution of Y_t is easy to describe explicitly by a density: for $0 < u < v < 2\pi$,

(4a1)
$$\mathbb{P}\left(Y_t \in e^{i[u,v]}\right) = \int_u^v p_t(x) \, dx,$$

$$p_t(x) = \frac{1}{\sqrt{2\pi}|\sigma|\sqrt{t}} \sum_{k=-\infty}^{+\infty} \exp\left(-\frac{(x-vt+2\pi k)^2}{2\sigma^2 t}\right)$$

(unless $\sigma = 0$, of course); here $e^{i[u,v]}$ denotes the arc $\{e^{ix} : u \leq x \leq v\}$. This approach, however, does not work for more general situations of 3c, when Y_t may depend on the past of (X_s) . This is why we turn to the moment method.

For any random variable $U:\Omega\to\mathbb{T}=\{z\in\mathbb{C}:|z|=1\}$, the distribution μ of U is uniquely determined by its moments

$$\mathbb{E} U^k = \int_{\mathbb{T}} u^k \, \mu(du) \in \mathbb{C}, \qquad k = 1, 2, \dots$$

since functions 1, $\cos kx$, $\sin kx$ span the space of continuous 2π -periodic functions.

For any $k = 1, 2, \ldots$ the process $(Y_t^k)_t$ is another Brownian motion in \mathbb{T} , and

$$\mathbb{E}Y_t^k = \mathbb{E}\exp(ik\sigma B_t + ikvt) = \exp\left(-\frac{1}{2}k^2\sigma^2t\right)e^{ikvt} = \exp\left(\left(-\frac{1}{2}k^2\sigma^2 + ikv\right)t\right).$$

By the way, for $t \to \infty$ we get $\mathbb{E}Y_t^k \to 0$ (unless $\sigma = 0$), which means that the distribution converges (weakly) to the uniform distribution on \mathbb{T} . (Do you see it via (4a1)?)

4b Tensor moments of random matrices

4b1 Exercise. The distribution of a random matrix $U: \Omega \to SO(n)$, in general, is not determined uniquely by the matrices $\mathbb{E}U^k$, $k=1,2,\ldots$

Prove it (by finding a counterexample).

Hint: restrict yourself to diagonal matrices.

4b2 Definition. For any matrices $A \in \mathrm{M}_m(\mathbb{R})$, $B \in \mathrm{M}_n(\mathbb{R})$, their tensor product $A \otimes B \in \mathrm{M}_{mn}(\mathbb{R})$ is

$$(A \otimes B)_{\alpha,\beta}^{\gamma,\delta} = A_{\alpha}^{\gamma} B_{\beta}^{\delta} \quad \text{for } \alpha, \gamma \in \{1, \dots, m\} \text{ and } \beta, \delta \in \{1, \dots, n\}.$$

You see, rows and columns of $A \otimes B$ are numbered by $\{1, \ldots, m\} \times \{1, \ldots, n\}$ rather than $\{1, \ldots, mn\}$. The freedom of enumerating the pairs does not influence algebraic relations between matrices. An example:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \otimes \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} ae & af & be & bf \\ ag & ah & bg & bh \\ ce & cf & de & df \\ cg & ch & dg & dh \end{pmatrix}$$

(which enumeration is used here?).

Tensor product of several matrices is defined similarly. In particular,

$$A^{\otimes k} = \underbrace{A \otimes \cdots \otimes A}_{k}.$$

4b3 Exercise. For any random matrix $U: \Omega \to SO(n)$, the distribution μ of U is uniquely determined by its tensor moments

$$\mathbb{E} U^{\otimes k} = \int_{SO(n)} u^{\otimes k} \, \mu(du) \in \mathcal{M}_{n^k}(\mathbb{R}) \,.$$

Prove it.

Hint: polynomials are dense among continuous functions on SO(n).

4b4 Exercise. (a) $(A \otimes B)(x \otimes y) = (Ax) \otimes (By)$ for all $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$, $A \in M_m(\mathbb{R})$, $B \in M_n(\mathbb{R})$. Here $x \otimes y \in \mathbb{R}^{mn}$ is defined by

$$(x \otimes y)_{\alpha,\beta} = x_{\alpha}y_{\beta}$$
 for $\alpha \in \{1, \dots, m\}, \beta \in \{1, \dots, n\}$

(up to enumeration...). Similarly, $(x \otimes y)(A \otimes B) = (xA) \otimes (yB)$.

(b) $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$ for all $A, C \in M_m(\mathbb{R}), B, D \in M_n(\mathbb{R})$. Prove it.

Note that factorizable vectors $x \otimes y$ are not the whole \mathbb{R}^{mn} , but span \mathbb{R}^{mn} .

4b5 Exercise. $SO(m) \otimes SO(n) \subset SO(mn)$.

Prove it.

Hint:
$$\langle (x_1 \otimes y_1)(U \otimes V), (x_2 \otimes y_2)(U \otimes V) \rangle = \langle x_1 \otimes y_1, x_2 \otimes y_2 \rangle$$
.

4b6 Exercise. (a) If $(U_t)_{t\in[0,\infty)}$ is a one-parameter semigroup in $M_n(\mathbb{R})$, then $(U_t\otimes U_t)_{t\in[0,\infty)}$ is a one-parameter semigroup in $M_{n^2}(\mathbb{R})$.

(b) If A is the generator of $(U_t)_{t\in[0,\infty)}$ then

$$(A \otimes \mathbf{1}) + (\mathbf{1} \otimes A)$$

is the generator of $(U_t \otimes U_t)_t$.

Prove it. Generalize it to $U_t^{\otimes k}$.

Hint. (a): use 4b4(b); (b):
$$(1 + At + o(t)) \otimes (1 + At + o(t)) = \dots$$

In other words,

(4b7)
$$\exp(A \otimes \mathbf{1} + \mathbf{1} \otimes A) = \exp(A) \otimes \exp(A).$$

In fact, $\exp(A \otimes \mathbf{1}) = \exp(A) \otimes \mathbf{1}$ and $\exp(\mathbf{1} \otimes B) = \mathbf{1} \otimes \exp(B)$, thus $\exp(A \otimes \mathbf{1} + \mathbf{1} \otimes B) = \exp(A) \otimes \exp(B)$. Operators $A \otimes \mathbf{1}$ form an algebra isomorphic to $M_n(\mathbb{R})$; operators $\mathbf{1} \otimes B$ form another algebra isomorphic to $M_n(\mathbb{R})$; these are two *commuting* copies of $M_n(\mathbb{R})$ in $M_{n^2}(\mathbb{R})$.

