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Decision tasks often require the extraction of information from displays of quantitative
data. This paper investigates how people extract information from any one of several
common displays by analysing the match between display, decision task and data. We
posit two kinds of activity: first, the formulation of an appropriate extraction strategy
and second, the execution of that strategy. We then develop a model of strategy
formulation. We hypothesize that with matched designs a higher proportion of subjects
use common strategies characterized by less time to formulate, less time to execute and
more accurate decisions. A laboratory experiment using a new technique of graphical
protocol analysis supported these hypotheses. Moreover, the experiment demonstrated
how changes in display, decision task and data alter the way people select decision
strategies. This suggests new opportunities for designing more effective human—computer
interfaces. ( 1998 Academic Press Limited
1. Introduction

Task-based rules for the selection of optimal displays have been proposed by a number of
authors (e.g. Jarvenpaa & Dickson, 1988). These suggestions, however, have generally
been based on practice and empirical findings rather than theories of the underlying
behavior. This paper develops a model of how decision makers extract quantitative data
from any one of several common displays to solve common decision tasks. This is the
basis for defining an optimal display that leads to the most efficient behavior, for the very
notion of an optimal display presupposes uniform and predictable behavior.

We restrict our discussion to the extraction of information for a given problem from
quantitative displays (e.g. bar chart, line graph or table). This is a relatively structured
task in comparison with more unstructured activities such as judgment (Einhorn &
Hogarth, 1978) or comprehending free-form text (Daft & Lengel, 1984). It is important to
understand how design affects behavior in structured tasks, which constitute a significant
part of office work (Eason, 1988). We also believe that it is a necessary first step towards
understanding behavior in more complex tasks that are often made up of many simpler
sub-tasks.
1071-5819/98/020159#22$25.00/0/hc 970166 ( 1998 Academic Press Limited
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A focus of research on quantitative displays has been the comparison of human
performance using graphs vs. tables. Our model is not intended to resolve this specific
question but rather to address the more general and more robust issue of designing the
best display for a particular combination of tasks and data. The model rests on previous
work related to task-based designs by Iris Vessey (1991) about cognitive fit and by
Donald Norman (1991) about ‘‘naturalness’’. Vessey argued that ‘‘for most effective and
efficient problem solving to occur, the problem representation and any tools or aids
employed should all support the strategies required to perform that task’’ (Vessey, 1991).
Vessey and Galletta (1991) tested this notion with structured tasks of information
acquisition. Their basic views problem solving in terms of its representation (e.g. tables
vs. graphs) and the problem. Both representation and problem can be characterized as
spatial or symbolic. Cognitive fit is the result of a match between these characteristics,
e.g. a spatial representation for a spatial problem. Norman (1991) suggests that fit
(naturalness) is related to directness, which ‘‘can be measured by the complexity of the
relationship between representation and value, measured by the length of the description
of that mapping’’ (Norman, 1991, p. 28).

In the next section we integrate the concepts of cognitive fit and naturalness by
describing the interaction with a given design and measuring the ‘‘length of the descrip-
tion’’. Designs can, therefore, be classified as matched (when the length of the description
is minimal) or mismatched. This approach lets us develop a model whose granularity is
likely to be successful in developing optimal displays for decision tasks. Some previously
proposed models have been too coarse-grained [e.g. models that discriminate only
between gross task characteristics such as retail site selection (Jarvenpaa, 1989)]. Others
have been too fine-grained to be practically applicable (e.g. Simkin & Hastie, 1987).
Having developed our model, we describe an experiment that tests the model. In the final
section we describe briefly the program of additional research needed for the full
application of our findings.

2. A research model for data extraction

2.1. THE FRAMEWORK

Recent research on display formats in decision making has taken two forms: (1) experi-
ments that consider task-related moderators, particularly task requirements (Te’eni,
1989), task complexity (Remus, 1987) and data complexity (Lauer, 1986); and (2) meta-
analyses of previous studies (Montazemi & Wang, 1988; Hwang & Wu, 1990; Schaub-
roeck & Muralidhar, 1991). The research has identified several factors that appear to
influence decision behavior: the problem requirements (including the decision task to be
solved and the data set available) and the display format. Individual skills, once
a dominant factor in studies involving displays and decision making, appear to have
been ignored in recent MIS studies (e.g. Diamond & Lerch, 1992) or added only as
secondary factors (e.g. Vessey & Galletta, 1991).

We follow this lead and investigate the joint effect of three factors on user behavior:
decision task, data and display format. We will further assume that user behavior can
be decomposed into two stages: strategy formulation and strategy execution (Newell &
Simon, 1972; Payne, 1982). Strategy formulation is the process of determining what needs



FIGURE 1. Research framework.
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to be done and devising a sequence of steps to accomplish it. Strategy execution then
carries out the chosen strategy. In reality these two interact, but separating them
conceptually highlights the effects of strategy formulation on behavior. Figure 1 depicts
the three factors affecting the two stages of decision behavior. The figure also shows (in
italics) the characteristics of the decision-making process, which are explained later.

That these factors interactively affect strategy formulation is not new (Payne, 1982).
For example, previous work noted the effects on strategy formulation of decision tasks
and data (Huber, 1980) and of decision tasks and displays (Te’eni, 1990). The current
study sets out to uncover the process by articulating the decision strategies employed
and investigating the qualities of these strategies. To do this, we first define a method for
describing information acquisition and then apply cognitive cost-benefit theory to
predict strategy formulation.

2.2. STRATEGY AND ELEMENTARY INFORMATION PROCESSES (EIPs)

Following several recent streams of research on adaptive decision making (Huber, 1980;
Payne, Bettman & Johnson, 1988), human—computer interaction (Newell & Simon, 1972;
Olson & Nilsen, 1988) and graphical displays (Cleveland & McGill, 1984; Simkin &
Hastie, 1987), we describe information acquisition behavior by using two components:
an elementary information process (EIP) and a strategy. We define an EIP as a simple
cognitive operation such as reading a value. A strategy is a set of EIPs that accomplishes
a given retrieval task. This two-layered approach enables the behavior for a wide variety
of data acquisition tasks to be specified with a relatively small set of EIPs (Chase, 1978).
This has the advantage of providing a common basis for comparison across diverse
studies.

