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It is now widely accepted that sites in a protein do not undergo independent evolutionary processes. The underlying as-
sumption is that proteins are composed of conserved and variable linear domains, and thus rates at neighboring sites are
correlated. In this paper, we comprehensively examine the performance of an autocorrelation model of evolutionary rates in
protein sequences. We further develop a model in which the level of correlation between rates at adjacent sites is not equal
at all sites of the protein. High correlation is expected, for example, in linear functional domains. On the other hand, when
we consider nonlinear functional regions (e.g., active sites), low correlation is expected because the interaction between
distant sites imposes independence of rates in the linear sequence. Our model is based on a hidden Markov model, which
accounts for autocorrelation at certain regions of the protein and rate independence at others. We study the differences
between the novel model and models which assume either independence or a fixed level of dependence throughout the
protein. Using a diverse set of protein data sets we show that the novel model better fits most data sets. We further analyze
the potassium-channel protein family and illustrate the relationship between the dependence of rates at adjacent sites and
the tertiary structure of the protein.

Introduction

Probabilistic evolutionary models describe how charac-
ters (nucleotides, amino acids, or codons) evolve along a phy-
logenetic tree. However, one must choose the assumptions of
the evolutionary models carefully in order to distinguish bi-
ologically relevant signals from random evolutionary noise.
The closer the assumptions of the model to the biological
reality, the more accurate and powerful the model is (Lio
and Goldman 1998).

The main goal when using an evolutionary model is to
ensure that it is expressive enough to describe the biological
reality, yet does not over fit the observations (Nei and
Kumar 2000). Many of the simplifications once assumed
are now being relaxed, giving way to more powerful mod-
els. A classical example of oversimplification is the as-
sumption of equal evolutionary rates at all sites of a
protein. In proteins, the rates of evolution vary due to dif-
ferent selective constraints that are acting on different sites.
Pioneered by Yang (1993), the majority of models now be-
ing used take into account the heterogeneity of evolutionary
rates among sequence sites (Swofford et al. 1996; Yang
1996; Felsenstein 2001). Accordingly, the rate at each site
is modeled as a random variable drawn from a specified
prior distribution. By far, the most commonly chosen dis-
tribution for modeling rate variation across sites is the
gamma distribution (Yang 1993, 1994).

Following the incorporation of rate heterogeneity into
evolutionary models, more sophisticated models were de-
veloped to more accurately describe the distribution of rates
among sites. For example, Gu, Fu, and Li (1995) suggested
the gamma 1 invariant model whereby a proportion of the
sites are invariant. This assumption was recently general-
ized in a model which assumes that the rates take upon
a mixture of gamma distributions (Mayrose, Friedman,
and Pupko 2005). Each of these models assimilates addi-
tional parameters representing different biological assump-
tions. Nevertheless, all of these models share one recurrent
shortcoming: they all assume that each site evolves inde-

pendently of the other sites. This oversimplification of
the evolutionary model is perhaps as troubling as the as-
sumption that all sites of a protein share the same evolution-
ary rate. A protein is composed of conserved regions as well
as variable regions, pointing at the fact that the sites do not
evolve independently. This assumption has been applied in
methods which detect selective constraints acting on
regions of proteins by using a sliding window approach
(e.g., Fares et al. 2002). An alternative model-based ap-
proach was introduced by Yang (1995) and Felsenstein
and Churchill (1996), who developed a model of evolution
which takes into account a correlation between the evolu-
tionary rates at adjacent nucleotides by using a hidden Mar-
kov model (HMM). These models can better account for
linear regions of low rate and linear regions of high rate,
constituting an important advance of evolutionary models.
They have been shown to provide a better fit to DNA data
and may improve site-specific rate inference (Felsenstein
and Churchill 1996).

