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4 More on Brownian rotations

4a Moment method on the circle

We return to the process Y; = exp(ioB; + ivt), o,v € R (as in 3a23). The distribution of Y;
is easy to describe explicitly by a density: for 0 < u < v < 2,

B (Y € o) :/ pi(w) dz,
(4al) |

pi(z) = \/2_7%'\[ 2_: exp( (x - v;attzwky)

(unless o = 0, of course); here el**! denotes the arc {€¢*® : u < z < v}. This approach,
however, does not work for more general situations of 3¢, when Y; may depend on the past
of (X;). This is why we turn to the moment method.

For any random variable U : Q@ — T = {z € C : |z| = 1}, the distribution p of U is
uniquely determined by its moments

lEUkz/uku(du)E(C, k=1,2,...
T

since functions 1, cos kx, sin kx span the space of continuous 27-periodic functions.
For any k = 1,2, ... the process (Y/¥); is another Brownian motion in T, and

1 .
EY;* = E exp(ikoB; + ikvt) = exp (— §k202t) eFt = exp ((—%kQUQ + ikv)t) )

By the way, for t — oo we get EY,* — 0 (unless o0 = 0), which means that the distribution
converges (weakly) to the uniform distribution on T. (Do you see it via (4al)?)

4b Tensor moments of random matrices

4b1 Exercise. The distribution of a random matrix U : Q@ — SO(n), in general, is not
determined uniquely by the matrices EU*, k =1,2,...

Prove it (by finding a counterexample).

Hint: restrict yourself to diagonal matrices.

4b2 Definition. For any matrices A € M,,(R), B € M, (R), their tensor product A® B €
My (R) is
(A®B)Z{,(/53 = AlB} fora,y€{l,...,m}and 8,6 €{1,...,n}.
You see, rows and columns of A® B are numbered by {1,...,m}x{1,...,n} rather than

{1,...,mn}. The freedom of enumerating the pairs does not influence algebraic relations
between matrices. An example:

ae af be bf

a b ® e f\ _ |ag ah bg bh
c d g h) |ce cf de df
cg ch dg dh
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(which enumeration is used here?).
Tensor product of several matrices is defined similarly. In particular,

A =A@ ---Q A.
k

4b3 Exercise. For any random matrix U : Q — SO(n), the distribution p of U is uniquely
determined by its tensor moments

EU%* = /SO( )u®k p(du) € Mk (R) .

Prove it.
Hint: polynomials are dense among continuous functions on SO(n).

4b4 Exercise. (a) (A® B)(z @ y) = (Az) ® (By) for all z € R™, y € R*, A € M,,(R),
B € M, (R). Here z @ y € R™ is defined by

(@ Y)ap =ays forae{l,....m}, Be{l,...,n}

(up to enumeration. ..). Similarly, (z ® y)(A ® B) = (zA) ® (yB).
(b) (A® B)(C ® D) = (AC) @ (BD) for all A,C € M,,(R), B, D € M, (R).
Prove it.

Note that factorizable vectors  ® y are not the whole R™", but span R™".

4b5 Exercise. SO(m) ® SO(n) C SO(mn).
Prove it.
Hint: (21 @ y)(U@V), (22 @ 12)(U®V)) = (21 ® y1, 72 ® ¥2)-

4b6 Exercise. (a) If (Uy)sc[0,00) is @ one-parameter semigroup in M, (R), then (U;®Uy)sc(o,00)
is a one-parameter semigroup in M, (R).
(b) If A is the generator of (Uy)sc[0,00) then

(A®1)+(1® A)

is the generator of (U; ® Uy);.
Prove it. Generalize it to U2*.
Hint. (a): use 4b4(b); (b): (1 + At +0(t)) @ (1 + At +o(t)) = ...

In other words,
(4b7) exp(A®1+1® A) =exp(A4) ®exp(A).