Selecting the granularity of the EIPs depends on the purpose of the research. On the
one hand, EIPs such as READ, COMPARE and MOVE (Bettman, Johnson & Payne,



TABLE 1
Classes of EIPs

1. Scan to
2. Search
3. Read
4. Compare
5. Compute

162 M. KENNEDY E¹ A¸.
1990) focus on characteristics of the decision task and cannot directly relate to specific
displays. On the other hand, several research projects have offered EIPs that focus on
graph features without reference to the decision task. Cleveland and McGill (1984)
proposed a list of 10 ‘‘elementary tasks’’ including POSITION ALONG A COMMON
SCALE, DETERMINE LENGTH and DETERMINE ANGLE. Simkin and Hastie
(1987) developed four ‘‘elementary mental processess’’ including ANCHORING,
SCANNING, PROJECTION and SUPERIMPOSITION. Casner (1991) used a graphi-
cal procedural language that comprises 15 ‘‘perceptual operators’’ including HORI-
ZONTAL and VERTICAL POSITION, HEIGHT and LABELS. Lohse (1993)
developed a set of ex post ‘‘cognitive parameters’’ based on eye movements.

A testable formulation of the interactive effect of the decision task, data and display on
strategy formulation requires that the specification of EIPs (by which we characterize the
strategies) must be at a level that is detailed enough to take account of the physical
differences in displays, but at the same time general enough to be applicable to a wide
variety of data-related decision tasks. We, therefore, propose a set of EIPs built on
a combination of those used in the decision-making and graphics literature. Our
objective in selecting the set of EIPs was that they be at as aggregate a level as possible
without losing sensitivity to the differences in data, display and decision task. Further,
the list should be as short as possible but sufficient to describe all possible steps, and the
EIPs should be observable. Table 1 lists five classes of EIPs. We use an example to
introduce these EIPs and then demonstrate how strategy formulation is affected by
changes in decision task, display and data.

The graph shown in Figure 2 plots the sales over time of two companies, A and B. If
the decision maker is asked to retrieve Company B’s sales for 1985, the following strategy
is likely to be used.

Strategy I
1. Scan to legend.
2. Search legend for Co. B.
3. Scan to x-axis.
4. Search for 1985 on x-axis.
5. Scan to line representing Co. B.
6. Scan to y-axis.
7. Read data.



FIGURE 2. Example—regular data-line graph. Company A ( ); company B ( ).
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Scanning involves moving the focus of attention to an appropriate area of the display
such as a particular axis of a graph or legend block. Searching involves pinpointing
the needed information within the area that scanning has selected. In the example above,
first the user scans to the legend and searches Company B, then scans to the horizontal
axis and locates (searches) the position of a particular year, viz. 1985, and finally scans
to Company B’s data line and from there to the vertical axis in order to read the
appropriate data. Reading may be for textual labels or for data. For data, reading
is essentially the inverse of searching. When searching, we answer questions such as
‘‘Where on the axis is the year 1990?’’; when reading, we know the point of interest
along the axis and answer the question ‘‘What point in time does this axis position
stand for?’’

Note the subtle interplay between the physical and symbolic nature of the activities
represented by scan, search and read. Scan involves an eye movement to a physical
area (which obviously has some meaning but nevertheless is referenced physically).
Search focuses on symbols within some area (although every symbol is physically
present, it is not referenced as such). Read interprets the symbol located at some physical
point.

Decision tasks are usually more complicated, requiring two additional types of EIP:
comparisons and computations. The precise nature of comparisons depends on the type
of the display. Typical comparisons would include questions such as: ‘‘Which number
(from a table) is the larger?’’ or ‘‘Which graph line is higher?’’ or ‘‘Which graph line has
the steeper slope?’’ Computations are needed when the raw data (whatever its format)
does not explicitly supply the data required to complete the task. Computations involve
such operations as subtracting, adding, etc. In some cases it might be desirable to
distinguish between various types of computations, but for the tasks we have studied this
has not proven necessary.



Annual sales (000s)
Years Company A Company B

1977 100 40
1978 120 70
1979 140 100
1980 160 130
1981 180 160
1982 200 190
1983 220 220
1984 240 250
1985 260 280
1986 280 310
1987 300 340
1988 320 370

FIGURE 3. Example—regular data table.
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2.3. THE EFFECT OF DISPLAY, DATA AND DECISION TASK

2.3.1. Display
If the decision maker is asked to complete the same task (retrieve sales for 1985) but is
presented with the table in Figure 3, behavior may change to the following:

Strategy II
1. Scan to legend.
2. Search legend for Co. B (thereby identifying its column).
3. Scan to years column.
4. Search for 1985.
5. Scan to Co. B’s column.
6. Read data.

In these two cases, the data and the task were constant but the display changed.
Strategy I is no longer applicable and Strategy II is more suitable for the particular
combination of display, decision task and data.

2.3.2. Data
Different data sets may also affect the strategies selected. If the decision maker is asked to
determine which company had the higher growth rate between 1984 and 1986, using
Figure 2, the following is likely to be used.

Strategy III
1. Scan to x-axis.
2. Search for 1984 on x-axis
3. Search for 1986 on x-axis
4. Scan to lines representing sales from 1984 to 1986.
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5. Compare slopes of the two lines.
6. Scan to legend (to identify the company with the steeper line).
7. Read text (to find its name).

Now look at Figure 4 to solve the same decision task. Clearly, the sales patterns in
Figure 4 are more complex than in Figure 2 and preclude the simple strategy just
described. Asked the same question with Figure 4, the decision maker may employ the
following new strategy.