4c Tensor powers of Brownian rotations

4c1 Exercise. (a) If $(Y_t)_t$ is a Brownian motion in SO(n) then $(Y_t^{\otimes k})_t$ is a Brownian motion in $SO(n^k)$, for any k = 1, 2, ...

(b) If $(B_t, Y_t)_t$ is a morphism of the standard Brownian motion $(B_t)_t$ in \mathbb{R} to a Brownian motion in SO(n), then $(B_t, Y_t^{\otimes k})_t$ is a morphism of $(B_t)_t$ to a Brownian motion in $SO(n^k)$.

Prove it.

Hint: use 4b4(b) and 4b5.

In fact, the product of *commuting* Brownian rotations is a Brownian rotation. The same holds for morphisms.

4c2 Exercise. If $(Y_t)_t$ is a Brownian motion in SO(n) then $(\mathbb{E}Y_t)_t$ is a (continuous) one-parameter semigroup in $M_n(\mathbb{R})$.

Prove it.

Hint: $\mathbb{E}(AB) = (\mathbb{E}A)(\mathbb{E}B)$ for independent random matrices A, B.

We have

(4c3)
$$\mathbb{E}(Y_t^{\otimes k}) = \exp(A_k t) \quad \text{for } t \in [0, \infty), \ k = 1, 2, \dots$$

where $A_k \in \mathcal{M}_{n^k}(\mathbb{R})$ is the generator of the semigroup.

4c4 Example. The isomorphism $e^{i\alpha} \mapsto \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}$ between \mathbb{T} and SO(2) (mentioned before 3b8) turns e^{iB_t} into

$$Y_t = \begin{pmatrix} \cos B_t & \sin B_t \\ -\sin B_t & \cos B_t \end{pmatrix} \in SO(2)$$
.

We have

$$\mathbb{E} Y_t = \begin{pmatrix} e^{-t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix} = \exp(A_1 t), \qquad A_1 = -\frac{1}{2} \cdot \mathbf{1},$$

since $\mathbb{E}e^{iB_t}=e^{-t/2}$. Further,

$$Y_t \otimes Y_t = \begin{pmatrix} \cos^2 B_t & \cos B_t \sin B_t & \sin B_t \cos B_t & \sin^2 B_t \\ -\cos B_t \sin B_t & \cos^2 B_t & -\sin^2 B_t & \sin B_t \cos B_t \\ -\sin B_t \cos B_t & -\sin^2 B_t & \cos^2 B_t & \cos B_t \sin B_t \\ \sin^2 B_t & -\sin B_t \cos B_t & -\cos B_t \sin B_t & \cos^2 B_t \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 + \cos 2B_t & \sin 2B_t & 1 - \cos 2B_t \\ -\sin 2B_t & 1 + \cos 2B_t & -1 + \cos 2B_t & \sin 2B_t \\ -\sin 2B_t & -1 + \cos 2B_t & 1 + \cos 2B_t & \sin 2B_t \\ 1 - \cos 2B_t & -\sin 2B_t & -\sin 2B_t & 1 + \cos 2B_t \end{pmatrix};$$

$$\mathbb{E}(Y_t \otimes Y_t) = \frac{1}{2} \begin{pmatrix} 1 + e^{-2t} & 0 & 0 & 1 - e^{-2t} \\ 0 & 1 + e^{-2t} & -1 + e^{-2t} & 0 \\ 0 & -1 + e^{-2t} & 1 + e^{-2t} & 0 \\ 1 - e^{-2t} & 0 & 0 & 1 + e^{-2t} \end{pmatrix}$$

(it must be a semigroup). For small t,

$$\mathbb{E}(Y_t \otimes Y_t) = \begin{pmatrix} 1 - t & 0 & 0 & t \\ 0 & 1 - t & -t & 0 \\ 0 & -t & 1 - t & 0 \\ t & 0 & 0 & 1 - t \end{pmatrix} + o(t) = 1 + A_2 t + o(t),$$

$$A_2 = \begin{pmatrix} -1 & 0 & 0 & 1 \\ 0 & -1 & -1 & 0 \\ 0 & -1 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix},$$

thus $\mathbb{E}(Y_t \otimes Y_t) = \exp(A_2 t)$.

4c5 Exercise. Let

$$Y_t = \text{Texp}\left(i\int_0^t (\sigma \, dB_s + v \, ds)\right)$$

for some $\sigma, v \in iM_n(\mathbb{R}), \ \sigma^* = \sigma, \ v^* = v$. Then

$$Y_t \otimes Y_t = \operatorname{Texp}\left(i \int_0^t (\sigma \otimes \mathbf{1} + \mathbf{1} \otimes \sigma) dB_s + (v \otimes \mathbf{1} + \mathbf{1} \otimes v) ds\right).$$

Prove it. Generalize it for $Y_t^{\otimes k}$.

Hint. According to 4c1(b) and 3b, it must be $Y_t \otimes Y_t = \text{Texp}(i \int_0^t (\sigma_2 dB_s + v_2 ds))$ for some σ_2, v_2 ; for small t we get $\exp(i\sigma_2 B_t + iv_2 t) = \exp(i\sigma B_t + iv_2 t) \otimes \exp(i\sigma B_t + iv_2 t) + o(t)$; recall (4b7).

In fact,

$$\left(\operatorname{Texp}\left(i\int_0^t dX\right)\right)\left(\operatorname{Texp}\left(i\int_0^t dY\right)\right) = \operatorname{Texp}\left(i\int_0^t d(X+Y)\right)$$

whenever X, Y commute.

4c6 Exercise. Let

$$Y_t = \text{Texp}\left(i \int_0^t (\sigma \, dB_s + v \, ds)\right)$$

for some $\sigma, v \in iM_n(\mathbb{R}), \ \sigma^* = \sigma, \ v^* = v$. Then

$$A_{1} = -\frac{1}{2}\sigma^{2} + iv,$$

$$A_{2} = -\frac{1}{2}(\sigma \otimes \mathbf{1} + \mathbf{1} \otimes \sigma)^{2} + i(v \otimes \mathbf{1} + \mathbf{1} \otimes v) =$$

$$= -\frac{1}{2}(\sigma^{2} \otimes \mathbf{1} + \mathbf{1} \otimes \sigma^{2}) - \sigma \otimes \sigma + i(v \otimes \mathbf{1} + \mathbf{1} \otimes v),$$

where A_k are defined by (4c3).

Prove it.

Hint: first, find A_1 by using the asymptotics of Y_t for small t; second, apply the formula for A_1 to $Y_t \otimes Y_t$ using 4c5.