Yet when observing empirical rate distributions of
known proteins, it seems as though the assumption whereby
the protein is composed of conserved linear regions and
variable linear regions does not necessarily hold true. In
fact, although most sites are clustered together according
to their rates, there are clusters of sites where the evolution-
ary rates oscillate between very high and very low values
(fig. 1). Thus, the assumption whereby there is equal cor-
relation between all the pairs of adjacent sites in a protein is
invalid. The protein’s 3-dimensional (3D) structure and
function result from complex interactions between amino
acids. For instance, the catalytic site of the protein is often
composed of sites which are distant in the linear sequence
of the protein. Thus, the level of correlation between the
evolutionary rates of these linearly distant sites may be
stronger than the correlation between the linear adjacent
sites. Alpha helices and beta sheets may also display vary-
ing levels of correlation between rates. For instance, if
one side of an alpha helix is more functionally important
than the other side, then the pattern of rates will be cyclic.
Furthermore, a pattern of buried versus exposed sites may
also lead to varying levels of correlation. Thus, the 3D struc-
ture may impose independence of adjacent rates in the
linear sequence.
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In a step toward a more realistic evolutionary model,
we propose a model that allows adjacent rates to be corre-
lated at certain regions of the protein while allowing rate
independence at other regions. This model implicitly takes
into account the 3D structure of the protein by allowing
flexibility of the correlation between the evolutionary rates.
We hereby refer to this novel model as the D 1 I model,
indicating dependence and independence, as opposed to the
model described by Yang (1995), which we denote as theD
model. We refer to a model where the sites are independent
with a gamma distribution of rates across sites (Yang 1994)
as the I model.

In order to evaluate which of the three models (I, D,
and D 1 I) better fits protein data sets, we first applied all
three models to a wide range of data sets. We showed that
the D model is superior to the I model, as previously re-
ported for DNA sequences, and the D1 Imodel is superior
to both. We then compared the performance of the three
models in simulations, where the same pattern of perfor-
mance emerged. Finally, we used the D 1 I model to an-
alyze the potassium (K)-channel protein family and to infer
site-specific evolutionary rates, revealing a particular pat-
tern of correlation throughout the protein.

Theory
The Gamma Distribution

The most commonly used distribution for modeling
rate variation at a single site is the gamma distribution
(Swofford et al. 1996; Yang 1996). Its shape parameter,
a, allows for different distribution shapes,making it a highly
convenient distribution. In order to employ the gamma dis-
tribution, a discrete approximation is used (Yang 1994).
The actual distribution is divided into K rate categories,
such that all categories have equal prior probabilities
(1/K). The mean of each category, denoted as �ri; is used
to represent all the rates within category i. The boundaries

of each category are denoted as r*i�1
and r*i (note that

r*0 5 0 and r*K 5N).

Modeling Rate Dependence Using an HMM

We model rate dependence by assuming that the evo-
lutionary rates of the protein sites follow a stationary
Markov chain (see figs. 2 and 3A), and each rate emits a
corresponding column of the multiple sequence alignment
(MSA).Note that given the rate assignment for site n� 1, the
rate distribution at site n is fully specified. An alternative
model where the rate at site n depends on site n1 1 instead
of n � 1 turns out to give identical results (Yang 1995).

An HMM is characterized by the transition probabil-
ities between the states of the stationary Markov chain, by
the initial probabilities of the hidden states, and by the emis-
sion probabilities, which represent the probability of the
observations given assignments to the hidden states. Thus,
in order to construct an HMM we must define these three
sets of probabilities.

D Model: the Transition Probabilities

In the D model described by Yang (1995), the transi-
tion between rates at adjacent sites was modeled by assum-
ing that the rates at adjacent sites follow a correlated
bivariate gamma distribution. Since the theory behind this
modeling is not trivial and since the theoretical background
is given only briefly in the manuscript of Yang (1995), we
will outline the essentials of the model.

Let T represents the transition matrix between any two
rate categories represented by �rj and �rk :

Tjk 5 T�rj ;�rk 5Pðr*k�1 ,Ri , r*kjr*j�1 ,Ri�1 , r*jÞ

5
Pðr*k�1 ,Ri , r*k; r*j�1 ,Ri�1 , r*jÞ

pðr*j�1,Ri�1,r*jÞ
; ð1Þ

where Ri�1 and Ri are random variables representing the
hidden rates at any two adjacent sites i � 1 and i along
the protein and 1 � j; k � K: ðr*j�1; r*jÞ and ðr*k�1; r*kÞ rep-
resent the boundaries of categories j and k, respectively, un-
der a discrete approximation of the marginal distributions of
the bivariate gamma distribution, both of which are univar-
iate gamma distributions. The numerator of the fraction
is computed by calculating the volume of a bivariate
gammadistribution over the rectangle ðr*k�1; r*kÞ3ðr*j�1; r*jÞ
(Yang 1995).