In fact, exp(A®1) = exp(A) ® 1 and exp(1 ® B) = 1 ® exp(B), thus exp(A®1+1Q B) =
exp(A) @ exp(B). Operators A ® 1 form an algebra isomorphic to M,,(R); operators 1 ® B
form another algebra isomorphic to M, (R); these are two commuting copies of M,(R) in
M,z (R).



Tel Aviv University, 2003 Brownian motions and stochastic flows 35

4c Tensor powers of Brownian rotations

4c1 Exercise. (a) If (V;); is a Brownian motion in SO(n) then (Y,**); is a Brownian motion
in SO(n*), for any k =1,2,...

(b) If (B, Y}:); is a morphism of the standard Brownian motion (B;); in R to a Brownian
motion in SO(n), then (B, Y,**); is a morphism of (B;); to a Brownian motion in SO(n*).

Prove it.

Hint: use 4b4(b) and 4b5.

In fact, the product of commuting Brownian rotations is a Brownian rotation. The same
holds for morphisms.

4c2 Exercise. If (Y}); is a Brownian motion in SO(n) then (EY;); is a (continuous) one-
parameter semigroup in M, (R).

Prove it.

Hint: E(AB) = (EA)(E B) for independent random matrices A, B.

We have
(4¢3) E (Y,%*%) = exp(Ayt) fort € 0,00), k=1,2,...
where A € M,x(R) is the generator of the semigroup.

4c4 Exarr)lple. Thg isomorphism €’ — (%2 Sna) hetween T and SO(2) (mentioned
before 3b8) turns e'”* into

[ cosB, sin B
Y= <— sin B; cos Bt) €50(2).
We have
eft/2 0 1
EY, ="y ) =e(t), A= -5 1
since Ee'Pt = ¢ /2. Further,
cos’ B, cos B;sin B,  sin B, cos B, sin? B,
Y ey - |~ B, sin B, cos? B, —sin? B, sin B, cos B,
Bt | —sin B, cos B, —sin? B, cos? B, cos B;sin B, | —
sin? B, —sin Bycos B, —cos B;sinB,  cos? B,
1+ cos2B; sin 2B; sin 2B; 1 —cos2B;

1| —sin2B;  1+cos2B; —1+cos2B; sin 2B, ]
2| —sin2B; —1+4-cos2B; 1+ cos2B; sin 2B; ’

1 —cos2B; —sin2B; —sin2B; 1+ cos2B;
1+e 2 0 0 1—e 2
1 0 I+e? —1+e# 0
EieY)=3 0  —14e? 14e™ 0

1—e 2 0 0 14+e 2
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(it must be a semigroup). For small ¢,

1—t 0 0 ¢
0 1—t —t 0
EY,oY)=| o _, 1., o |to®)=1+At+o(),
t 0 0 1—t¢
-1 0 0 1
0 -1 =1 0
Az = 0 -1 =1 0 |
1 0 0 -1

thus E(Y; ® Y;) = exp(A4at).
4c5 Exercise. Let

t
Y; = Texp (z/ (0 dBg + vds))
0

for some o,v € iM,(R), 0* = o, v* = v. Then
t
Y; ® Y, = Texp <i/(a®1+1®0)st+(v®1+1®v)ds).
0

Prove it. Generalize it for Y;%*.

Hint. According to 4c1(b) and 3b, it must be ¥; ® ¥; = Texp(i fot(og dB, + vads)) for
some 0y, vo; for small ¢t we get exp(ioeB; + ivat) = exp(ioB; + ivt) ® exp(io By + ivt) + o(t);
recall (4b7).

In fact,

(Texp (z’/oth)) (Texp (z'/otdy)> — Texp (z‘/otd(X+Y))

whenever X, Y commute.

4c6 Exercise. Let .
Y; = Texp (z/ (0 dBg + vds))

0

for some o,v € iM,(R), 0* = o, v* = v. Then

1

A1 = —50'24'2'1),

1 .
A2:—§(g®1+1®0)2+2(v®1+1®v)=
1
:—5(02®1+1®02)—0®0+i(v®1+1®v),

where Ay are defined by (4¢3).