4c7 Example. Let Y_t be as in 4c4, then $i\sigma = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ is the image of $i \in \mathbb{C}$ under the embedding $z \mapsto \begin{pmatrix} \operatorname{Re} z & \operatorname{Im} z \\ -\operatorname{Im} z & \operatorname{Re} z \end{pmatrix}$ (mentioned before 3b8), and v = 0. Using 4c6,

$$(i\sigma)^{2} = -\mathbf{1}; \qquad A_{1} = -\frac{1}{2} \cdot \mathbf{1};$$

$$\sigma^{2} \otimes \mathbf{1} = \mathbf{1} \otimes \mathbf{1} = \mathbf{1}; \qquad \mathbf{1} \otimes \sigma^{2} = \mathbf{1}; \qquad \sigma \otimes \sigma = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix};$$

$$A_{2} = -\mathbf{1} - \sigma \otimes \sigma = \begin{pmatrix} -1 & 0 & 0 & 1 \\ 0 & -1 & -1 & 0 \\ 0 & -1 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix};$$

the result conforms to 4c4.

Similarly,

$$A_3 = -\frac{1}{2}(\sigma \otimes \mathbf{1} \otimes \mathbf{1} + \mathbf{1} \otimes \sigma \otimes \mathbf{1} + \mathbf{1} \otimes \mathbf{1} \otimes \sigma)^2 + i(v \otimes \mathbf{1} \otimes \mathbf{1} + \mathbf{1} \otimes v \otimes \mathbf{1} + \mathbf{1} \otimes \mathbf{1} \otimes v)$$

and so on. Having all A_k we know (in principle) all tensor moments of Y_t , therefore, the distribution of Y_t (for any t), according to 4b3.

However, Texp $(i \int (\sigma dB_s + v ds))$ is only a special case of

(4c8)
$$Y_t = \text{Texp}\left(i \int_0^t (\sigma_1 dB_1(s) + \dots + \sigma_m dB_m(s) + v ds)\right)$$

(recall 3c). By a straightforward generalization of 4c1(b), 4c5, 4c6 we get

$$Y_t \otimes Y_t = \operatorname{Texp}\left(i \int_0^t \left((\sigma_1 \otimes \mathbf{1} + \mathbf{1} \otimes \sigma_1) dB_1(s) + \dots + (\sigma_m \otimes \mathbf{1} + \mathbf{1} \otimes \sigma_m) dB_m(s) + \right. \\ \left. + \left(v \otimes \mathbf{1} + \mathbf{1} \otimes v \right) ds \right) \right);$$

(4c9)
$$A_1 = -\frac{1}{2}(\sigma_1^2 + \dots + \sigma_m^2) + iv;$$

$$A_2 = -\frac{1}{2} \sum_{k=1}^m (\sigma_k \otimes \mathbf{1} + \mathbf{1} \otimes \sigma_k)^2 + i(v \otimes \mathbf{1} + \mathbf{1} \otimes v);$$

$$A_3 = -\frac{1}{2} \sum_{k=1}^m (\sigma_k \otimes \mathbf{1} \otimes \mathbf{1} + \mathbf{1} \otimes \sigma_k \otimes \mathbf{1} + \mathbf{1} \otimes \mathbf{1} \otimes \sigma_k)^2 + i(v \otimes \mathbf{1} \otimes \mathbf{1} + \mathbf{1} \otimes v \otimes \mathbf{1} + \mathbf{1} \otimes \mathbf{1} \otimes v);$$

and so on.

4d Not just morphisms

We have a satisfactory theory of morphisms. What about a theory of Brownian rotations? Two questions arise naturally.

4d1. Whether every Brownian motion in SO(n) is of the form (4c8), or not?

4d2. Given two morphisms of the form (4c8), how to decide, whether they give two *identically distributed* Brownian motions in SO(n), or not?

No doubt that two morphisms can represent the same Brownian rotation (I mean, the same distribution). For example,

$$Y_1(t) = \text{Texp}\left(i \int_0^t (\sigma \, dB_s + v \, ds)\right),$$

$$Y_2(t) = \text{Texp}\left(i \int_0^t (-\sigma \, dB_s + v \, ds)\right).$$

These two morphisms $B \to Y_1$, $B \to Y_2$ are connected by an automorphism of B, that is, an isomorphism (invertible morphism) $B \to B$; namely, $(B_t, -B_t)_t$. For the two-dimensional $(B_1(t), B_2(t))_t$ we may use the automorphism

$$(B_1(t), B_2(t)), (B_1(t)\cos\alpha + B_2(t)\sin\alpha, -B_1(t)\sin\alpha + B_2(t)\cos\alpha)$$

where α is a parameter; we get a continuum of morphisms

$$Y_{\alpha}(t) = \operatorname{Texp}\left(i \int_{0}^{t} \left((\sigma_{1} \cos \alpha - \sigma_{2} \sin \alpha) dB_{1}(s) + (\sigma_{1} \sin \alpha + \sigma_{2} \cos \alpha) dB_{2}(s) + v ds \right) \right)$$

such that the distribution of Y_{α} does not depend on the parameter α . More generally, every rotation of \mathbb{R}^m (namely, every element of $O(\mathbb{R}^m)$) gives us an automorphism of the standard Brownian motion $(B_1(t), \ldots, B_m(t))_t$ in \mathbb{R}^m .

There exist also morphisms of (B_1, B_2) to B_1 ; here are two examples:

$$\left((B_1(t), B_2(t)), B_1(t) \right)_t;$$

$$\left((B_1(t), B_2(t)), \frac{B_1(t) + B_2(t)}{\sqrt{2}} \right)_t.$$

Accordingly, the Brownian rotations

$$Y_1(t) = \text{Texp}\left(i\int_0^t \left(\frac{\sigma}{\sqrt{2}} dB_1(s) + \frac{\sigma}{\sqrt{2}} dB_2(s) + v ds\right)\right),$$
$$Y_2(t) = \text{Texp}\left(i\int_0^t (\sigma dB(s) + v ds)\right)$$

are identically distributed.

4e Uniqueness theorem

Generators A_k (introduced by (4c3)) depend on the distribution of Y (not on a morphism), and determine uniquely the distribution by 4b3. It is an answer to 4d2: given two morphisms, calculate their A_1, A_2, \ldots by (4c9) and compare them.