D Model: the Initial Probabilities

Because the gamma distribution is approximated by K
equally probable categories, the initial distribution of the

FIG. 1.—An example of a typical rate distribution (the K-channel pro-
tein family), as inferred by maximum likelihood (ML) using the Rate4Site
program (Pupko et al. 2002). In most regions of the protein the rates are
highly correlated, while between positions 58 and 65 the rates oscillate be-
tween low and high values.

r3 r4r2r1

FIG. 2.—The D model. A representation of a Markov chain of evo-
lutionary rates, where the gamma distribution is approximated by four cat-
egories. Arrows represent transitions between the rates at adjacent sites.
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rates is simply a vector p of length K where pðiÞ5
1=K ði5 1;.;KÞ: Note that the initial distribution p is
a steady-state distribution, which fulfills the requirement:

XK

i5 1

piTij 5 pj: ð2Þ

This is easily verified because T is symmetric, and thus the
sum of a column equals the sum of a row which equals one
(as T is a Markov matrix).

The assumption that p is a steady-state distribution
implies that the rate distribution does not change as we
move along the Markov chain.

D Model: the Emission Probabilities

The emission probabilities of the Dmodel are the like-
lihoods of the data at a position, given a certain rate assign-
ment at this position. These probabilities are calculated
using a postorder tree traversal algorithm (Felsenstein
1981). Note that we assume conditional independence of
the data over sites given the rates, that is, once the sites
are assigned their rates, each site evolves independently.

Parameters in the D model are h5 fa; qg: q is a mea-
sure of the correlation between adjacent sites and is a param-
eter of the bivariate gamma distribution. h is maximized
over the likelihood of the data (denoted as d):

L5Pðd j hÞ5 pðd1;.; dnjhÞ

5
XK

i1 5 1

� � �
XK

in 5 1

�
PðR1 5�ri1Þ � Pðd1 jR1 5�ri1Þ

3
Yn
j5 2

Tij�1;ijðhÞ � Pðdj jRj 5�rijÞ
�
:

ð3Þ

For an elaboration of equation (3) see Appendix A.
The likelihood function can be calculated using the

backward dynamic programming algorithm described in
Durbin et al. (1998). Let bkðiÞ5Pðdi11;.; dnjRi 5�rkÞ

be the probability of observing the partial data from sites
i 1 1 through n, given that site i is from category k. Then

bkðiÞ5
XK

j5 1

Tkjbjði1 1ÞPðdi1 1 jRi1 1 5�rjÞ ð4Þ

with bkðnÞ5 1:
The likelihood is thus

L5
XK

k5 1

pk � bkð1Þ � Pðd1 jR1 5�rkÞ: ð5Þ

D 1 I Model: Incorporating Dependence and
Independence

We propose a model that integrates between two types
of situations: one where the rates are correlated, as de-
scribed above, and the other where the rate at a site is
independent of the previous rate. The model enables the
rates to switch between these two types of situations by
expanding the hidden states of the HMM. Thus, the
number of possible hidden states is doubled. Whereas
in the previous model, the hidden states could take
upon any value between �r1 and �rK; now we rename and
extend the hidden states to belong to two different
sets: Sd 5 ð�r1jdependence;.; �rKjdependenceÞ and
Si 5 ð�r1jindependence;.; �rKjindependenceÞ: Thus, each
position has two hidden properties—its evolutionary
rate and whether the rate is dependent or independent of
the rate at the previous site. For simplicity, we denote
ð�r1jdependence;.;�rKjdependenceÞ as ð�r1;.;�rKÞ and
ð�r1jindependence;.;�rKjindependenceÞ as ð�rK11;.;�r2KÞ:
Figure 3A depicts this extended HMM.