Prove it.

Hint: first, find A; by using the asymptotics of Y; for small ¢; second, apply the formula
for A; to Y; ® Y; using 4cb.
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4c7 Example. Let Y; be as in 4c4, then ioc = (%) is the image of i € C under the
embedding z — ( B¢Z 1m2) (mentioned before 3b8), and v = 0. Using 4c6,

1
(ic)? = —1; A1:—§-1;
0 00 -1
2 — —1. 2 _ 1. 10 01 0
Fel=181=1; 18c°=1; o@o=|, | o o |;

-1 00 O

-1 0 0 1

0 -1 -1 0

A=—lmo@o=\ 4 1 4 g
1 0 0 -1

the result conforms to 4c4.

Similarly,

1 .
A3:—§(o®1®1-|-1®0®1+1®1®a)2+2(v®1®1+1®v®1+1®1®v)

and so on. Having all Ay we know (in principle) all tensor moments of Y;, therefore, the
distribution of Y; (for any t¢), according to 4b3.
However, Texp (1, f (cdBs+v ds)) is only a special case of

t
(4c8) Y; = Texp <z/ (01dBi(8) + -+ -+ 0 dBy(s) +v ds))
0
(recall 3c). By a straightforward generalization of 4c1(b), 4c5, 4c6 we get
¢
Y; ® Y; = Texp (z/ ((01®1+1®01)dBi(s)+ -+ (0m ® 1+ 1® 0y) dBpa(s)+
0

+(v®1+1®v)ds)>;

(4c9)
1
A1:_5(0f+---+a72n)+iv;
1 m
A== (x®1+100)° +i(v®1+1®v);
k=1
1 m
A= 3 (k®181+100®1+10180)° +i(rE101+18v81+18100);
k=1

and so on.
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4d Not just morphisms

We have a satisfactory theory of morphisms. What about a theory of Brownian rotations?
Two questions arise naturally.

4d1. Whether every Brownian motion in SO(n) is of the form (4c8), or not?

4d2. Given two morphisms of the form (4¢8), how to decide, whether they give two identically
distributed Brownian motions in SO(n), or not?

No doubt that two morphisms can represent the same Brownian rotation (I mean, the
same distribution). For example,

Yi(t) = Texp (z /0 (o dB, + vds)) ,
Ya(t) = Texp (z /Ot(—a dB, + v ds)) |

These two morphisms B — Y;, B — Y; are connected by an automorphism of B, that is,
an isomorphism (invertible morphism) B — B; namely, (B, —B;);. For the two-dimensional
(Bi(t), B2(t))+ we may use the automorphism

((B1 (£), Ba(t)), (By(t) cos & + By(t) sin v, — B (t) sin o + By(t) cos oz))t

where « is a parameter; we get a continuum of morphisms
¢
Y, (t) = Texp (z/ ((01cosa — oy sina) dBi(s) + (o1 sina + 0 cos @) dBy(s) + v ds))
0

such that the distribution of Y, does not depend on the parameter oe. More generally, every
rotation of R™ (namely, every element of O(R™)) gives us an automorphism of the standard
Brownian motion (Bl t),..., Bm(t))t in R™.

There exist also morphisms of (B, Bs) to By; here are two examples:

((Bl (t), Ba(t)), By (ﬂ)t ;

((Bl(t), Bs(t)), WL '

Accordingly, the Brownian rotations

Yi(#) = Texp (ZAt (% dB, (s) + % dB,(s) + vds)) ,

Ys(t) = Texp <1, /Ot(o dB(s) + vds))

are identically distributed.
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4e Uniqueness theorem

Generators Ay (introduced by (4c3)) depend on the distribution of Y (not on a morphism),
and determine uniquely the distribution by 4b3. It is an answer to 4d2: given two morphisms,
calculate their A;, As,... by (4c9) and compare them.