Fortunately, it is enough to compare A_1, A_2 only! They determine uniquely A_3, A_4, \ldots Indeed, knowing $A_1 = -\frac{1}{2}(\sigma_1^2 + \cdots + \sigma_m^2) + iv$ we know both v (since $A_1 - A_1^* = 2iv$), and $\sum \sigma_k^2$. Knowing also A_2 we know $\sum (\sigma_k \otimes \mathbf{1} + \mathbf{1} \otimes \sigma_k)^2 = (\sum \sigma_k^2) \otimes \mathbf{1} + \mathbf{1} \otimes (\sum \sigma_k^2) + 2\sum \sigma_k \otimes \sigma_k$, thus, we know $\sum \sigma_k \otimes \sigma_k$. Now, in order to find A_3 we need $\sum (\sigma_k \otimes \mathbf{1} \otimes \mathbf{1} + \mathbf{1} \otimes \sigma_k \otimes \mathbf{1} + \mathbf{1} \otimes \mathbf{1} \otimes \sigma_k)^2 = (\sum \sigma_k^2) \otimes \mathbf{1} \otimes \mathbf{1} + \mathbf{1} \otimes (\sum \sigma_k^2) \otimes \mathbf{1} + \mathbf{1} \otimes \mathbf{1} \otimes (\sum \sigma_k^2) + 2\sum \sigma_k \otimes \sigma_k \otimes \mathbf{1} + 2\sum \sigma_k \otimes \mathbf{1} \otimes \sigma_k + 2\sum \mathbf{1} \otimes \sigma_k \otimes \sigma_k$, and it is enough to find the three sums $\sum \sigma_k \otimes \sigma_k \otimes \mathbf{1}, \sum \sigma_k \otimes \mathbf{1} \otimes \sigma_k$ and $\sum \mathbf{1} \otimes \sigma_k \otimes \sigma_k$. No problems with the first and the third sum,

$$\sum \sigma_k \otimes \sigma_k \otimes \mathbf{1} = \left(\sum \sigma_k \otimes \sigma_k\right) \otimes \mathbf{1},$$
$$\sum \mathbf{1} \otimes \sigma_k \otimes \sigma_k = \mathbf{1} \otimes \left(\sum \sigma_k \otimes \sigma_k\right).$$

The second sum $\sum \sigma_k \otimes \mathbf{1} \otimes \sigma_k$ looks worse, but results from $\sum \sigma_k \otimes \sigma_k$, too:

$$\big(\sum \sigma_k \otimes \mathbf{1} \otimes \sigma_k\big)_{\alpha\beta\gamma}^{\delta\varepsilon\zeta} = \sum (\sigma_k)_{\alpha}^{\delta} (\mathbf{1})_{\beta}^{\varepsilon} (\sigma_k)_{\gamma}^{\zeta} = (\mathbf{1})_{\beta}^{\varepsilon} \big(\sum \sigma_k \otimes \sigma_k\big)_{\alpha\gamma}^{\delta\zeta}.$$

We see that A_1, A_2 determine A_3 uniquely. The same holds for A_4, A_5, \ldots and we get a good answer to 4d2.

4e1 Theorem. (a) The distribution of the Brownian motion $(Y_t)_t$ in SO(n) given by

$$Y_t = \operatorname{Texp}\left(i \int_0^t \left(\sigma_1 dB_1(s) + \dots + \sigma_m dB_m(s) + v ds\right)\right)$$

uniquely determines generators $A_1 \in M_n(\mathbb{R})$, $A_2 \in M_{n^2}(\mathbb{R})$ of the semigroups $(\mathbb{E}Y_t)_t$, $(\mathbb{E}(Y_t \otimes Y_t))_t$ and is uniquely determined by A_1, A_2 .

(b) The same for the two matrices

$$iv \in \mathcal{M}_n(\mathbb{R}), \qquad \sum_{k=1}^m \sigma_k \otimes \sigma_k \in \mathcal{M}_{n^2}(\mathbb{R}).$$

4f Differential operators on the rotation group

The two matrices mentioned in 4e1(b) have an important meaning in terms of differential operators on SO(n).

A smooth function $f: \mathbb{R}^n \to \mathbb{R}$ has at 0 its gradient (first differential) vector $\nabla f(0) \in \mathbb{R}^n$, namely $(\nabla f(0))_{\alpha} = \frac{\partial}{\partial x_{\alpha}}\big|_{x=0} f(x)$, and its matrix of second derivatives $\nabla^2 f(0) \in \mathcal{M}_n(\mathbb{R})$, namely $(\nabla f(0))_{\alpha}^{\beta} = \frac{\partial^2}{\partial x_{\alpha} \partial x_{\beta}}\big|_{x=0} f(x)$. The situation is somewhat more complicated for a smooth function $f: SO(n) \to \mathbb{R}$ on the smooth manifold SO(n) of dimension n^2 . Given such f, we define $\nabla f(\mathbf{1}) \in \mathcal{M}_n(\mathbb{R})$ by

(4f1)
$$(\nabla f(\mathbf{1}))_{\alpha}^{\beta} = \frac{\partial}{\partial A_{\alpha}^{\beta}} \Big|_{A=0} f(\exp A) ;$$

the matrix $A \in M_n(\mathbb{R})$ may be treated as n^2 variables, and A_{α}^{β} is one of these variables. Similarly we define $\nabla^2 f(\mathbf{1}) \in M_{n^2}(\mathbb{R})$ by

(4f2)
$$(\nabla^2 f(\mathbf{1}))_{\alpha,\beta}^{\gamma,\delta} = \frac{\partial^2}{\partial A_{\alpha}^{\gamma} \partial A_{\beta}^{\delta}} \Big|_{A=0} f(\exp A) .$$

4f3 Exercise.

$$f(\exp A) = f(\mathbf{1}) + \langle \nabla f(\mathbf{1}), A \rangle + \frac{1}{2} \langle \nabla^2 f(\mathbf{1}), A \otimes A \rangle + o(\|A\|^2)$$

for $||A|| \to 0$; here $\langle \cdot, \cdot \rangle$ means¹

$$\langle A, B \rangle = \sum_{\alpha, \beta} A_{\alpha}^{\beta} B_{\alpha}^{\beta} \quad \text{for } A, B \in \mathcal{M}_{n}(\mathbb{R}) \,,$$

$$\langle A, B \rangle = \sum_{\alpha, \beta, \gamma, \delta} A_{\alpha, \beta}^{\gamma, \delta} B_{\alpha, \beta}^{\gamma, \delta} \quad \text{for } A, B \in \mathcal{M}_{n^{2}}(\mathbb{R}) \,.$$

Prove it.