Strategy IV
1. Scan to x-axis.
2. Search for 1984 on x-axis.
3. Scan to lower (dashed) sales line.
4. Scan to upper sales line in 1984.
5. Search for 1986 on x-axis.
6. Scan to lower line in 1986.
7. Scan to upper line in 1986.
8. Compare gaps at 1984 and 1986.
9. Scan to legend.

10. Read text.

2.3.3. Decision task
Finally, different tasks obviously call for different strategies. Recall the differences
between the strategy used to determine the value of sales in 1985 (Strategy I) and the
strategy used to determine the fastest growth rate (Strategy III)—this despite the fact that
each used the same data display (Figure 2).
FIGURE 4. Example—irregular data. Company A ( ); company B ( ).
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2.4. A MODEL OF ADAPTIVE BEHAVIOR

The examples above demonstrate possible effects of data, decision tasks and displays on
behavior, but do not explain the mechanism for strategy selection. Now we need to
consider what makes a user more or less likely to select one strategy rather than another.
Previous research has proposed two general explanations that, coincidentally, yield the
same predictions (Payne, 1982). One view holds that strategy formulation is a deliberate
process involving a cognitive cost/benefit analysis (Beach & Mitchell, 1978). Each
strategy has cognitive costs (the effort put into the EIPs) and benefits which are
a function of the decision’s accuracy. Effort and accuracy are weighed to evaluate
a strategy. The other view is habitual and sees behavior as a perceptual reaction based on
experience (Kahneman & Tversky, 1979).

Habitual behavior, however, tends to invoke whichever strategy has been found from
experience to be most cost-beneficial. Pinker (1981) articulated this idea with the concept
of schema. A schema is a mental structure based on experience that guides the indi-
vidual’s organization and interpretation of incoming information (Schank & Abelson,
1977). Pinker’s graph-related schemata are built around the display so that people will
tend to use a predefined strategy for understanding the information presented in
a particular display format. This notion that display format is the major determinant of
mental representation of the problem has also been accepted by Russo and Dosher
(1983), Jarvenpaa (1989) and Vessey and Galletta (1991).

Thus, whether by habit or by reckoning, it is commonly held that the strategy
selected will tend to be cost-benefical. Johnson and Payne (1985) point out, however,
that effort is immediately felt, whereas feedback on accuracy will often be delayed
and ambiguous. Our model thus predicts that individuals will concentrate on cost
rather than accuracy. When the cheapest strategy is error-prone, one might
expect accuracy considerations to become significant, so that the accuracy ordering of
perceptual tasks proposed by Cleveland and McGill (1984) would need to be considered,
but we maintain that in the simple tasks we are studying this refinement can be safely
ignored.

The easiest way to measure cost is simply to count the number of EIPs that will be
required, ignoring any differences between the effort and time they require (Newell
& Simon, 1972). This is the approach most researchers take, though an argument can be
made in favor of the slightly better fit that can be obtained when EIPs are weighted
differentially (Betteman et al., 1990). Some recent studies of human—computer interaction
have revealed time differences between EIPs, but these differences are large only when
EIPs that require motor activity (dragging a mouse, drawing a line, etc.) are contrasted
with those that do not. Since the EIPs we are studying do not involve motor activity, it
seems reasonable to adopt equal weights. With these observations in mind, we define
three constructs and then formulate the hypotheses.

An efficient strategy for a specific DDD (combination of a Decision task, a Data
set and a Display) is one that solves the problem with the fewest EIPs. This con-
forms to the notion proposed by Norman (1991) that the ‘‘natural’’ strategy has
the shortest ‘‘length of description’’ (assuming, of course, that description length is
measured in psychological rather than linguistic terms). When two strategies employ
different EIPs it is possible—though rare—for them to be equally efficient (same EIP
count).
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A common strategy, if it exists, for a specific DDD is the strategy employed by the
majority of problem solvers. Operationally we categorize a strategy by its EIPs regard-
less of their ordering. If a strategy consists of n EIPs there are n! possible orderings of
those EIPs. Commonly, some orderings will accomplish the task correctly while others
fly in the face of common-sense. For example, a comparison task may consist of three
EIPS: (a) read fact a, (b) read fact b and (c) compare. Orderings abc or bac are equally
valid but the other four orderings cab, cba, acb and bca imply performing a comparison
activity when at least one of the values has not yet been acertained. In our analysis we
treat strategies that use the same set of EIPs as similar even if the EIPs used for one or
more of the strategies may be differently (but legitimately) ordered. When two strategies
have different orderings of the EIPs, it is possible that one might involve a little less eye
movement than the other. But our model posits that such possible economies can be
safely ignored because they are trivial in comparison with the effect of the total number
of required EIPs.

Experience shows that most of these orderings make no sense at all—they will not
produce the correct answer and are never used by subjects. Sometimes, however, there
are a few orderings that are commonly employed and do, indeed, yield the correct result.
In such cases we ignore ordering differences and consider these to be a single strategy.
For instance, Strategy IV, as described above, involved comparing the lengths of two line
segments, then searching the legend for the name of the company with the steeper line.
We have chosen to consider the alternative strategy in which the legend was searched
first, rather than last, to be operationally equivalent.

A matched design for a given combination of a decision task and data is the display
that requires fewer EIPs than would be required with any other display. All other
displays for the same task and data will be considered mismatched designs. Our
definition of match is similar in principle to the notion of cognitive fit, but adds
a quantitative function (number of EIPs) applicable to any decomposable task of the
type we are investigating. In this sense, our attempt is closer to Norman’s concept of
naturalness, which builds on a rule-based characterization of human—computer inter-
action (Polson, 1987).

Hypotheses: The proposed model can predict how changes in decision task, data and
displays will affect the decision strategies. Our experiment was designed to test these
predictions. In addition, we formulate four general hypotheses that capture the underly-
ing mechanisms of the model.