Fortunately, it is enough to compare A, A5 only! They determine uniquely As, Aq4, ...
Indeed, knowing A; = —1(0%?+- - -+02,)+iv we know both v (since 4; — A} = 2iv), and ) o}.
Knowing also Ay we know > (04 ®1+1®0%)> = (3. 02)®@1+1®(>.02)+2 . 01, R0y, thus,
we know Y 0, ®0y. Now, in order to find Az we need Y (0, ®1Q1+1R0,R1+101RQ0;)? =
>-0d)®11+18 (3. 02)@1+118 (3 02)+2 Y 0x®@0k®1+2 Y 0, Q1Q0%+2 Y 1®0,®0y,
and it is enough to find the three sums Y 0, @0, ® 1, Y 0, @1 ® 0f and D 1 ® 0 ® 0.
No problems with the first and the third sum,

ZJk@Jk@l: (ng®0k)®1,
Zl®0k®0k:1®(zak®ak)-

The second sum ) 0 ® 1 ® oy, looks worse, but results from > oy ® oy, too:

Do ov@1@0)is, =D (eni(15(0x)5 = (50D or @ )%,

We see that A;, A; determine A3 uniquely. The same holds for A4, As, ... and we get a good
answer to 4d2.

4el Theorem. (a) The distribution of the Brownian motion (¥;); in SO(n) given by

t
Y; = Texp (z/ (o1dBi(s) + - -+ 4 0m dBp(s) + vds))
0

uniquely determines generators A; € M, (R), Ay € M,2(R) of the semigroups (EY;),, (E(Y;®
Y}))+ and is uniquely determined by Aj, As.
(b) The same for the two matrices

weM,(R), Y or®0; € Mg (R).
k=1

4f Differential operators on the rotation group

The two matrices mentioned in 4el(b) have an important meaning in terms of differential
operators on SO(n).
A smooth function f : R® — R has at 0 its gradient (first differential) vector V f(0) € R™,

namely (Vf(0))s = %L:Of(x), and its matrix of second derivatives V2f(0) € M,(R),
namely (Vf(0))2 = %‘120 f(z). The situation is somewhat more complicated for a
smooth function f : SO(n) — R on the smooth manifold SO(n) of dimension n?. Given such

f, we define Vf(1) € M, (R) by

(411) (V)2 = ;%\Azof(exp A);
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the matrix A € M, (R) may be treated as n? variables, and A% is one of these variables.
Similarly we define V2 f(1) € M,2(R) by

82
(4£2) (V2 F))L) = mh—of (exp A).

4f3 Exercise.
flexp A) = f(1) +(V[f(1),4) + %(VQf(l), A® A) + o(||A]?)
for ||A|| = 0; here (-,-) means!
(A,B) =Y AEBI for A,B € M,(R),

B
(A,By= Y ALBY} for A,B € M,(R).
a’ﬂ!’Y!(s

Prove it.

The following fact generalizes equalities
F(B) = 1(0) + £/ (0)Bi+ 5 f(0) B} + o),
E1(B) = (0) + 5 f"(0)t + oft)
from f:R — R to f:S50(n) - R A matrix D € M,2(R) defined by
(4f4) D = —Zak®ak
k

will be very useful.

4f5 Exercise. Let (Y;); be given by (4c8); then
FO) = (1) + STUTF), io) Belt) + (V1(1),in)t — 5 SV (1), 0 ® o) BY(D) + o)

EJ() = F(1) + ((VF(1), i) + 5(VF(1), D))t + o(1)

for t — 0.
Prove it.

We generalize (4f1), (4f2) as follows: for U € SO(n),

0
(VIU))s= W\Azof(U exp A);

82
(V2f(U))g;’% = M|A:Of(UeXp A) .