The following fact generalizes equalities

$$f(B_t) = f(0) + f'(0)B_t + \frac{1}{2}f''(0)B_t^2 + o(t)$$

$$\mathbb{E}f(B_t) = f(0) + \frac{1}{2}f''(0)t + o(t)$$

from $f: \mathbb{R} \to \mathbb{R}$ to $f: SO(n) \to \mathbb{R}$. A matrix $D \in M_{n^2}(\mathbb{R})$ defined by

$$(4f4) D = -\sum_{k} \sigma_k \otimes \sigma_k$$

will be very useful.

4f5 Exercise. Let $(Y_t)_t$ be given by (4c8); then

$$f(Y_t) = f(\mathbf{1}) + \sum \langle \nabla f(\mathbf{1}), i\sigma_k \rangle B_k(t) + \langle \nabla f(\mathbf{1}), iv \rangle t - \frac{1}{2} \sum \langle \nabla^2 f(\mathbf{1}), \sigma_k \otimes \sigma_k \rangle B_k^2(t) + o(t),$$

$$\mathbb{E} f(Y_t) = f(\mathbf{1}) + \left(\langle \nabla f(\mathbf{1}), iv \rangle + \frac{1}{2} \langle \nabla^2 f(\mathbf{1}), D \rangle \right) t + o(t)$$

for $t \to 0$.

Prove it.

We generalize (4f1), (4f2) as follows: for $U \in SO(n)$,

(4f6)
$$(\nabla f(U))_{\alpha}^{\beta} = \frac{\partial}{\partial A_{\alpha}^{\beta}} \Big|_{A=0} f(U \exp A) ;$$

$$(\nabla^{2} f(U))_{\alpha,\beta}^{\gamma,\delta} = \frac{\partial^{2}}{\partial A_{\alpha}^{\gamma} \partial A_{\beta}^{\delta}} \Big|_{A=0} f(U \exp A) .$$

¹In other words, $\langle A, B \rangle = \operatorname{tr}(AB^*)$.

In other words,

(4f7)
$$\nabla f(U) = \nabla g(\mathbf{1}), \qquad \nabla^2 f(U) = \nabla^2 g(\mathbf{1}),$$
 where $g(V) = f(UV)$ for all V .

We consider the convolution semigroup $(\mu_t)_t$ corresponding to $(Y_t)_t$; that is, $Y_t \sim \mu_t$. We define the convolution of a function and a measure (on SO(n)) by

$$(f * \mu)(U) = \int f(UV) \,\mu(dV),$$

then $\mathbb{E} f(Y_t) = \int f d\mu_t = (f * \mu_t)(\mathbf{1})$, and 4f5 becomes

$$(f * \mu_t)(\mathbf{1}) = f(\mathbf{1}) + \left(\langle \nabla f(\mathbf{1}), iv \rangle + \frac{1}{2} \langle \nabla^2 f(\mathbf{1}), D \rangle \right) t + o(t).$$

4f8 Exercise. For any $U \in SO(n)$,

$$(f * \mu_t)(U) = f(U) + \left(\langle \nabla f(U), iv \rangle + \frac{1}{2} \langle \nabla^2 f(U), D \rangle \right) t + o(t)$$

for $t \to 0$.

Prove it.

Hint: use (4f7) and apply 4f5 to g.

4f9 Exercise. Denote $f_t = f * \mu_t$, then

$$f_{t+\Delta t}(U) = f_t(U) + \left(\langle \nabla f_t(U), iv \rangle + \frac{1}{2} \langle \nabla^2 f_t(U), D \rangle \right) \Delta t + o(\Delta t)$$

for $\Delta t \to 0+$ (and t = const).

Prove it.

Hint: apply 4f8 to f_t .

The simplest functions are linear functions,

(4f10)
$$f_B(U) = \langle B, U \rangle$$
 for $U \in SO(n)$,

 $B \in \mathcal{M}_n(\mathbb{R})$ being a parameter. We have

$$(f_B * \mu_t)(U) = \int f_B(UV) \,\mu_t(dV) = \int \langle B, UV \rangle \,\mu_t(dV) =$$

$$= \langle B, U \int V \,\mu_t(dV) \rangle = \langle B, U \exp(A_1 t) \rangle = \langle B \exp(A_1^* t), U \rangle = f_{B \exp(A_1^* t)}(U) \,,$$

that is,

(4f11)
$$f_B * \mu_t = f_{B \exp(A_1^* t)}.$$

Clearly, $f_t(U) = (f_B * \mu_t)(U) = \langle B \exp(A_1^*t), U \rangle$ is a smooth function of $(t, U) \in [0, \infty) \times SO(n)$; by 4f9 it satisfies the PDE (partial differential equation)

(4f12)
$$\frac{\partial}{\partial t} f_t(U) = \langle \nabla f_t(U), iv \rangle + \frac{1}{2} \langle \nabla^2 f_t(U), D \rangle.$$

Quadratic functions are of the form

(4f13)
$$f_B(U) = \langle B, U \otimes U \rangle \quad \text{for } U \in SO(n);$$

this time, $B \in M_{n^2}(\mathbb{R})$.

4f14 Exercise. For all $B \in M_{n^2}(\mathbb{R})$ and $t \in [0, \infty)$,

$$f_B * \mu_t = f_{B \exp(A_2^* t)}.$$

Prove it.

The PDE (4f12) holds for quadratic f_0 as well. Similarly, it holds for all polynomials f_0 . By approximation (in $C^2(SO(n))$) it holds for all f_0 of class C^2 .

4g Existence theorem

Here is a positive answer to 4d1.²

4g1 Theorem. For every Brownian motion $(Y_t)_t$ in SO(n) there exists a morphism of the standard Brownian motion in \mathbb{R}^m (for some m) to $(Y_t)_t$.