H1: Common strategies are efficient strategies.
H2: Common strategies are employed more frequently when the design is matched

than when it is mismatched.
H3: Strategy formulation is faster with matched than with mismatched designs.

Adaptive decision making assumes people tend to choose the least costly strategies
that accomplish the task. Common strategies should therefore be efficient. Recall the
example of determining which company had the highest growth rate in Figure 2—Strat-
egy III. A table of numbers instead of a graph requires a much longer sequence. This is
a situation of mismatch. In situations of mismatch, we expect a longer process of strategy
formulation as the more obvious strategies (schemata) will be ruled out. Furthermore,
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since the mismatch will open up other strategies, a greater variety of strategies
is likely to be employed. Hence, common strategies should be more frequent in matched
designs.

H4: Errors are less frequent in matched than in mismatch designs.

Errors are more likely in mismatched designs because of the need to transform the
representation in order to successfully solve the problem (Norman, 1991; Vessey, 1991).

3. Research method

We conducted a laboratory experiment to uncover the actual strategies used by subjects
working with a variety of displays, decision tasks and data sets. From these observed
strategies we extracted prototypes of the most commonly used strategies for each
task/data set combination.

3.1. EXPERIMENTAL DESIGN AND PROCEDURE

Thirty subjects each solved 36 unique exercises producing 1080 cases (30]36). An
exercise is a combination of one of 3 Decision tasks, 4 Data sets, and 3 Displays
(3]4]3"36), i.e. each is a unique DDD combination. The exercises were administered
in random order. Thus we have a within-subjects repeated-measures design with three
independent factors. The 12 combinations of 3 tasks and 4 data sets are referred to as
problems.

The subjects were given a notebook with 36 exercises, each on a separate page.
Figure 5 shows the sample problem at the head of the notebook. The subjects were asked
FIGURE 5. Sample display and trace.
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to trace the areas of the display to which they referred as they progressed. They did so by
using a pen to capture on paper the transitions between areas of interest, and were asked
to keep the pen on the paper until they finished the task. Each of the 1080 cases was
videotaped in order to help resolve any coding ambiguities.

One of the significant contributions of this study is the successful use of graphical
protocol analysis in the study of detailed information acquisition (Benbasat, 1984;
Ericsson & Simon, 1980). This study used a new form of graphical protocol which is
relatively non-intrusive insofar as it lets users express themselves without having to
change their mode of thinking. Furthermore, it identifies each EIP in the process and
their order. Subjects were asked to first read the question which was at the top of each
page. They were then asked to use a pen to circle the word ‘‘start’’ in the upper right-hand
corner and then trace the path of interest, circling each area where information is
retrieved. These traced protocols, combined with the video, provide a detailed record of
the information acquisition process.

Requiring all subjects to begin their traces at the upper right location of the Start label
seems, in a few cases, to have influenced the sequence in which EIPs were executed.
However, we could find no cases where it influenced the set of EIPs selected or the
viability of the selected sequence. We therefore believe that this constraint does not
diminish the significance or validity of our findings.

We assume here that tracing with a pen does not change the selection of EIPs or the
sequence that would have been followed without using a pen. A test supporting this
assumption is reported in Treleaven (1990). Although it is possible that the relative
timing of EIPs might be distorted by this method, it should be noted that relative timings
do not affect our characterization of strategies. In a pilot study with six subjects, all six
reported that they did not consider the technique to be intrusive.

A post-test with similar exercises was conducted using 55 subjects, most of whom were
working business managers. Here, the subjects worked on-line, without pen and paper.
Despite this difference, average task execution times (strategy selection plus strategy
execution) for both the 1080 cases in this study and the post-test were about the same—
approximately 21 s.

3.1.1. Subjects
The group of subjects (20 men and 10 women) were volunteers from the population on
a university campus, but care was taken to include a mix of staff, faculty, full-time and
part-time students so that there was a reasonable diversity in age, gender and level of
education. All the subjects volunteered to participate primarily out of interest in the
experiment.

3.1.2. Task and setting
Each subject was placed in a small private room equipped with a table, a chair and
a video camera. A proctor directed the subject to follow the instruction contained in the
notebook and pointed at a sample of the tracing technique required. The subjects then
answered each of the 36 exercises. The entire session was videotaped. Each session took
an average of 30 min.
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3.2. OPERATIONAL DEFINITIONS

3.2.1. Independent variables
The three variables are display, decision task and data. In combination, they determine
the match, which is hypothesized to affect strategy formulation.

(1) Displays. The three formats used were a table (Figure 3), a line graph (Figure 4)
and a bar chart. These are the three most common formats found in the bulk of
existing studies and in actual practice.

(2) Decision tasks. One of the recurring difficulties in research on information acquisi-
tion from graphs and tables is the diversity of tasks. Simon and Newell (1973) and
Fleishman (1982) note the importance of dealing with tasks at the appropriate level
of aggregation. The more detailed the tasks, the less is the likelihood of confound-
ing factors. However, tasks should also be sufficiently aggregate to have opera-
tional meaning in a real-world context. Tan and Benbast (1990) recommended
three types of tasks.
(a) »alue extraction: What were Company SAT+s sales in SYearT?

Question d1 requires the subject to read the value either from the table or off
the vertical axis. The subject must also locate the year on the horizontal axis.

(b) Comparison: Which company reached SXT in annual sales first?
Question d2 requires the subject to locate the value of SXT on the vertical
axis, scan rightwards into the graph and find which company’s curve it
encounters first.

(c) ¹rend: Between SY1T and SY2T, which company increased sales the most?
Question d3 requires the subject to locate the period on the horizontal axis
and the sales trends of both companies over the specified period.

