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Natural language processing
approach to model the
secretion signal of
type III effectors

Naama Wagner1†, Michael Alburquerque1†, Noa Ecker1,
Edo Dotan1, Ben Zerah1, Michelle Mendonca Pena2,
Neha Potnis2 and Tal Pupko1*

1The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life
Sciences, Tel Aviv University, Tel Aviv, Israel, 2Department of Entomology and Plant Pathology,
Auburn University, Auburn, AL, United States
Type III effectors are proteins injected by Gram-negative bacteria into

eukaryotic hosts. In many plant and animal pathogens, these effectors

manipulate host cellular processes to the benefit of the bacteria. Type III

effectors are secreted by a type III secretion system that must “classify” each

bacterial protein into one of two categories, either the protein should be

translocated or not. It was previously shown that type III effectors have a

secretion signal within their N-terminus, however, despite numerous efforts,

the exact biochemical identity of this secretion signal is generally unknown.

Computational characterization of the secretion signal is important for the

identification of novel effectors and for better understanding the molecular

translocation mechanism. In this work we developed novel machine-learning

algorithms for characterizing the secretion signal in both plant and animal

pathogens. Specifically, we represented each protein as a vector in high-

dimensional space using Facebook’s protein language model. Classification

algorithms were next used to separate effectors from non-effector proteins.

We subsequently curated a benchmark dataset of hundreds of effectors and

thousands of non-effector proteins. We showed that on this curated dataset,

our novel approach yielded substantially better classification accuracy

compared to previously developed methodologies. We have also tested the

hypothesis that plant and animal pathogen effectors are characterized by

different secretion signals. Finally, we integrated the novel approach in

Effectidor, a web-server for predicting type III effector proteins, leading to a

more accurate classification of effectors from non-effectors.
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type III secretion system, secretion signal, machine learning, natural language
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1 Introduction

A large number of plant and animal bacterial pathogens use

Type III Secretion Systems (T3SS), Type IV Secretion Systems

(T4SS), and Type VI Secretion Systems (T6SS), to translocate

bacterial proteins called effectors into host cells, thus promoting

their pathogenicity (Green and Mecsas, 2016). While proteins

encoding the secretion apparatus are relatively conserved among

different bacterial clades, the effector repertoire is highly

variable, even among closely related strains of the same species

(Groisman and Ochman, 1996). Furthermore, experimental

validation of putative effectors is both labor intensive and

costly, motivating the development of bioinformatic

algorithms for effector prediction. Detecting the complete

repertoire of effectors encoded in a given pathogenic bacterial

genome is a critical first step to elucidate the molecular

mechanisms involved in the host-pathogen interactions.

Over a decade ago, others and we were the first to formulate

the problem of effector identification as a machine-learning

(ML) classification problem (Arnold et al., 2009; Burstein

et al., 2009; Löwer and Schneider, 2009; Samudrala et al.,

2009). Since then, numerous ML approaches have been

applied to predict effectors for T3SS, T4SS and T6SS, for

various animal and plant pathogenic bacteria (Yang et al.,

2010; Niemann et al., 2011; Sato et al., 2011; Yang, 2012; Dong

et al., 2013; Zou et al., 2013; Lifshitz et al., 2014; Burstein et al.,

2015; Burstein et al., 2016; Hobbs et al., 2016; Teper et al., 2016;

Ashari et al., 2018; Jiaweiwang et al., 2018; Nissan et al., 2018;

Jiménez-Guerrero et al., 2020; Ruano-Gallego et al., 2021;

Wagner et al., 2022).