The theorem follows from three lemmas, 4g9, 4g12, 4g15. Similarly to the variance

$$Var(X) = \mathbb{E}(X^2) - (\mathbb{E}X)^2 = \mathbb{E}(X - \mathbb{E}X)^2$$

of a random variable $X \in L_2(\Omega, \mathbb{R})$, we may introduce the tensor variance

$$(4g2) \qquad \operatorname{Var}(U) = \mathbb{E}\left(U \otimes U\right) - (\mathbb{E}U) \otimes (\mathbb{E}U) = \mathbb{E}\left(\left(U - \mathbb{E}U\right) \otimes \left(U - \mathbb{E}U\right)\right) \in \operatorname{M}_{n^2}(\mathbb{R})$$

of a random matrix $U \in L_2(\Omega, M_n(\mathbb{R}))$. Clearly,

$$(\operatorname{Var} U)_{\alpha,\beta}^{\gamma,\delta} = \operatorname{Cov}(U_{\alpha}^{\gamma}, U_{\beta}^{\delta}); \quad (\operatorname{Var} U)_{\alpha,\alpha}^{\beta,\beta} = \operatorname{Var}(U_{\alpha}^{\beta}).$$

For any Brownian motion $(Y_t)_t$ in SO(n),

$$Var(Y_t) = \exp(tA_2) - \exp(tA_1) \otimes \exp(tA_1) =$$

$$= (\mathbf{1} + tA_2 + o(t)) - (\mathbf{1} + tA_1 + o(t)) \otimes (\mathbf{1} + tA_1 + o(t)) = t(A_2 - A_1 \otimes \mathbf{1} - \mathbf{1} \otimes A_1) + o(t)$$

 $^{^2}$ See also: K. Yosida, On Brownian motion in a homogeneous Riemannian space. Pacific J. Math. 2, 263–270 (1952).

for $t \to 0$. Introducing

$$(4g3) D = A_2 - A_1 \otimes \mathbf{1} - \mathbf{1} \otimes A_1$$

we get

(4g4)
$$\operatorname{Var}(Y_t) = tD + o(t) \quad \text{for } t \to 0.$$

Especially, if A_1 , A_2 are given by (4c9), then (4g3) conforms with (4f4):

(4g5)
$$D = -\sum_{k} \sigma_{k} \otimes \sigma_{k} = \sum_{k} i \sigma_{k} \otimes i \sigma_{k}.$$

4g6 Example. Similarly to 4c4, $e^{i\sigma B_t + ivt}$ turns into

$$Y_t = \begin{pmatrix} \cos(\sigma B_t + vt) & \sin(\sigma B_t + vt) \\ -\sin(\sigma B_t + vt) & \cos(\sigma B_t + vt) \end{pmatrix} \in SO(2).$$

We have

$$\mathbb{E}Y_t = e^{-\sigma^2 t/2} \cdot \begin{pmatrix} \cos vt & \sin vt \\ -\sin vt & \cos vt \end{pmatrix}; \qquad A_1 = -\frac{\sigma^2}{2} \cdot \mathbf{1} + v \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix};$$

$$\mathbb{E}(Y_t \otimes Y_t) = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} + \frac{1}{2} e^{-2\sigma^2 t} \cos 2vt \cdot \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix} + \frac{1}{2} e^{-2\sigma^2 t} \sin 2vt \cdot \begin{pmatrix} 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ -1 & 0 & 0 & 1 \\ 0 & -1 & -1 & 0 \end{pmatrix};$$

$$A_2 = -\sigma^2 \cdot \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix} + v \cdot \begin{pmatrix} 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ -1 & 0 & 0 & 1 \\ 0 & -1 & -1 & 0 \end{pmatrix};$$

$$A_1 \otimes \mathbf{1} + \mathbf{1} \otimes A_1 = -\sigma^2 \cdot \mathbf{1} + v \cdot \begin{pmatrix} 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & -1 & -1 & 0 \end{pmatrix};$$

$$D = \sigma^2 \cdot \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} = \sigma^2 \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

4g7 Exercise. $\mathbb{E}((Y_t - \mathbf{1}) \otimes (Y_t - \mathbf{1})) = tD + o(t) \text{ for } t \to 0.$

Prove it.

Hint:
$$\mathbb{E}\left((Y_t - \mathbf{1}) \otimes (Y_t - \mathbf{1})\right) - \operatorname{Var}(Y_t) = (\mathbf{1} - \mathbb{E}Y_t) \otimes (\mathbf{1} - \mathbb{E}Y_t).$$

One more formula for D will be given by (4g13).

4g8 Exercise. $\mathbb{E}|Y_t - \mathbf{1}|^2 = O(t)$ for $t \to 0$.

Prove it.

Hint: use 4g7.

Here and henceforth | ... | means not only the absolute value of a real or complex number, but also a norm on $M_n(\mathbb{R})$. The choice of a norm influences only constants.

Our first lemma is just a linear algebra (rather than probability).

4g9 Lemma. Matrices $A_1 \in M_n(\mathbb{R}), A_2 \in M_{n^2}(\mathbb{R})$ are of the form (4c9) if and only if they satisfy the following two conditions (where D is defined by (4g3)): (a) $D_{\alpha,\beta}^{\gamma,\delta} = D_{\beta,\alpha}^{\delta,\gamma}$, $D_{\alpha,\beta}^{\gamma,\delta} = -D_{\gamma,\beta}^{\alpha,\delta}$ for all $\alpha,\beta,\gamma,\delta$, and

(a)
$$D_{\alpha,\beta}^{\gamma,\delta} = D_{\beta,\alpha}^{\delta,\gamma}$$
, $D_{\alpha,\beta}^{\gamma,\delta} = -D_{\gamma,\beta}^{\alpha,\delta}$ for all $\alpha,\beta,\gamma,\delta$, and

$$\sum_{\alpha,\beta,\gamma,\delta} D_{\alpha,\beta}^{\gamma,\delta} Z_{\alpha}^{\gamma} Z_{\beta}^{\delta} \ge 0 \quad \text{for all } Z \in \mathcal{M}_n(\mathbb{R}) ;$$

(b)
$$\sum_{\gamma} D_{\gamma,\alpha}^{\beta,\gamma} = (A_1)_{\alpha}^{\beta} + (A_1)_{\beta}^{\alpha}$$
 for all α, β .

Proof. Let A_1, A_2 be of the form (4c9). By (4g5), $D = \sum_k i\sigma_k \otimes i\sigma_k$; it satisfies $D_{\alpha,\beta}^{\gamma,\delta} = D_{\beta,\alpha}^{\delta,\gamma}$ and $D_{\alpha,\beta}^{\gamma,\delta} = -D_{\gamma,\beta}^{\alpha,\delta}$ since $(i\sigma_k)^* = -i\sigma_k$. Also,

$$\sum_{\alpha,\beta,\gamma,\delta} D_{\alpha,\beta}^{\gamma,\delta} Z_{\alpha}^{\gamma} Z_{\beta}^{\delta} = \sum_{k} \left(\sum_{\alpha,\gamma} (i\sigma_{k})_{\alpha}^{\gamma} Z_{\alpha}^{\gamma} \right) \left(\sum_{\beta,\delta} (i\sigma_{k})_{\beta}^{\delta} Z_{\beta}^{\delta} \right) = \sum_{k} \left(\sum_{\alpha,\gamma} (i\sigma_{k})_{\alpha}^{\gamma} Z_{\alpha}^{\gamma} \right)^{2} \ge 0,$$

thus (a) holds. Further,⁴

$$\sum_{\gamma} D_{\gamma,\alpha}^{\beta,\gamma} = \sum_{k} \sum_{\gamma} (i\sigma_k)_{\gamma}^{\beta} (i\sigma_k)_{\alpha}^{\gamma} = \sum_{k} (i\sigma_k \cdot i\sigma_k)_{\alpha}^{\beta} = \left(-\sum_{k} \sigma_k^2\right)_{\alpha}^{\beta};$$

but also

$$A_1 + A_1^* = -\sum_k \sigma_k^2 \,,$$

thus (b) holds.