(4f6)

In other words, (A, B) = tr(AB*).
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In other words,

VIU)=Vg(1), V(U)=V(1),

(4£7) where g(V) = f(UV) for all V.

We consider the convolution semigroup (j;); corresponding to (Y;);; that is, Y; ~ u;. We
define the convolution of a function and a measure (on SO(n)) by

(@) = [ $OV)ulav),
then E f(Y;) = [ fdpue = (f * ) (1), and 4f5 becomes
(f *m)(1) = f(1) + ((VF(2), ) + %(VQf(l), D))t +o(t).
4f8 Exercise. For any U € SO(n),
(F * 1) (V) = FU) + (VIO), i) + 5 (VF(0), D))t + oft)
for t — 0.

Prove it.
Hint: use (4f7) and apply 4f5 to g.

419 Exercise. Denote f; = f * y;, then
feeadU) = JiU) + (V) i0) + S(V2A(0), D)) At +o(Av)
for At — 0+ (and ¢ = const).

Prove it.
Hint: apply 4f8 to f;.

The simplest functions are linear functions,
(4£10) fs(U) =(B,U) for U € SO(n),

B € M, (R) being a parameter. We have
Un10@) = [ 1a@V) m(av) = [(B.UV) ulav) -
(B U/ V iy (dV)) = (B, U exp(Ait)) = (Bexp(Ajt),U) = fpexpare(U),

that is,

(4f11) f* = fBexp(A{t) .
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Clearly, f,(U) = (fp * u)(U) = (Bexp(Ajt),U) is a smooth function of (¢,U) € [0,00) X
SO(n); by 4f9 it satisfies the PDE (partial differential equation)

(4112) 2 10) = (V(U),iv) + L{V*F(0), D) .
Quadratic functions are of the form

(4f13) fe(U)=(B,UQU) for U € SO(n);
this time, B € M,2(R).

4f14 Exercise. For all B € M,2(R) and ¢ € [0, 00),

IB * e = [Bexp(ast) -
Prove it.
The PDE (4f12) holds for quadratic fy as well. Similarly, it holds for all polynomials f;.
By approximation (in C?(SO(n))) it holds for all f, of class C?.

4g Existence theorem

Here is a positive answer to 4d1.2

4gl Theorem. For every Brownian motion (Y;); in SO(n) there exists a morphism of the
standard Brownian motion in R™ (for some m) to (Y%);.

The theorem follows from three lemmas, 4g9, 4g12, 4g15.
Similarly to the variance

Var(X) =E(X?) - (EX)* =E(X — EX)?
of a random variable X € Ly(€, R), we may introduce the tensor variance
(4g2) Var(U)=E({U ®U)— (EU) @ (EU) =E((U—-EU) ® (U—-EU)) € M,2(R)
of a random matrix U € Ly(2, M, (R)). Clearly,
(Var U)Z% = Cov(UJ,U}); (VarU)%8 = Var(U?).

For any Brownian motion (Y;); in SO(n),

Var(Y;) = exp(tAs) — exp(tA;) @ exp(tA;) =
= (1+tAs+o(t)) — (1+tA; +0(t) ® (1 +tA; +o(t) =t(A— A ®1—1® A1) + 0(2)

2See also: K. Yosida, On Brownian motion in a homogeneous Riemannian space. Pacific J. Math. 2,
263-270 (1952).



Tel Aviv University, 2003 Brownian motions and stochastic flows

for t — 0. Introducing

we get
(4g4) Var(Y;) =tD +o(t)  fort—0.

Especially, if Ay, Ay are given by (4c9), then (4g3) conforms with (4f4):

(4g5) D=-) 0,®@0; =Y ioy ®ioy.
k k

4g6 Example. Similarly to 4c4, eBt+®! tyrns into

[ cos(oB,+vt) sin(oB; + vt)
Yi= <— sin(c By + vt) cos(oB; + vt) €50(2).