D 1 I Model: Transition and Initial Probabilities

Let T̃ represents the transition matrix for the extended
HMM, where the set of states is Sd [ Si: Two new param-
eters k1 and k2 represent the probabilities of a transition
between Sd and Si and vice versa, respectively (fig. 3B).
We are left with the task of computing the initial state

FIG. 3.—The D 1 I model. (A) A representation of a Markov chain of evolutionary rates, where the gamma distribution is approximated by four
categories. Arrows represent transitions between the states. (B) The matrix T̃ represents the extended transition matrix between the rates given their
dependence property, whereas T represents the transition matrix for the D model.
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probabilities, denoted as w. We compute w via the assump-
tion that w is a steady-state distribution (as in eq. 2 above):

X2K
i5 1

wiT̃ij 5wj: ð6Þ

Together with

X2K
i5 1

wi 5 1 ð7Þ

we have a set of linear equations which can be solved
to obtain the values of w (note that the last equation in
the set of equations derived from equation (6) is redundant
due to theMarkovmatrix properties, leaving us with a total of
2K equations and 2K variables).

Unlike p, the initial probabilities w1;.;wK and
wK11;.;w2K are not equal.

D 1 I Model: the Emission Probabilities

The likelihood function is now extended to incorpo-
rate the new states:

L5Pðd j hÞ5
X2K
i1 5 1

� � �
X2K
in 5 1

PðR1 5�ri1Þ
�

3Pðd1 jR1 5�ri1Þ3
Yn
j5 2

T̃�rij�1
;�rij
ðhÞ � Pðdj jRj 5�rijÞ�; ð8Þ

where the 2K states are the states in Sd [ Si:
Equations (4) and (5) can be changed accordingly to

include the new states, and the summations are extended to
include 2K different states.

Bayesian Estimation of Site-Specific Evolutionary Rates
Using the D and D 1 I Models

Estimating the rate at which a site evolves can be used
as a means for inferring conserved and variable sites of
a protein. Assuming independence between sites, it has re-
cently been shown that an empirical Bayesian site-specific
rate inference method is superior to a maximum likelihood
(ML)-based approach (Mayrose et al. 2004). Here we study
whether assuming the D or D 1 I models can further im-
prove inference.

In order to estimate the rate at each site, let us look at
the conditional probabilities of the rates given the data.With
the assumption of conditional independence it has been
shown that the use of the conditional mean r̂5EðrjdataÞ
as the predictor of the true rate (r) yields more precise in-
ference than other predictors (Yang and Wang 1995):

r̂i 5Eðri j dÞ ffi
XM
k5 1

�rk � Pðri j dÞ5
XM
k5 1

�rk �
fkðiÞ � bkðiÞ

PðdÞ ; ð9Þ

whereM5 K for the D model and 2K for the D1 I model.
P(d) and bkðiÞ are initially defined in equations (4) and (5),
respectively, and are calculated as the ML estimators of the
parameters of the D and D1 I models. fkðiÞ5Pðd1;.; di;
Ri 5�rkÞ is the joint probability of observing sites 1 through

i where the rate at site i is from category k. fk(i) can be
computed using a dynamic algorithm (Durbin et al. 1998):

fkðiÞ5Pðdi jRi 5�rkÞ
XK

j5 1

Tjk fjði� 1Þ ð10Þ

with fkð1Þ5Pðd1;R1 5�rkÞ5 pk � Pðd1jR1 5�rkÞ:

Classification of Sites: Dependent or Independent

One novel use of the D 1 I model may be in classi-
fying the dependence property at each site to either Sd or Si.
It is appealing to focus on those regions where sites are clas-
sified as independent because these areas may point at
a unique tertiary structure.

We use the maximum posterior estimator to classify
site j to Sd or Si:

PðRj 2 Si j dÞ5
XK

k5 1

pðRj 5�rk j dÞ5
XK

k5 1

fkðiÞ � bkðiÞ
pðdÞ : ð11Þ

PðRj 2 Sd j dÞ is calculated similarly, with the summation
extending fromK1 1 through 2K. Site jwill be classified as
Si if PðRj 2 Si j dÞ.PðRj 2 Sd j dÞ and to Sd otherwise.

Model Comparison

All analyses conducted in this study used the Jones-
Taylor-Thornton (JTT) model of amino acid replacement
(Jones, Taylor, and Thornton 1992). However, incorporat-
ing any of the three models into a desired nucleotide, codon,
or amino acid substitution model is a trivial extension.