(3) Data. Researchers have generally used complexity as a means of differentiating
data sets. The four data sets were specifically designed to add a different form of
complexity relative to the base data set (Figure 2). In the second set the length of
the ordinal variable (year) was varied from 12 to 19 years. In the third set the
number of nominal variables (companies) was varied from two to four (Figure 6).
These variations are expected to produce an increase in complexity (Lauer, 1986).
Finally, the fourth set had more changes in the sign of the slope so the number of
intersections of the two curves increased from one to seven (Figure 4). Irregularity
in the data has traditionally been considered an important source of complexity
(Berlyne, 1960).

3.2.2. Dependent variables
For each of the actual 1080 cases, we measured four variables: the strategy’s composition,
its efficiency (number of EIPs), accuracy and formulation time. In addition, for the
prototypical common strategies that were defined for each of the 36 unique
DDD combinations, we measured three variables: the strategy composition and its
efficiency (as above), and uniformity—the proportion of subjects who used the common
strategy.

(1) Strategy composition—the set of EIPs that were employed (see Section 2.4).
(2) Efficiency—the number of EIPs used.
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(3) Accuracy—the accuracy of the result (a boolean variable) judged by whether the
problem solution was correct or incorrect. An incorrect outcome, of course, could
result from execution errors rather than inappropriate strategies.

(4) Strategy formulation time—the time required to read the task and devise
the requisite strategy. Each subject was timed from the moment she turned
the page to begin reading a new task until she circled the first part of the display
she used. The total strategy formulation time actually captures three activities:
reading the problem, formulating a strategy and performing the first scanning
EIP.

This measure was chosen for several reasons. It is impractical to distinguish
between reading the question and planning the solution. Since the questions
were all short and simple, the time required to read them can reasonably be
assumed to be a constant. Card, Moran and Newell (1983) define task acquisition
as both reading the task and determining the method for execution. For simple
tasks, such as those in this study, they assert task acquisition is relatively fixed
at between 2 and 3 s. Further, even though subjects were asked to circle the
word start when ready to execute, the video often showed considerable thought
taking place after circling start. As a result, the most consistent break point
between formulation and execution was the first circled area of the display. This
additional time (first scan) could reasonably be assumed to be roughly constant for
each case at between 1.5 and 3.5 s (Treleavan, 1990). The significant source of
variation in the total time is, therefore, assumed to be the variance in strategy
formulation.

(5) Uniformity. The proportion of subjects employing the common strategy. The
statistic ranged from a low of 0.60 (18 out of 30) to a high of 1.0 (all subjects used
the same strategy).
FIGURE 6. Experimental data set 4 (four companies).



TABLE 2
Summary of common strategies. For each DDD combination, two results are shown:
uniformity—the fraction of subjects selecting the common strategy (range 60—1.0), and

EIPs—the number of EIPs in the common strategy

Question 1—Value Question 2—Compare Question 3—Trend

Data set 1 2 3 4 1 2 3 4 1 2 3 4

Table Uniformity 1.0 1.0 0.93 0.96 0.96 1.0 0.96 0.90 0.93 0.93 0.93 0.90
EIPs 6 6 6 6 7 7 7 11 16 16 16 28

Line Uniformity 0.86 0.96 1.0 1.0 1.0 0.96 1.0 0.96 0.90 0.83 0.86 0.76
EIPs 7 7 7 7 5 5 6 5 7 7 10 12

Bar Uniformity 0.93 0.96 0.96 0.96 1.0 0.96 1.0 0.83 0.63 0.60 0.86 0.66
EIPs 7 7 7 7 6 6 6 9 11 11 11 11
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3.2.3. Analysis
All coding of the protocols was done by one researcher to produce consistent coding
across all cases. Coding involved translating the progression from Start to End according
to Table 1. To test for experimenter errors, a sample of 30 cases was coded by a second
researcher, not one of the authors. Only two of the codings differed and the differences
were so minor that the classification of the strategies in question was unaffected.

Each case was coded using both the hardcopy and the video. The first step was to
examine the written protocol and then view the video in order to record the EIPs used.
The video resolved issues such as missing steps (where the subject failed to trace clearly
or at all) or ambiguous order (where the trace was not continuous). Each case was then
timed twice using the video tape. The hypotheses regarding times and accuracy were
tested using the standard ANOVA procedure within SPSS/PC# (Norusis, 1985). With
large sample sizes and cells of approximately equal size, the ANOVA assumptions are
satisfied. The hypotheses regarding the use of common strategies and matched and
mismatched designs were tested using SPSS’s chi-square procedure and by examining
cross tabulations. We decided to exclude the first three cases from the analysis on the
basis of a regression analysis in which behavior was found to stabilize after three trials
(Treleaven, 1990).

In nine of the 30 cells it will be noted that all 30 subjects employed the same common
strategy. The lowest uniformity was found for the Bar Graph used for Trend detection on
data set 2, but even in this worst case the uniformity measure was 0.60 (18 of 30).

Turning to the EIP count in Table 2, it will be seen that this varied considerably from
a low of 5 to a high of 28, indicating that the combination of task-type and data-type can
increase required effort more than five-fold.

Comparisons of the Av columns across the Questions shows that Value-extraction and
Comparison tasks require about the same amount of effort and that these EIP counts are
much lower than those required for Trend detection.

Row-wise comparisons of EIP counts indicate that Tables are slightly better than
either kind of graph for Value extraction, but are significantly inferior for Trend
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detection. We can also see that Line graphs dominate Bar graphs. More specifically,
however, we need to consider how our hypotheses fared in this test.

4. Results

As hypothesized, each of the 36 combinations of data, display and decision task (DDD
combinations) did produce a common strategy (these are listed in the appendix). For
example, Strategy I, which we discussed in Section 2.2, is the common strategy used by 26
of our 30 subjects for the combination of the value extraction task on regular data using
a line graph. (In the appendix, this strategy appears as entry d13.)