Now assume that (a), (b) hold. A positive quadratic form is a sum of squared linear forms:

$$\sum_{\alpha,\beta,\gamma,\delta} D_{\alpha,\beta}^{\gamma,\delta} Z_{\alpha}^{\gamma} Z_{\beta}^{\delta} = \sum_{k} \left(\sum_{\alpha,\beta} (i\sigma_{k})_{\alpha}^{\beta} Z_{\alpha}^{\beta} \right)^{2} \quad \text{for all } Z \in \mathcal{M}_{n}(\mathbb{R})$$

for some $i\sigma_k \in M_n(\mathbb{R})$. That is, $D = \sum_k (i\sigma_k) \otimes (i\sigma_k) = -\sum_k \sigma_k \otimes \sigma_k$. If $Z^* = Z$ then

$$\sum_{\alpha,\beta,\gamma,\delta} D_{\alpha,\beta}^{\gamma,\delta} Z_{\alpha}^{\gamma} Z_{\beta}^{\delta} = -\sum_{\alpha,\beta,\gamma,\delta} D_{\gamma,\beta}^{\alpha,\delta} Z_{\alpha}^{\gamma} Z_{\beta}^{\delta} = -\sum_{\alpha,\beta,\gamma,\delta} D_{\gamma,\beta}^{\alpha,\delta} Z_{\gamma}^{\alpha} Z_{\beta}^{\delta} = -\sum_{\alpha,\beta,\gamma,\delta} D_{\alpha,\beta}^{\gamma,\delta} Z_{\alpha}^{\gamma} Z_{\beta}^{\delta}$$

⁴The upper index of a matrix is the row number, the lower index is the column number.

must vanish, thus $\sum_{\alpha,\beta} (i\sigma_k)_{\alpha}^{\beta} Z_{\alpha}^{\beta}$ must vanish, which means that $(i\sigma_k)_{\beta}^{\alpha} = -(i\sigma_k)_{\alpha}^{\beta}$, that is, $(i\sigma_k)^* = -i\sigma_k$ and $\sigma_k^* = \sigma_k$.

We have

$$(A_1 + A_1^*)_{\alpha}^{\beta} = \sum_{\gamma} D_{\gamma,\alpha}^{\beta,\gamma} = -\sum_{k} \sum_{\gamma} (\sigma_k)_{\gamma}^{\beta} (\sigma_k)_{\alpha}^{\gamma} = -\sum_{k} (\sigma_k^2)_{\alpha}^{\beta},$$

thus $A_1 + A_1^* = -\sum_k \sigma_k^2$. Introducing $iv \in M_n(\mathbb{R})$ by

$$iv = \frac{1}{2}(A_1 - A_1^*)$$

we get

$$A_1 = \frac{1}{2}(A_1 + A_1^*) + \frac{1}{2}(A_1 - A_1^*) = -\frac{1}{2}\sum_k \sigma_k^2 + iv.$$

Finally,

$$A_{2} = D + A_{1} \otimes \mathbf{1} + \mathbf{1} \otimes A_{1} =$$

$$= -\sum_{k} \sigma_{k} \otimes \sigma_{k} - \frac{1}{2} \sum_{k} (\sigma_{k}^{2} \otimes \mathbf{1} + \mathbf{1} \otimes \sigma_{k}^{2}) + iv \otimes \mathbf{1} + \mathbf{1} \otimes iv =$$

$$= -\frac{1}{2} \sum_{k} (\sigma_{k} \otimes \mathbf{1} + \mathbf{1} \otimes \sigma_{k})^{2} + i(v \otimes \mathbf{1} + \mathbf{1} \otimes v);$$

we see that A_1, A_2 are of the form (4c9).

4g10 Exercise. Let random variables $M_t \geq 0$, 0 < t < 1, satisfy (for $t \to 0$)

- $||M_t||_{L_{\infty}} = O(1);$
- $\bullet \ \|M_t\|_{L_2} = O(\sqrt{t});$
- $\mathbb{P}(M_t \geq \varepsilon) = o(t)$ for every $\varepsilon > 0$.

Then $\mathbb{E} M_t^3 = o(t)$.

Prove it.

Hint: $(\min(M_t, \varepsilon))^3 \le \varepsilon M_t^2$.

4g11 Exercise. Let $(Y_t)_t$ be a Brownian motion in SO(n). Then $\mathbb{E}|Y_t - \mathbf{1}|^3 = o(t)$ for $t \to 0$. Prove it.

Hint: apply 4g10 to $M_t = |Y_t - \mathbf{1}|$, taking into account 4g8 and 1e1; SO(n) is not \mathbb{R} , but still has an invariant metric.

4g12 Lemma. For every Brownian motion $(Y_t)_t$ in SO(n) the matrices A_1, A_2 defined by (4c3) satisfy conditions 4g9(a,b).

Proof. Clearly, $D_{\alpha,\beta}^{\gamma,\delta} = D_{\beta,\alpha}^{\delta,\gamma}$. Also,

$$\sum_{\alpha,\beta,\gamma,\delta} D_{\alpha,\beta}^{\gamma,\delta} Z_{\alpha}^{\gamma} Z_{\beta}^{\delta} = \frac{d}{dt} \Big|_{t=0} \sum_{\alpha,\beta,\gamma,\delta} (\mathbb{E} Y_{t} \otimes Y_{t} - (\mathbb{E} Y_{t}) \otimes (\mathbb{E} Y_{t}))_{\alpha,\beta}^{\gamma,\delta} Z_{\alpha}^{\gamma} Z_{\beta}^{\delta} =$$

$$= \frac{d}{dt} \Big|_{t=0} \operatorname{Var} \sum_{\alpha,\beta} (Y_{t})_{\alpha}^{\beta} Z_{\alpha}^{\beta} \geq 0.$$