The likelihood ratio test (LRT) was used in order to
test whether a specific model fitted a particular data set sig-
nificantly better than another model. The LRT is applicable
because all three models are nested: when k1 5 k2 5 0, the
D 1 I model collapses into the D model, and when q 5 0,
the D model collapses into the I model. The D 1 I model
has two additional parameters (k1 and k2) as compared with
the Dmodel. Hence, the addition of these two parameters is
statistically justified if the log-likelihood improvement is at
least 2.995 (P , 0.05; chi square with 2 degrees of free-
dom). The D model has one additional parameter (q) as
compared with the I model. Thus, the addition of this pa-
rameter is statistically justified if the log-likelihood im-
provement is at least 1.92 (P , 0.05; chi square with 1
degree of freedom). Although the models are nested, the
use of the LRT may not be justified because of boundary
problems (Anisimova, Bielawski, and Yang 2001). We thus
also used the 2nd order Akaike Information Criterion (AIC)
(Akaike 1974), defined as:

AICC 5 � 23 log L1 2p � N

N � p� 1
; ð12Þ

where p represents the number of free parameters and N
represents the number of sequences in the data set. Using
the AIC gave almost identical results as the use of the LRT.

We compared between the three models using 84 pro-
tein data sets (Aloy et al. 2001). For each data set, a phyloge-
netic tree was reconstructed using the neighbor-joining (NJ)
algorithm (Saitou andNei 1987)with pairwise distances cal-
culated using the Jukes-Cantor distance. The parameters of
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each model were optimized using the ML paradigm, and
the gamma distribution was approximated using 16
categories.

Simulation Study

Simulations were used in order to examine the accu-
racy of site-specific rate estimates under different models.
We simulated a given site with a specific ‘‘true’’ rate. An
MSA is thus generated based on a vector of true rates. Sub-
sequently, a rate for each column is inferred using the I, D,
or D 1 I models. The closer the inferred rates to the true
rates, the better the inference. For the simulations, one must
determine the true rate in each site. In order to obtain true
rates that are biologically relevant, characteristic rates were
computed based on an empirical data set of the Trypsin pro-
tein family (1sgt in table 1), with 83 sequences and 200
sites. The simulation results obtained with the three differ-
ent vectors of true rates were similar with regard to the rel-
ative accuracy of the each model (data not shown). We thus
present our results here using the true rates obtained with
the I model.

True rates, as well as inferred rates, were scaled so that
the average was set to 1. For each number of sequences
tested, a total of 20 identical and independent simulation
runs were conducted. The accuracy of inference was mea-
sured using the mean relative absolute deviations (MRAD)
distance between the simulated and true rates:

MRAD5
1

n

Xn

i5 1

jestimated ri � true rij
true ri

; ð13Þ

where M is the sequence length. The division of each ab-
solute deviation by the true rate compensates for the larger
variance in large rates and the smaller variance in low rates.

The influence of the number of sequences on the in-
ference accuracy was tested. For this purpose, N sequences
(N5 5, 10, 15, 20, 25, 30, 35, and 40) were randomly sam-
pled from the original 1sgt data set. Trees of size N were
constructed using NJ. A paired t-test was used to determine

whether the difference in rate inference was significant
between the different models.

Results
Model Comparison

When comparing the fit of the different models to bi-
ological data sets, in 82 out of 84 data sets there was a sig-
nificant improvement in the likelihood under the D model
as compared with the Imodel. In 60 out of 84 data sets there
was a significant improvement in the likelihood under the
D 1 I model as compared with the D model (table 1 con-
tains maximum log-likelihood estimates of ten such data
sets, chosen so that the number of sequences in each data
set is between 80 and 90).

Twenty of the 24 data sets that did not support the use
of the D 1 I model shared a common characteristic: these
data sets are all very small, where data set size is defined
here as the product of the sequence length and the number
of sequences. Thus, it may be hypothesized that the addition
of the parameters k1 and k2 is justified only when enough
data are available.

Parameter Estimation

The D and D 1 I models share two common param-
eters: a, indicative of rate variation, and q, which is indic-
ative of the correlation between adjacent sites. When
comparing the estimates of these two parameters under
the D and D 1 I models, an interesting pattern emerges.
In the vast majority of data sets, a inferred under D 1 I
is lower than a inferred under D (t 5 8.04, P , 10�11)
which is subsequently lower than a inferred under I (t 5
2.9, P, 0.01). The reverse pattern emerges when analyzing
q: q inferred underD1 I is higher thanq inferred underD (t5
18.15, P , 10�30). Indeed, in about two-thirds of the data
sets, q inferred under D 1 I is higher than 0.90 (as com-
pared to an average q of 0.6 under the D model in these
data sets), indicating that D 1 I managed to differentiate
between regions where the rate is highly correlated and
regions where this is not so.