Table 2 summarizes the results of the protocols for the 36 DDDs. Each cell reports the
proportion of subjects using the common strategy (uniformity) and the EIPs count. In
nine of the 36 cells, it will be noted that the uniformity measure was 1.0 (all 30 subjects
employed the same common strategy). The lowest uniformity was found for the bar
graph used for trend detection on data set 2, but even in this worst case with uniformity
of 0.60, there were 18 out of 30 subjects who followed the common strategy. The EIP
count varied considerably from a low of 5 to a high of 28, indicating that the combination
of task-type and data-type can increase required effort more than five-fold.

From Table 2 we can see that Value-extraction and Comparison tasks require about
the same amount of effort and that these EIP counts are much lower than those required
for trend detection. Comparisons of EIP counts indicate that tables are slightly better
than either kind of graph for value extraction, but are significantly inferior for trend
detection. We can also see that line graphs dominate bar graphs.

The impact of display type on the number of EIPs in the common strategy was largely
as expected. For the value extraction question, tables proved to be slightly more efficient
than graphs (six vs seven EIPs), regardless of the data set. For the comparison question,
the line graph was most efficient for all data sets, followed closely by the bar chart and the
table (mean EIPs of 5, 6 and 8, respectively). The trend question in the same order of
efficiency across all data sets but with a much bigger spread (mean EIPs of 9, 11 and 19,
respectively).

H1: Common strategies are efficient strategies. The few subjects who employed
non-common strategies committed themselves to as much as double the effort (number
of steps required to solve the task) of the common strategy. Of the 91 non-common
strategies, only nine (0.8% of the 1080 cases) required fewer steps than the common
strategies. Upon closer examination, eight of these nine cases resulted in errors and were
incomplete or otherwise inaccurate. The ninth case was also incomplete but did fortu-
itously have a correct response.

The average number of EIPs employed in the common strategies (mean"8.61 and
S.D."4.36) was only 52% of the average for the non-common strategies (mean"16.39
and S.D."10.03) and, using a ¹-test for non-equal groups, this difference is significant
at the 99.9% confidence level. This result strongly supports H1, that the common
strategies are more efficient than the non-common strategies.

An examination of the influence of the problem (task and data) produces some
unexpected results. Chi-square results show significant effects for the problem, control-
ling for both line graphs (p"0.0005) and bar charts (p"0.000) but not for tables
(p"0.5). Tables appear to elicit a significant use of the common strategy across all



TABLE 3
Frequency of non-common strategies by format and question

Task 1 (Value) 2 (Compare) 3 (Trend) Total

Table 3* 5 9 17
Line graph 5 2* 19* 26
Bar chart 5 6 37 48
Total 13 13 65 91

* indicates matched designs
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problems. Data set differences, in the case of tables, have less impact, since they are not as
readily apparent to, or exploitable by, the subjects. For line graphs, an unexpected result
occurred for the trend question using the data set with four companies. In this case the
use of the common strategy was somewhat lower than expected.

H2: Common strategies are more frequent in matched than in mismatched de-
signs. As discussed in Section 2, the preferred display for a given task (and data set)
would be the one which matches format to question and thereby minimizes cognitive
effort as measured by the number of EIPs required. Following others (e.g. Vessey, 1991),
we treat Tables as the matched design for value extraction (Question 1) and Line graphs
for comparison and trend questions (Questions 2 and 3). Bar charts are not superior for
any of these questions (Tan & Benbasat, 1990). Analysis of the data in Table 2 shows that
mismatched designs caused fewer subjects to employ the common strategy.

Table 3 counts the non-common strategies according to display and task, indicating
match by an asterisk. Of the 91 total cases which resulted in non-common strategies, 67
(72%) were in the mismatched combinations of format and task. In particular, 37 of them
were found in the trend task when using bar charts. Subjects tended to convert the bar
chart into a line graph by drawing lines connecting the tops of the bars or by calculating
values for the end points, rather than the common strategy of comparing bar heights at
the end points. Since bar charts have generally not been considered ideal for detecting
trends, this result is not unexpected.

An unexpected result, however, did occur for detecting trends using the preferred line
graph. Nineteen, or 20.8%, of the non-common strategies were accounted for here. The
majority of these subjects calculated numeric growth rates. In these cases, as in most of
the non-common instances, subjects appeared to be sacrificing efficiency for accuracy.
Some people appear not to rely on the expected visual cues in line graphs even for the
least complex data patterns. In total, 71.4% of the non-common strategies were used for
trend detection tasks, where alternative strategies appear to be more prevalent. Recall,
however, that the vast majority of subjects used the common strategy for this question
also.

H3: Strategy formulation is faster in matched than in mismatched designs. For
matched designs, strategy formulation was indeed faster (the means of matched designs
and mismatched are 8.61 and 9.33 s, respectively, and their standard deviations are 3.35
and 3.17, respectively). Using ANOVA this result is significant at the 99% confidence
level, strongly supporting the hypothesis. A significant conclusion is that, in addition to
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having the most efficient strategy, the preferred display for a given task will also be
easiest to select.

H4: Errors are less frequent in matched than in mismatched designs. This result is in
the expected direction—accuracy for matched designs is higher than for mismatched
designs—but is not confirmed statistically (p"0.08) with chi-square, probably because
errors are so uncommon.

5. Limitations, implications and directions for future research

Our objective was to develop a framework for studying strategy formulation and
execution for Decision tasks that involved the extraction of quantitative information
under different combinations of Display and Data. We assume that decision makers
adapt to different conditions by selecting the strategy that accomplishes the task with
minimum cognitive costs. This tendency is clearest when the display presents the data in
a form that is well matched to the needs of the decision task, making it easier for the
decision maker to formulate and execute the most efficient strategy. We therefore
hypothesized that common strategies are efficient and are likely to be used more
frequently when the display is matched. We further hypothesized that with matched
designs, strategies are formulated faster and executed more accurately. The results show
that indeed different DDD combinations produced different common strategies and that
these common strategies are significantly more efficient than non-common strategies.
Secondly, in the mismatched designs, fewer subjects used the common strategy and it
took them longer, on average, to formulate a strategy. Finally, there were fewer errors in
the matched designs but this result was not statistically significant (p"0.08), probably
because of the very low absolute number of errors overall.