Every $U \in SO(n)$ satisfies $\mathbf{1} = UU^* = (\mathbf{1} + (U - \mathbf{1}))(\mathbf{1} + (U^* - \mathbf{1})) = \mathbf{1} + (U - \mathbf{1}) + (U^* - \mathbf{1}) + O(|U - \mathbf{1}|^2)$, thus $\frac{1}{2}(U + U^*) = \mathbf{1} + O(|U - \mathbf{1}|^2),$

and

$$U = \frac{1}{2}(U + U^*) + \frac{1}{2}(U - U^*) = \mathbf{1} + \frac{1}{2}(U - U^*) + O(|U - \mathbf{1}|^2).$$

We have

$$(Y_t - \mathbf{1}) \otimes (Y_t - \mathbf{1}) = \left(\frac{1}{2}(Y_t - Y_t^*) + O(|Y_t - \mathbf{1}|^2)\right) \otimes \left(\frac{1}{2}(Y_t - Y_t^*) + O(|Y_t - \mathbf{1}|^2)\right) =$$

$$= \frac{1}{4}(Y_t - Y_t^*) \otimes (Y_t - Y_t^*) + O(|Y_t - \mathbf{1}|^3)$$

(with an absolute constant in O(...)); by 4g11,

$$\mathbb{E}\left((Y_t - \mathbf{1}) \otimes (Y_t - \mathbf{1})\right) = \frac{1}{4} \mathbb{E}\left((Y_t - Y_t^*) \otimes (Y_t - Y_t^*)\right) + o(t).$$

Using 4g7,

(4g13)
$$D = \frac{d}{dt} \Big|_{t=0} \frac{1}{4} \mathbb{E} \left((Y_t - Y_t^*) \otimes (Y_t - Y_t^*) \right),$$

which ensures $D_{\alpha,\beta}^{\gamma,\delta} = -D_{\gamma,\beta}^{\alpha,\delta}$ and finishes the proof of (a). For proving (b) we start with the equality $\mathbb{E} Y_t Y_t^* = 1$;

$$\mathbf{1}_{\alpha}^{\beta} = \mathbb{E} \sum_{\gamma} (Y_t)_{\gamma}^{\beta} (Y_t^*)_{\alpha}^{\gamma} = \sum_{\gamma} (\mathbb{E} Y_t \otimes Y_t)_{\gamma,\gamma}^{\beta,\alpha} =$$

$$= \sum_{\gamma} (\mathbf{1} + tA_2 + o(t))_{\gamma,\gamma}^{\beta,\alpha} = \mathbf{1}_{\alpha}^{\beta} + t \sum_{\gamma} (A_2)_{\gamma,\gamma}^{\beta,\alpha} + o(t),$$

which means that

(4g14)
$$\sum_{\gamma} (A_2)_{\gamma,\gamma}^{\beta,\alpha} = 0 \quad \text{for all } \alpha, \beta.$$

Therefore

$$\sum_{\gamma} D_{\gamma,\alpha}^{\beta,\gamma} = -\sum_{\gamma} D_{\gamma,\gamma}^{\beta,\alpha} = -\sum_{\gamma} (A_2 - A_1 \otimes \mathbf{1} - \mathbf{1} \otimes A_1)_{\gamma,\gamma}^{\beta,\alpha} =$$

$$= -\sum_{\gamma} (A_2)_{\gamma,\gamma}^{\beta,\alpha} + \sum_{\gamma} (A_1)_{\gamma}^{\beta} \mathbf{1}_{\gamma}^{\alpha} + \sum_{\gamma} \mathbf{1}_{\gamma}^{\beta} (A_1)_{\gamma}^{\alpha} = 0 + (A_1)_{\alpha}^{\beta} + (A_1)_{\beta}^{\alpha}.$$

Our third lemma is stronger than the uniqueness theorem 4e1.

4g15 Lemma. A Brownian motion in SO(n) is uniquely determined by generators A_1, A_2 (defined by (4c3)).

Proof. Similarly to 4e it is sufficient to prove that the higher tensor moment generators A_3, A_4, \ldots are uniquely determined by A_1, A_2 . (In fact we will see that the relations found in 4e hold in general.) Denoting for convenience $Y_t - \mathbf{1} = Z_t$ we have

$$e^{tA_3} = \mathbb{E}(Y_t \otimes Y_t \otimes Y_t) = \mathbb{E}((\mathbf{1} + Z_t) \otimes (\mathbf{1} + Z_t)) =$$

$$= \mathbf{1} + \mathbb{E}(Z_t \otimes \mathbf{1} \otimes \mathbf{1} + \text{two such terms}) + \mathbb{E}(Z_t \otimes Z_t \otimes \mathbf{1} + \text{two such terms}) + \mathbb{E}(Z_t \otimes Z_t \otimes Z_t) =$$

$$= \mathbf{1} + (e^{tA_1} - \mathbf{1}) \otimes \mathbf{1} \otimes \mathbf{1} + \text{two such terms} +$$

$$+ (e^{tA_2} - e^{tA_1} \otimes \mathbf{1} - \mathbf{1} \otimes e^{tA_1} + \mathbf{1}) \otimes \mathbf{1} + \text{two such terms} + o(t)$$

by 4g11. That is,

$$\mathbf{1} + tA_3 + o(t) = \mathbf{1} + t(A_1 \otimes \mathbf{1} \otimes \mathbf{1} + \text{two such terms}) + \\ + t(\underbrace{(A_2 - A_1 \otimes \mathbf{1} - \mathbf{1} \otimes A_1)}_{=D} \otimes \mathbf{1} + \text{two such terms}) + o(t);$$

$$A_3 = (A_1 \otimes \mathbf{1} \otimes \mathbf{1} + \text{two such terms}) + (D \otimes \mathbf{1} + \text{two such terms});$$

namely,

$$(A_3)_{\alpha,\beta,\gamma}^{\delta,\varepsilon,\zeta} = (A_1)_{\alpha}^{\delta} \mathbf{1}_{\beta}^{\varepsilon} \mathbf{1}_{\gamma}^{\zeta} + \mathbf{1}_{\alpha}^{\delta} (A_1)_{\beta}^{\varepsilon} \mathbf{1}_{\gamma}^{\zeta} + \mathbf{1}_{\alpha}^{\delta} \mathbf{1}_{\beta}^{\varepsilon} (A_1)_{\gamma}^{\zeta} + D_{\alpha,\beta}^{\delta,\varepsilon} \mathbf{1}_{\gamma}^{\zeta} + D_{\alpha,\gamma}^{\delta,\zeta} \mathbf{1}_{\beta}^{\varepsilon} + D_{\beta,\gamma}^{\varepsilon,\zeta} \mathbf{1}_{\alpha}^{\delta}.$$

The same argument works for A_4, A_5, \ldots