We have
. 2
_ o2 [ cosvt sinuvt) _ o (0
EY, =e (—sinvt cosvt )’ A 2 1+v -1
1 0 0 1 1 0 0 -1
_1fo 1 -10 1 o0z 0 11 0
EVioY)=51g 21 1 of T3¢ st | o 1
1 0 0 1 -1 0 0 1
0 1 1 0
1 op2 . 1 0 0 1
+§€ sin 2vt - 1 0 o 1]°
0 -1 -1 0
1 0 0 -1 0 1 1 0
_ 2 0 11 0 -1 0 0 1]
A== g 19 o[t 1 0 0 1]?
-1 0 0 1 0 -1 -1 0
0 1 1 0
_ 2 . -1 0 0 1]
A1®1+1®A1— (o2 1+’U 1 0 O 1 y
0 -1 -1 0
0 O 0 1
_ 9 0 0 -1 0] 2 0 1 0 1
D=o"1g 1 0 o =7 21 0)® 21 o)
1 0 0 O

4g7 Exercise. E((Y; — 1) ® (Y; — 1)) =tD + o(t) for ¢ — 0.
Prove it.
Hint: E((V; - 1) ® (Y; — 1)) — Var(V}) = (1 - EY;) ® (1 - EY}).

43
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One more formula for D will be given by (4g13).

4g8 Exercise. E|Y; — 1] = O(¢) for t — 0.
Prove it.
Hint: use 4g7.

Here and henceforth | .. .| means not only the absolute value of a real or complex number,
but also a norm on M, (R). The choice of a norm influences only constants.
Our first lemma is just a linear algebra (rather than probability).

4g9 Lemma. Matrices A; € M,(R), Ay € M,2(R) are of the form (4c9) if and only if they
satisfy the following two conditions (where D is defined by (4g3)):

(a) D)% = Dy, D% = —D; for all , 8,7, 6, and

N DIZ1Zi>0  forall Z € My(R);
a’/B”Y’(S

(b) 32, D57 = (A1)f + (Ay) for all o, 8.2

7

Proof. Let Ay, Ay be of the form (4c9). By (4g5), D = ), 10k ®i0y; it satisfies D;’fﬁ = Dg’;’l
and D”’ﬂ = —Do‘ﬂ since (ioy)* = —ioy. Also,

S iz =3 (Stioni22) (tionizg) = 3 (Stiowizz) o,

5,750 k Y B0 k ;Y
thus (a) holds. Further,*
>0 = 3 S et = Yl = (- ot
0l kv k k @
but also

A+ A7=-> ot
k

thus (b) holds.
Now assume that (a), (b) hold. A positive quadratic form is a sum of squared linear

forms: )
)6 y
N przzi=Y (Z(wk)gzg) for all Z € M, (R)
aaﬂa’)/a(s k Oé,ﬂ
for some io;, € M, (R). That is, D = ), (ioy) ® (iog) = — D) 0% ® 0k. If Z* = Z then
v,0 6 0,0 ) 0,0 az v,0 ]
Y DisZiZy=— ) DyszlZy=- ), DypZyZy=— ) D327
a7ﬂ,’y,6 a?ﬁ”y’d 7ﬂ7’y7 a7ﬂ,’y,6

3See also (4gl4).
4The upper index of a matrix is the row number, the lower index is the column number.
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must vanish, thus Za,ﬁ(iak)ng must vanish, which means that (iog)§ = —(ioy)5, that is,
(iog)* = —ioy, and o} = 0.
We have
(A +AD2=) DIt == > (ow)i(on)h == (00,
y k o k

thus A; + A7 = — Y, o2. Introducing iv € M, (R) by
1

we get
1 o1 \ 1Z .
A1=§(A1+A1)+§(A1—Al):—§ k O']%‘FZ’U.