Successful ML-based prediction relies on curated data to be

used for training and validation, i.e., a set of known effectors as

well as a set of non-effectors. Previous published work differed in

the set of sequences used for training and testing, hampering fair

comparisons among different ML classification tools. Moreover,

numerous algorithms for ML-based classification were

evaluated, including Naïve Bayes (Tay et al., 2010), Support

Vector Machine (SVM) (Yang et al., 2010; Wang et al., 2013a;

Goldberg et al., 2016), Random Forest (Yang X. et al., 2013),

LightGBM (Wang et al., 2019), and recently deep learning

approaches (Hobbs et al., 2016; Fu and Yang, 2019; Xue et al.,

2019; Jing et al., 2021). Finally, some reports considered

identifying effectors that share high sequence similarity with

previously identified effectors as a success. In contrast, others

specifically removed highly similar sequences from both train

and test data, to emphasize the ability of their algorithm to detect

novel effectors, i.e., effectors that share no sequence similarity

with previously identified effectors.

Classic ML-tools extract different sets of features from each

sequence. Common features used by many effector prediction

algorithms include: (1) GC content; (2) Amino-acid

composition of the N-terminus (see below); (3) Presence of

sequence homology to other effectors, or to non-effectors. In
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essence, the ML classification task is to provide a function from

each possible vector of features to a score, which reflects the

likelihood that this sequence encodes an effector. Finding this

function is computed based on training examples. These training

examples are labeled, i.e., we know whether each sequence in this

set encodes an effector or not. The function is then tested on

labeled data that were not used for training, to evaluate the

performance. Trained models can also be applied to unlabeled

data for the task of discovering putative novel effectors, which

are subsequently verified experimentally (Burstein et al., 2009;

Burstein et al., 2015; Teper et al., 2016; Jiménez-Guerrero et al.,

2020; Ruano-Gallego et al., 2021). However, for the purpose of

comparing the accuracy of different classification algorithms,

here we will only deal with labeled data.

Clearly, many features are highly informative for the task of

differentiating type III effectors (T3Es) from non-effectors. For

example, a common feature in ML-based T3E identification

tools is sequence similarity to eukaryotic domains. As T3Es often

interact directly with host proteins, they frequently have

domains that resemble their host proteins, both in sequence

and in structure. These domains are almost always found in

eukaryotes only (Stebbins and Galaán, 2001; Desveaux et al.,

2006; Jelenska et al., 2007; McCann and Guttman, 2008). While

such features are highly informative for the identification of

novel T3Es, it is clear that the interaction between the secretion

apparatus and the T3E is not based on the presence of an

eukaryotic domain. Extensive previous work has localized the

secretion signal of T3Es to their N-terminal region. It is of high

interest to elucidate the characteristics of this secretion signal, to

better understand the biochemical mechanism by which the

bacterial cell sorts its proteins to secreted versus non-secreted. A

better understanding of the secretion signal will also improve

ML-based methods that utilize N-terminus features as part of

their prediction.

The secretion signal of T3Es was first shown to reside in their

N-terminus by analyzing pathogenic Yersinia effectors. The N-

terminus was shown to be both essential and sufficient for

secretion. It was also shown that no clear sequence similarity

exists between the N-termini of validated effectors, suggesting that

the secretion signal is not a simple sequential motif (Michiels and

Cornelis, 1991; Sory and Cornelis, 1994). Yet, the importance of

specific amino acids for secretion was demonstrated both

computationally and experimentally. For example, extensive

mutagenesis of positions 2-9 of the Yersinia effector YopE has

clearly shown the importance of serine residues within an

amphipathic region for secretion (Lloyd et al., 2002). As stated

above, efforts to characterize the secretion signal were often part of

a more general task of developing ML algorithms for predicting

novel effector proteins. Thus, for example, both the overall amino-

acid composition within the N-terminus and the occurrence of

specific residues at specific sites were considered as features in

SIEVE, one of the first ML tools for predicting T3Es

(Samudrala et al., 2009). Of note, in that work, different lengths
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of the N-terminal regions were considered, and it was concluded

that accounting for more than 29-31 residues from the N-

terminus does not contribute to the ability to correctly classify

effectors from non-effectors. An optimum length of 30 residues

was also concluded by Löwer and Schneider (2009). They

implemented one-hot encoding and a sliding window approach

to capture the amino-acid composition of the effectors N-termini.