In sum, the evidence from the experiment generally supported the model’s predictions.
The vast majority of subjects adapted their behavior according to the task and selected
strategies that were easy to predict because they minimized effort while preserving
accuracy. The concept of match between display and problem appears to be useful, as
demonstrated previously by Vessey and Galletta (1991). It helps to show that behavior is
predictable and tends to be more efficient when the display is well suited to the task.
Moreover, the simplicity of the strategy descriptions makes it feasible to think of
automated mechanisms for matching the display to the specific conditions.

The primary limitations of this study are methodological because of the need to
measure ‘‘black box’’ processes. It was difficult to measure directly the strategy formula-
tion time. The mean total strategy formulation time of 8 s appears to be plausible based
on the expected values of the three components: reading, selecting and scanning. Reading
the question should require approximately 2 s (Card et al., 1983), selecting a strategy
about 5 s (Treleaven, 1990) and scanning to the first point approximately 2 s, for a total
of 9 s. This provides some comfort that, while the measured time included activities other
than devising a strategy, the magnitude of the result and the sources of variance are
reasonable. Nonetheless, it would be desirable to replicate this study using other
measures.

It was infeasible to describe an information acquisition strategy and assess its com-
plexity before the strategy was executed and observed. Moreover, both the strategy and
the complexity are functions of three factors: data, decision task and display. As a result,
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it was necessary to reconstruct the strategy using the details of the specific context. We
did so by using the bi-level representation of EIPs and strategies. The five classes of EIPs
(Table 1) were drawn from the decision making and graphics literature. They are used to
describe human—computer interaction that bridges the gap between the task level and
the physical level (Norman, 1991). This set was sufficient for the tasks in the experiment,
but clearly may have to be expanded and refined to fit other tasks, e.g. tasks that include
hand movements or more complex calculations and manipulations. We believe, however,
that the basic approach can be extended.

We used the number of EIPs as a measure of the overall complexity that results from
the combination of task, data and display. In some cases, however, the differences
between the effort required for different EIPs might be significant enough to warrant the
use of a weighted sum of EIPs as the complexity measure, rather than the simple count
we used; this deserves further research. Particularly relevant would be cases in which
there are different classes of processes (e.g. motoric processes) or different types of
computations in decision making.

Furthermore, the emphasis on complexity (effort) as opposed to accuracy in the
cost-benefit tradeoff, although common in empirical investigations, must be questioned
in other cases. In fact, some of our anecdotal observations indicate that accuracy may act
as a precondition to a comparison of costs. In other words, accuracy may be a yes/no
feasibility test and effort a comparative test within the feasible set. This may be an
interesting direction of augmenting the cost—benefit framework (cf. image theory—
Beach & Mitchell, 1987).

The task domain of the study was relatively structured. Though these results may be
generalized to other structured domains, it would be difficult to generalize the findings to
unstructured decision-making activities. Indeed, Card et al. (1983) note that strategy
formulation is less predictable in unstructured situations. It would seem important to test
empirically the notion of common strategies in a less structured situation and what
affects the level of commonality. Clearly, familiarity plays some role in the notion of
match, but this is not to say that the notion of match is irrelevant to unfamiliar situations.

Finally, the study did not explicitly consider individual differences. The subjects were
chosen to represent a heterogeneous sample, since commonality in strategy selection was
a central focus of the study. As a result, the findings should exhibit external validity.
Nevertheless, future studies might investigate individual differences, since these might
cause certain EIPs to require extra effort which could lead to different strategy choices.
Moreover, in line with the notion of trading accuracy for effort, individual differences
that result in different tradeoffs might be relevant. For example, reflective individuals
may prefer strategies that are more accurate even though they are less efficient (Messer,
1976). Future research should try to identify how such individual differences affect
strategy formulation.

We believe our research has potential applications in a number of related fields. Our
findings suggest that human behavior is reasonably efficient and predictable in informa-
tion acquisition tasks such as the ones we studied. We used the bi-level representation of
EIPs and strategies to relate the functional aspects of the task with the physical aspects of
the form of data.

Both the approach and the findings are of importance to the designers of hu-
man—computer interfaces. Since task is the dominant factor, it might be desirable to
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rework a number of human—computer dialogues. When a spreadsheet user wishes to
present a subset of his data, for instance, he is currently offered a dialogue such as: Select
(Line graph, Pie chart, Bar chart). A better alternative might be: Purpose of this display?
(Detect trend, find turning-point, extract largest). The system would then automatically
pick the display format that best matched the data-set and the selected purpose.

To fully exploit our findings and to evaluate their practical significance, further
research is needed to relate individual fact acquisition tasks to the larger processes of
which they are a part. Several such processes are relevant—we have stressed managerial
decision making, but, education, training and advocacy are others requiring fact acquisi-
tion. Each of these will generally require the acquisition of multiple facts; research is
needed to determine whether a single display format will be best for this collection of
tasks. In the (likely) event that no one display is collectively optimal, there will need to be
research on the presentation of multiple displays.