Finally,
Ab=D+A11+1Q A, =

1 . .
:—Zak@)ak—§Z(o£®1+1®02)+w®1+1®w:
k k

1
:_52(0k®1+1®0k)2+i(v®1+1®U);
k

we see that A;, As are of the form (4c9). O

4g10 Exercise. Let random variables M; > 0, 0 < t < 1, satisfy (for ¢ — 0)
o [[Mi]lr.. = O(1);
o [[Mi|lz, = O(V);
e P(M,>¢) =ot) for every £ > 0.
Then EM? = o(t).
Prove it.
Hint: (min(M;,¢))? < eM?.

4g11 Exercise. Let (Y;); be a Brownian motion in SO(n). Then E|Y; —1* = o(t) for t — 0.
Prove it.
Hint: apply 4g10 to M, = |Y; — 1|, taking into account 4g8 and 1lel; SO(n) is not R, but
still has an invariant metric.

4g12 Lemma. For every Brownian motion (Y;); in SO(n) the matrices A, Ay defined by
(4¢3) satisfy conditions 4g9(a,b).

Proof. Clearly, Dgfﬂ = Dg’L. Also,

d [
S Dumzi=— Y EBYeYi-(EY)e (EY)15Z1Z) =

@,B,7,0 t=0 o,8,v,6

d
— AV/ E Y, ﬂZﬂ
_dt o ar ( t)a azo'

a,p
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Every U € SO(n) satisfies 1 =UU* = (1+ (U —1))(1+ (U*—1)) =14+ (U - 1)+ (U* —
1) + O(|U — 1}?), thus

1
SU+U) =1+ 0(U -1,

and
1 1
U=§(U+U*)+§(U—U*)_1+ (U U*) +0(|U - 1%).

We have
-1 Yi-1)= G -Y)+0(Y: - 1)) @ 3(Y: - ¥) +O(; - 1)) =

1

= V- V)@ (% - ) + O(Y - 1P)

(with an absolute constant in O(...)); by 4gl1,
1
E((Vi-1)® (Y, -1) = E((V; - ¥) @ (Vi = V) +o(t).

Using 4g7,

d 1
(4g13) D=4l TE(-Y) e -V,
t=0

which ensures D7 g = Dag and finishes the proof of (a).
For proving (b) we start with the equality EY;Y}* = 1;

1=EY MjVn=) (BY.eY))5=
Y Y
= Z(l + tAQ + O(t))g,’,(; = 15 + tZ(AQ)g:S + O(t) ’
Y Y

which means that

(4g14) Z(AQ)Q:? =0 foralla,p.

Y

Therefore

Dif==3 Dif==3 (- A4e1l-10A4) =

Y

= -3 (4) Z A2+ 18(A)T =0+ (A1) + (A1)

Y v

Our third lemma is stronger than the uniqueness theorem 4el.
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4g15 Lemma. A Brownian motion in SO(n) is uniquely determined by generators A, Ay
(defined by (4¢3)).

Proof. Similarly to 4e it is sufficient to prove that the higher tensor moment generators
As, Ay, ... are uniquely determined by A, Ay. (In fact we will see that the relations found
in 4e hold in general.) Denoting for convenience Y; — 1 = Z; we have

e =E(Y,0Y0Y)=E(1+Z)01+2Z)® (1+%)) =
= 1+E(Zt®1®l—|—two such terms) +]E(Zt®Zt®1+two such terms) +E(Z: @72, 7Z;) =
=1+ (" —1) ® 1 ® 1 + two such terms+
+ (e - ®1 -1 +1)® 1 + two such terms + o(t)

by 4g11. That is,

1+tAs+o0(t) =1+t(A; ® 1 ® 1 + two such terms)+
+t((A2 —A®1-1® A;)®1 + two such terms) +o(t);
\ ~ 2
As; = (A1 ® 1 ® 1 + two such terms) + (D ® 1 + two such terms) ;

namely,

d,e, d,e s £
(A3)a%5, = (ADSLGLS + 15 (A)518 + 1515(A1)S + D515 + DS 15 + DS 10,

The same argument works for A4, As, . .. O