Another early ML work used a reduced alphabet, and suggested

that positions 1-30 from the N-terminus were important for plant

T3Es and 1-50 for animal T3Es (Arnold et al., 2009). In that work

it was also suggested that secondary structure features had no

significant contribution to prediction. A sliding window approach

for characterizing the secretion signal was also suggested,

accounting for such factors as hydrophobicity, polarity, and the

occurrence of beta turns (Tay et al., 2010). Such an approach can

potentially capture spatial variation of the signal along the

sequence, yet it allows some flexibility with regard to the

location. In contrast to Arnold et al. (2009); Yang et al. (2010)

reported the benefit of including predicted secondary-structure

information and solvent accessibility in addition to amino-acid

composition for accurate prediction of T3Es. In that work it was

further claimed that including k-mer based features did not

contribute to prediction accuracy.

Following these initial efforts, additional representation of

the amino-acid composition, combined with various ML

algorithms and train and test data were developed (Sato et al.,

2011; Wang et al., 2011; Wang et al., 2013a; Wang et al., 2013b;

Dong et al., 2015; Goldberg et al., 2016; Hobbs et al., 2016; Cheng

et al., 2018; Fu and Yang, 2019; Wang et al., 2019; Hui et al.,

2020; Ding et al., 2021; Li J. et al., 2021; Yu et al., 2021). These

studies differed in: (1) the way the sequences of effectors and

non-effectors were encoded; (2) the selection of training and test

data; (3) the algorithms used for classification; (4) the hyper-

parameters tuning these classifiers. In addition, many of these

works included features that are not related to the secretion

signal, e.g., sequence similarity to host proteins and for plant

pathogens and the existence of regulatory elements such as the

PIP-box (Fenselau and Bonas, 1995).

In recent years, large scale pre-trained models such as BERT

(Devlin et al., 2019) and GPT (Brown et al., 2020) have allowed

for great progress in the field of NLP. Their success has led to the

adoption of large scale pre-trained models in other domains, e.g.,

in the field of computer vision (Simonyan and Zisserman, 2014).

Such pre-trained models enable the encoding of large amounts

of domain knowledge into millions of learned parameters (Han

et al., 2021). The extensive data analyzed during training should

allow capturing many nuances of the domain, which otherwise

would take experts years to discover. This approach of using

automatic features to capture a problem space, greatly differs

from classical ML approaches, which require careful extraction

of meaningful features to adequately represent the data.

Moreover, these hand-crafted features are often very task

specific, making them useless in tasks that operate on a
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different problem space. In the context of our study, the pre-

trained models were not developed in the context of T3Es. Yet,

as we demonstrate, they are useful outside the immediate context

for which they were developed. Finally, we note that the

extensive model training in such cases is done only once.

Recently Facebook’s research team created such a large-scale

pre-trained model on multiple sequence alignments (MSAs)

(Rao et al., 2021). This “MSA-transformer” was pre-trained on

a large database, 3.8TB in size, representing 28 million MSAs.

Specifically, their data contained all the protein MSAs available

in RefSeq (Li W. et al., 2021). The trained “MSA-transformer”

can transform a user input MSA (or sequence) into a high-

dimension vector, which ideally should capture the information

in this MSA. In the original paper the utility of the transformer

was demonstrated on two downstream tasks; protein contact

prediction and secondary structure prediction. On both tasks the

model accuracy was equivalent and sometimes even higher than

state-of-the-art computational tools, showing the utility of this

approach in biological domains as well.