Table 1
AIC Scores and Maximum Log-Likelihood Values for the Analysis of Ten Data Sets Under the I, D, and D 1 I Models

AIC Score (log likelihood)

Data Seta SLb NSc I D D 1 I P Value (D, I)d P Value (D 1 I, D)d

2ace 500 80 79,033.16 (�39,515) 78,625.99 (�39,310) 78,535.29 (�39,263) ,10�6 ,10�6

1dxy 300 81 70,862.50 (�35,430) 70,618.14 (�35,307) 70,517.18 (�35,254) ,10�6 ,10�6

1huh 200 83 40,611.32 (�20,304) 40,484.14 (�20,240) 40,458.74 (�20,225) ,10�6 0.0009
1sgt 250 83 35,441.14 (�17,719) 35,313.07 (�17,654) 35,279.47 (�17,635) ,10�6 ,10�4

6rsa 100 83 12,709.67 (�6,353) 12,709.02 (�6,352) 12,708.88 (�6,350) 0.241 0.37
1rne 300 84 44,380.77 (�22,189) 44,289.06 (�22,142) 44,253.16 (�22,122) ,10�6 ,10�4

1cle 500 85 73,896.23 (�36,947) 73,451.84 (�36,723) 73,372.73 (�36,682) ,10�6 ,10�6

1mla 300 85 74,750.24 (�37,374) 74,463.68 (�37,229) 74,439.63 (�37,215) ,10�6 0.0009
1quf 250 87 33,056.61 (�16,527) 32,896.39 (�16,446) 32,887.89 (�16,439) ,10�6 0.03
1bro 250 88 77,884.28 (�38,941) 77,545.14 (�38,770) 77,427.41 (�38,709) ,10�6 ,10�6

NOTE.—Values are shown in bold type if the AIC (LRT) score between the D 1 I versus D or D versus I is lower (significant: P , 0.05).
a Data sets are referred to by their Protein Databank (Berman et al. 2000) ID.
b Sequence length.
c Number of sequences.
d P value between log-likelihood values of D (D 1 I) and I (D) models following LRT.
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Simulation Results

Acomparison between the accuracy of site-specific rate
inference as a function of the number of sequences under the
D and D1 I models is shown in figure 4. The difference in
accuracy between the D and the D1 Imodels is highly sig-
nificant (P, 10�4), as is the difference between the I and the
D models (P , 0.01). For a given model, the simulations
show that the accuracy increases as the number of sequences
increases. This finding is expected because more data are
available at each site for rate inference. This accuracy con-
verges when the number of sequences exceeds 30.

Next, we compared the likelihood scores between the
different models for each simulation run (fig. 5). On aver-
age, the log-likelihood improvement is significant for the D
versus the Imodel for N� 5 and forD1 I versusD for N�
15. This may be due to the fact that the addition of two pa-
rameters in the D1 I model cannot be supported by scarce
data. In general, in both models it is evident that as the data
set size increases, so does the improvement in likelihood.

A Biological Example

Here, we focused on an in-depth analysis of a biolog-
ical example: K-channels. Such an analysis could point at
specific features of the D 1 I model that are not captured
by the I and D models. In addition, it may provide insights
as to the relation between the protein structure and function
and the predictions of the model.

K-channels function as tetramers and form transmem-
brane aqueous pores through which K1 ions can flow. K-
channels take part in many different cellular processes
including cell volume regulation, hormone secretion, and
electrical impulse formation in electrically excitable cells
(MacKinnon 2003). The most fundamental role carried
out by all K-channels is to allow selective transfer of K1

ions. The solved 3D structure of a bacterial K1-channel
(Doyle et al. 1998; Jiang et al. 2002) has clarified the mech-
anism of ion transfer across the membrane.

We used the D1 I model to study the K-channel pro-
tein family. Fifty-eight homologous sequences (Mayrose,
Mitchell, and Pupko 2005) of the channel were used in this
study. We focused on two main aspects in studying this
protein:

(1) Site-specific rate inference.

(2) Classification of each site to either a dependent rate (Sd)
or an independent rate (Si).