One must recognize that display format may influence the quality of outcomes of the
process in subtle ways that go beyond the acquisition of individual facts. For instance,
one needs to consider how the display may influence attention and recall. The use of
information is often part of an ill-structured process that requires not only exploration of
tentative hypotheses but also backtracking when dead ends are encountered. The overall
utility of a display may thus depend, in part, on the extent to which it facilitates
backtracking by improved recall of facts previously acquired. Clearly, much further
research will be needed if we are to expand the present findings to the larger context of
the overall processes involved in decision-making and information use.
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Appendix: Common strategies

Table A1 lists the mnemonics used to describe the EIPs in the common strategies.
TABLE A1

Class EIP Mnemonic

I. Scan to 1. ½-axis SCY
2. Bar/line SCB
3. X-axis SCX
4. Table column SCT
5. Legend SCL

II. Search 6. X-axis (yr) SRX
7. ½-axis (value) SRY
8. Table point SRT
9. Legend SRL

III. Compare 13. Slopes CRA
14. Length/gap CRL
15. Height CRH
16. Values CRV

IV. Read 10. Data RED
11. Text RET

V. Compute 12. Add/subtract CPT

Table A2 has 36 rows, one for each DDD combination—Display,
Decision task and Data set. The numbers within each factor correspond
to the numbers in the text describing the independent variables. The
strategies are described by the sequence of EIP mnemonics defined
below in the legend. The last column is the match/mismatch judge-
ment—for each task and data set, only one display is matched.

Data set 1"short, regular; 2"long, regular; 3"irregular; 4"4
nominal variables.

For example, Strategy I (Section 22) for regular data on a line graph
with the value extraction task is equivalent to case d13 in Table A2
and Strategy II (Section 2.3.1) for regular data on a table is case d1,
Strategy III (Section 2.3.2) for the trend task is case d21 and Strategy
IV (Section 2.3.2) for irregular data is case d23.



TABLE A2

Case Dis- Task Data Protocols Tot Match
no. play no. Ordered EIPs EIPs Mismatch

1 TAB VAL 1 SCL, SRL, SCT, SRT, SCT, RED 6 MAT
2 TAB VAL 2 SCL, SRL, SCT, SRT, SCB, RED 6 MAT
3 TAB VAL 3 SCL, SRL, SCT, SRT, SCT, RED 6 MAT
4 TAB VAL 4 SCL, SRL, SCT, SRT, SCT, RED 6 MAT
5 TAB WHN 1 SCL, SRT, SCT, RED, SRT, SCL, RET 7 MIS
6 TAB WHN 2 SCT, SRT, SCT, SRT, CRH, SCL, RET 7 MIS
7 TAB WHN 3 SCT, SRT, SCT, RED, SRT, SCL, RET 7 MIS
8 TAB WHN 4 SCT, SRT, SCT, SRT, SCT, SRT, SCT, 11 MIS

SRT, CRH, SCL, RET
9 TAB TRD 1 SCT, SRT, SRT, SCT, RED, SCT, RED, 16 MIS

SCT, RED, SCT, RED, CPT, CPT, CPV,
SCL, RET

10 TAB TRD 2 SCT, SRT, SRT, SCT, RED, SCT, RED, 16 MIS
CPT, SCT, RED, SCT, RED, CPT, CRV,
SCL, RET

11 TAB TRD 3 SCT, SRT, SRT, SCT, RED, SCT, RED, 16 MIS
CPT, SCT, RED, SCT, RED, CPT, CPV,
SCL, RET

12 TAB TRD 4 SCT, SRT, SRT, SCT, RED, SCT, RED, 28 MIS
CPT, SCT, RED, SCT, RED, CPT, SCT,
RED, SCT, RED, CPT, SCT, RED, SCT,
RED, CPT, CPV, CPV, CPV, SCL, RET

13 LIN VAL 1 SCL, SRL, SCX, SRX, SCB, SCY, RED 7 MIS
14 LIN VAL 2 SCL, SRL, SCX, SRX, SCB, SCX, RED 7 MIS
15 LIN VAL 3 SCL, SRL, SCX, SRX, SCB, SCY, RED 7 MIS
16 LIN VAL 4 SCL, SRL, SCX, SRX, SCB, SCY, RED 7 MIS
17 LIN WHN 1 SCY, SRY, SCB, SCL, RET 5 MAT
18 LIN WHN 2 SCX, SRX, SCB, SCL, RET 5 MAT
19 LIN WHN 3 SCY, SRY, SCB, SCB, SCL, RET 6 MAT
20 LIN WHN 4 SCY, SRY, SCB, SCL, RET 5 MAT
21 LIN TRD 1 SCX, SRX, SRX, SCB, CRA, SCL, RET 7 MAT
22 LIN TRD 2 SCX, SRX, SRX, SCB, CRA, SCL, RET 7 MAT
23 LIN TRD 3 SCX, SRX, SRX, SCB, CRL, SCB, CRL, 10 MAT

CRL, SCL, RET
24 LIN TRD 4 SCX, SRX, SRX, SCB, SCB, CRA, SCB, 12 MAT

CRA, SCB, CRA, SCL, RET
25 BAR VAL 1 SCL, SRL, SCX, SRX, SCB, SCY, RED 7 MIS
26 BAR VAL 2 SCL, SRL, SCX, SRX, SCB, SCX, RED 7 MIS
27 BAR VAL 3 SCL, SRL, SCX, SRX, SCB, SCY, RED 7 MIS
28 BAR VAL 4 SCL, SRL, SCX, SRX, SCB, SCY, RED 7 MIS
29 BAR WHN 1 SCY, SRY, SCB, SCL, SRL, RET 6 MIS
30 BAR WHN 2 SCX, SRX, SCB, SCL, SRL, RET 6 MIS
31 BAR WHN 3 SCX, SRX, SCB, SCL, SRL, RET 6 MIS
32 BAR WHN 4 SCY, SRY, SCB, SCB, SCB, SCB, 9 MIS

SCL, SRL, RET
33 BAR TRD 1 SCX, SRX, SRX, SCB, CRH, SCB, 11 MIS

CRH, CRL, SCL, SRL, RET
34 BAR TRD 2 SCX, SRX, SRX, SCB, CRH, SCB, 11 MIS

CRH, CRH, SCL, SRL, RET
35 BAR TRD 3 SCX, SRX, SRX, SCB, CRH, SCB, CRH, 11 MIS

CRH, SCL, SRL, RET
36 BAR TRD 4 SCX, SRX, SRX, SCB, CRH, SCB, CRH, 11 MIS

CRH, SCL, SRL, RET
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