In this work, we focused on ML-based analysis of the

secretion signal of T3Es. We aimed to compare different

methodologies to encode the secretion signal, on the same

train and test data, using the same classifiers and

hyperparameter tuning. As we aim to study the secretion

signal harnessed within the N-terminal region of T3Es, we

compared only methods that use the amino-acid sequence as

input, i.e., we did not include features such as regulation and the

presence of specific eukaryotic domains. In addition to

previously-described features, we also aimed to test the utility

of encoding the secretion signal using Natural Language

Processing (NLP) approaches, specifically using large pre-

trained models. Finally, we incorporated the optimal

characterization of the secretion signal into Effectidor, our

previously developed ML algorithm for predicting T3Es, which

uses a host of features including regulation, spatial distribution

of effectors within the genome, homology to known effectors and

to non-effectors, to name but a few (Wagner et al., 2022).
2 Materials and methods

2.1 Data

Positive and negative datasets. For preparing the positive

data, a total of 1,857 known effectors from plant and animal

pathogens were first retrieved from the Effectidor web server

(Wagner et al., 2022) at https://effectidor.tau.ac.il/T3Es_data/

T3Es.faa. These data were filtered to remove closely related

homologs by conducting a blastP search (all-against-all with

an E value cutoff of 10-4) and randomly selecting a single

representative from each connected component and by only

considering effectors of length equal or higher than 100 amino
frontiersin.org
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acids. This resulted in a total of 641 positive effectors. From this

dataset, we removed 84 Xanthomonas effectors to be served as

the positive data for the “Xanthomonas dataset”. From the

remaining effectors we randomly removed 60 effectors to serve

as the positive set for the “test dataset”. The remaining 497

effectors serve as the positive “training data”. Thus, the entire

data are comprised of three independent datasets: train data, test

data, and Xanthomonas.

To prepare the negative data we first extracted all open

reading frames (ORFs) of Escherichia coli K12 substr. MG1655.

This strain does not encode for T3SS, and hence it is assumed

that all the proteins encoded in this genome are not T3Es. To

define a negative set for the “Xanthomonas dataset”, we searched

for entries in Xanthomonas campestris strain 8004, using blastP

with an E-value cutoff of 10-4, which show significant similarity

to ORFs encoded in the E. coli strain. As stated above, as these

proteins have a homolog in an E. coli strain that does not encode

a T3SS, they are also assumed to be true negatives. The number

of negative entries in the Xanthomonas dataset was 2,300. Note,

the positive and the negative datasets are disjoint. To construct

the negative data for the training and test datasets, we initially

considered all E. coli proteins. To avoid any possible overlap

between the negatives of the train and test data and the negative

samples of the Xanthomonas data, we excluded from these data

all queries that showed significant homology with any

Xanthomonas ORF (using blastP with an E-value cutoff of 10-

4). The remaining 2,490 entries were divided to 2,244 and 246

ORFs used as negatives for the training and test datasets,

respectively. We note that the number of negative examples is

an order of magnitude higher than the positive dataset. This

situation better reflects the situation in empirical genomes, in

which the number of effectors is a small fraction of the total

number of proteins encoded within the genome.

All these datasets are available at: https://github.com/

naamawagner/T3ES_secretion_signal_analysis/tree/main/data.

Positive datasets derived from plant and animal pathogens.

The positive training and test sets were further divided to

samples derived from plant pathogens and to samples derived

from animal pathogens. This resulted in 268 and 40 samples

derived from plant pathogens in the training set and test set,

respectively, and 229 and 20 samples derived from animal

pathogens in the training set and test set, respectively.

Dataset used for Effectidor runs. To evaluate the performance of

Effectidor with and without the inclusion of the secretion signal

score, we established data that included 80 Ralstonia solanacearum

GMI1000 effectors (Peeters et al., 2013), and 2,661 non-effectors

found by Effectidor based on similarity to E. coli K12 proteins.
2.2 Features considered

The following features were considered in this work. Of note,

all these features were computed from the N-terminus of
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effectors and non-effectors. The length of the N-terminus

considered is denoted as m below. The value of m was

optimized as part of the cross-validation procedure on the

training data (10 values of m were considered: 10, 20, 30, 40,

50, 60, 70, 80, 90, 100).