Site-specific rate estimates were projected onto the
3D structure (PDB 1bl8; fig. 6A). Two different color-
coding schemes were used: one for sites classified as Sd
and another for sites classified as Si. The color code di-
vides the continuous rates inferred into five bins, where
bin 1 represents the most variable sites and bin 5 the most
conserved sites.

In order to validate the use of the D 1 I in functional
prediction, the results were compared to a previous evolu-
tionary conservation study of theK-channel family (Mayrose,
Mitchell, and Pupko 2005). These results were found to be
essentially the same as the previous study, matching previ-
ous knowledge of important functional regions of the pro-
tein. The entrance to the channel, known as the selectivity
filter of the channel, is highly conserved (fig. 6A). This filter
allows only K1 ions to enter the channel and prevents
smaller Na1 ions from entering (Miller 2000). The inner
pore of the channel is lined with hydrophobic residues.
These residues are also relatively conserved, and this ena-
bles the K1 ion to travel down an inert pathway.

A valuable feature of the D 1 I model arises when
classifying sites into either Sd or Si. Excluding a region
composed of eight sites which were classified as Si, all sites
of the protein were classified to belong to the Sd category.
The rates of these sites classified as Si sites oscillated be-
tween very high and very low values. Examination of
the tertiary structure of this region showed that this region
is a hydrogen-bonded turn, which is mostly extracellular.
Interestingly, this region is uniquely defined by its compo-
sition of sites that ‘‘zigzag’’ between being buried and ex-
posed (fig. 6B). Moreover, there is a one-to-one correlation
between the oscillating pattern of the rates and oscillation in
the structure: the sites which are exposed are highly vari-
able, whereas those which are buried are highly conserved.
Thus, as previously hypothesized, the region that was clas-
sified as belonging to Si is characterized by a distinctive
tertiary structure.

Discussion

To date, the majority of evolutionary models assume
that sites evolve independently. Furthermore, even fewer
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models take into account the 3D structure of the protein.
The model which we have developed here integrates be-
tween these two factors, by trying to implicitly incorporate
the dependencies between rates in the 3D structure. This is
an attempt to reflect the spatial correlation between the
evolutionary rates as opposed to a correlation along the
linear sequence which is less realistic.

To our knowledge, our presented study is first in com-
prehensively examining the autocorrelation model (termed
D here), first presented by Yang (1995). Analysis of a wide
variety of data sets shows that taking dependence of adja-
cent rates into account has a large impact on the likelihood.
On average, there was a difference of 74 points between the
log likelihood under the Dmodel and the log likelihood un-
der the Imodel, with some data sets showing a difference of
as many as 500 points. Furthermore, the simulation studies
showed an improvement in rate inference accuracy of the D
model over the classical gamma I model. This is especially
evident when sequence data are scarce (i.e., N 5 5). The
power of the D model lies in its ability to extract more in-
formation than the Imodel from anMSA, by extracting spa-
tial information (the dependence between the sites) in
addition to the temporal information (the data in a column
of the MSA) that both models use. This is an important ad-
vantage of theDmodel as compared to other more complex
models, which are also more parameter rich. To support
such models, large data sets are required. Yet, the D model
has only two parameters and thus can be supported by less
data. To summarize, these results suggest the adequacy of
the autocorrelation model, which was mostly neglected by
evolutionary studies thus far, for most biological data.

There is a small yet highly consistent improvement of
rate inference under the D 1 I model over the D model.
Differences in rate estimates can be attributed either to re-
duced estimation bias or to reduced variance. Our results
show that the bias in all three models is the same, and
the differences in rate estimation accuracy are a result of
reduced variance in the more advanced models (see Supple-
mentary Material online). Furthermore, comparing the rate
estimates of the three models on the K-channel data shows
that the D 1 I model creates a smoothing effect in sites
classified as Sd and a reverse effect in Si sites (see Supple-
mentary Material online). The D 1 I model also shows
a consistent improvement of the likelihood throughout
the majority of the data sets. It is important to note that
the difference in likelihood is merely an underestimate
because branch lengths were not optimized in any of the
models. The estimation of branch lengths highly affects
evolutionary site-specific rate estimation (Pupko et al.
2002). Thus, it is plausible that incorporating branch length
estimation into theD andD1 Imodels would both improve
the likelihood as well as affect the estimation of the rates.
However, doing so in linear time is a highly complex task
which remains to be resolved.