2.2.1 Amino acid composition
Nine sets of features reflecting the amino acid composition

of the peptide were considered:

2.2.1.1 Euclidean distance to known effectors versus
known non-effectors based on amino-acid
composition (1 feature)

As a preprocessing step, the frequency of each of the 20 amino

acids in the entire set of known effectors was computed, and similarly

for the entire set of known non-effectors, in the training data. Let aaie
and Let aaine be the frequency of amino acid i in effectors and non-

effectors, respectively (o20
i=1 aaie  =  o20

i=1 aai ne = 1).

Similarly, let aaipeptide be the frequency of amino acid i in a given

peptide that we aim to classify (o20
i=1aa

i
peptide = 1). We next

computed the Euclidean distance between the amino acid

composition vector of the peptide and the amino acid composition

vector of the known effectors:

de(peptide) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
20

i=1
(aaipeptide − aaie)

2

s

Similarly, we computed the distance between the amino acid

composition vector of the peptide and the amino acid

composition vector of known non-effectors:

dne(peptide) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
20

i=1
(aaine − aaipeptide)

2

s

The feature we considered is the difference between these

two distances:

Feature1 = de(peptide) − dne(peptide)
2.2.1.2 Euclidean distance to known effectors and
Euclidean distance to known non-effectors (2 features)

In the description above, the considered feature is the

difference between two distances. Instead of forcing the minus

operation between these two distances, we can let the ML

classifier decide how to optimally weight the two distances.

Thus, in this approach, we consider two different features:

de(peptide) and dne(peptide).
2.2.1.3 Amino acid frequencies in peptide (20 features)

In the above descriptions, the individual amino-acid

frequencies were forced into a distance formula. Here, we

considered the 20 values of aaipeptide as separate features,

allowing the classifier to optimally weight them.
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2.2.1.4 Position-specific score matrix (1 feature).
Hyperparameter: C

In the above descriptions, the locations of the amino acids

along the peptide were ignored, i.e., shuffling the peptide

sequence would not change the value of any of the above

features. However, it is reasonable to expect that the location

within the peptide is important. Let naaij (e) and naaij (ne) be the

counts of amino acid i at position j in the set of known effectors

and the set of known non-effectors, respectively. The probability

of each amino acid at each position can be estimated by:

faaij(e) =
naaij(e)

o20
k=1naakj (e)

And similarly, for faaij(ne). This computation provides a

probability for each amino acid in each position, a data

structure called position-specific score matrix (PSSM) or

position weight matrix (PWM). It is common to add pseudo-

counts to avoid zero probabilities (Durbin et al., 1998). We thus

modify the computation of the PSSM to include a pseudo-count.

faaij(e) =
naaij(e) + C

o20
K=1(naaKj (e) + C)

In our implementation, we used C = 1.

Next, to score a peptide, let p1, p2…, pm be the amino acids

in the peptide in each of its m positions. The contribution of p1
to the score is its probability to appear in the first position,

based on the PSSM. Formally, the entire score of the peptide

when compared to the PSSM of effectors is:

PSSMScore(e) = o
m

k=1

log (faaPkk (e))

And similarity, for non-effectors:

PSSMScore(ne) = o
m

k=1

log (faaPk
k
(ne))

The feature we consider is the difference between the two

PSSM scores:

PSSMScore = PSSMScore(e) − PSSMScore(ne)
2.2.1.5 Position-specific score matrices (2 feature).
Hyperparameter: C

As in the above, it may be more informative to consider the

two PSSM scores, PSSMScore(e) and PSSMScore(ne) as two

separate features.

2.2.1.6 Position-specific score matrices per position (m
features). Hyperparameter: C

It may be more informative to consider the score of each

position as a separate feature. Thus, in this representation, we
Frontiers in Plant Science 05
consider the following m features: log (faaPjj (e)
) − log (faaPjj (ne)

) ,

where j = 1,…,m.