Our results showed a pattern of correlation between
the model parameters a and q, where the two parameters
seem to compensate one for each other. This pattern can
be explained when examining the behavior of the parame-
ters in each model. In the D model, the inferred value of q
represents an average over all sites in the protein. In con-
trast, the q value in the D 1 I model relates only to those
regions where a correlation exists. Regions with rate

FIG. 6.—The conservation pattern of the K-channel as inferred withD1 I. Conservation scores together with classification to Sd or Si are color coded
onto the van derWaals surface of the protein. (A) The four subunits are viewed from the extracellular side. The circled area represents the region where the
sites were classified to Si. (B) One subunit only, viewed from the within the membrane. Sites classified as Si are marked in thick lines whereas the rest of the
molecule is in thin lines. Sites classified as Si zigzag between exposed (variable; light pink) and buried (conserved; bordeaux).
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independence are assigned q5 0. This leads to the assump-
tion whereby elevated a can compensate for underestima-
tion of q. Elevated levels of a represent lower rate variance,
which effectively means that most sites share a similar rate.
Thus, a contains within itself a measure of dependence be-
tween sites, although not necessarily dependence at adja-
cent sites. This leads to the elevated levels of a in the D
model, which are meant to compensate for the underesti-
mated q, and to the even higher levels of a in the I model,
where it compensates for q being effectively zero.

This is not the first time where a has been found to
compensate for another parameter. Sullivan, Swofford,
and Naylor (1999) found that underestimation of a leads
to underestimation of pinv (a parameter representing the
proportion of invariant sites) and vice versa. Similar to
Sullivan, Swofford, and Naylor (1999), we also found that
the surface of the likelihood function reaches a plateau
across the parameter space (data not shown). Thus, esti-
mates of a and q as measures of actual properties of the
protein should be treated with utmost caution, especially
when using simpler models. In such models, it is reasonable
to assume that a reflects a combination of several biological
properties and not merely the variance of rate variation
among sites.

The main strength of theD1 Imodel is revealed in the
in-depth study of the K-channel. The study shows that by
using the D 1 I model we may capture unique aspects of
a protein 3D structure. This is a novel use of evolutionary
rate inference. Currently the main, if not sole, use of evo-
lutionary rates is as predictors of the functional importance
of the sites. Here we use evolutionary rates, or rather the
relations between the rates, in order to study other charac-
teristics of the protein. It is tempting to consider the use of
this model for predicting structure-related features of pro-
teins, namely, features that exhibit a cyclic behavior of the
sites—such as beta sheets, alpha helices, and buried-
exposed relations. In order to do so, a finer understanding
of the distribution of rates throughout the tertiary structure
is still required.

Although the D 1 I and the D models show a large
improvement in the fit of data sets, a more complex model
is still required to explicitly describe the correlation pattern
within the 3D structure of proteins. Such a model would
have to abandon the classical approach of treating the pro-
tein as a linear molecule, and use a general graphical model
to describe the relations between the amino acids. In fact,
several studies have been published lately which attempt to
take into account dependencies of sites along the tertiary
structure. One approach involves using a 3D window for
detecting selection forces operating on the protein (Suzuki
2004; Berglund et al. 2005). In another approach, the sub-
stitution model is constructed so that it takes into account
context dependence in the tertiary structure (Robinson et al.
2003; Siepel and Haussler 2004; Rodrigue et al. 2005;
Wang and Pollock 2005). It has been shown (Wang and
Pollock 2005) that coevolution of sites is highly dependent
on the tertiary structure of the protein. Thus, models that
account for dependence within the tertiary structure will
be able to aid us in the understanding of the mechanism
of coevolution. In fact, because protein function is defined
by the tertiary structure and by the complex relations be-

tween amino acids, it is likely that models which better
express this relationship will highly advance our under-
standing of proteins and their evolution.

Supplementary Materials

Supplementary materials are available at Molecular
Biology andEvolution online (http://www.mbe.oxfordjournals.
org/).
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Appendix A

Calculation of the likelihood under theDmodel is pre-
sented. A similar calculation applies for the D 1 I model,
with the summation extending from 1 through 2K states.

L5PðdÞ5
XK
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