2.2.1.7 Position-specific score matrices per position
(2m features). Hyperparameter: C

In the above descriptions, the individual PSSM scores per

each position were combined into a single feature by a

subtraction operation. Here, we consider each score as an

individual feature, thus allowing the classifier to optimally

weight each of them. The 2m features in this case are the m

values of log (faaPjj (e)
) and the m values of log (faapjj (ne)

), where j =

1,…,m.

2.2.1.8 One-hot encoding per position (20m features)

In One-hot encoding each amino acid in each position is

represented as a binary vector of size 20, where each entry is 0 if

the amino acid is absent and 1 if present. These vectors are than

concatenated to create a 20m representation of the entire

sequence, where m is the length of the peptide. Each

coordinate of this vector is considered as a separate feature.

2.2.1.9 One-hot encoding with a sliding window (20w
features); Hyperparameter: w, l

The above algorithm can be trivially extended to overlapping

windows of size w. When using such a sliding window approach,

the entire peptide sequences is divided to overlapping windows.

The degree of overlapping is defined by the offset parameter l,

the number of characters in the left window that are not

included in the right window. In this work, we used l = 1. In

such an approach each peptide contributes several windows to

the learning (and for the testing) and each such a window is

encoded by a vector of size 20w features. In other words, the

trained classifier predicts for each sequence of length w whether

or not it is a T3E. Once a new sequence is provided, the trained

classifier predicts for each of its m-w+1 windows whether or not

it is part of a T3E. If the majority of windows are predicted to be

T3E, then the entire sequence is predicated to be T3E (Löwer

and Schneider, 2009).

2.2.2 Hidden Markov Model (1 feature)
Hidden Markov models (HMMs) are probabilistic models.

Each hidden state generates columns based on probabilities

similar to a PSSM matrix, i.e., it emits characters (in our case,

amino acids) based on a specific frequency distribution. The

entire sequence is modeled by a Markov process over the hidden

states, i.e., the sequence is represented by an ensemble of hidden

states. Here, we trained the HMMmodel using the Baum-Welch

algorithm (Rabiner, 1989), which is an expectation-

maximization (EM) algorithm that iteratively improves the

data likelihood function until convergence. The number of

hidden states was determined using a 3-fold cross-validation.
frontiersin.org
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To this end, the entire set of training data was randomly split to

three folds. The HMM model was trained on the positive

sequences of two of the folds with each possible value of

number of hidden states between 1 and 20. The obtained

HMM model for each number of hidden states was then used

to evaluate the log-likelihood of each sequence in the third fold

(both positive and negative). The performance of a classifier with

a single feature (the HMM’s log-likelihood score) was used to

evaluate the performance (using the MCC value) of each possible

number of hidden states. This was repeated three times, each

time a different fold was used for evaluation. The number of

hidden states that was selected was the one that yielded the

highest average MCC. After the number of hidden states was

determined (the optimum was 10), the HMMwas trained on the

entire set of positive training data. The score of this HMM for

each sequence in the test data was treated as a feature

for classification.

2.2.3 LSTM model
Long short-term memory (LSTM) (Hochreiter and

Schmidhuber, 1997) networks are a form of recurrent neural

networks designed to process sequential data. The data must be

segmented into tokens, and in the case of protein sequences

usually each amino acid is referred to as a token. These networks

operate on raw sequence data and learn how to represent these

data as part of their training process. LSTM networks are often

used for translation between two languages. To adapt this

translation task for classifying proteins to either T3E or non-

effector, the model was trained to translate the protein sequence

into a language that has only two words, yes and no,

corresponding to whether the sequence is a T3E or not,

respectively. Here we used an LSTM with an encoder-decoder

architecture, each having a single RNN layer with a hidden state

of size 512 from the “fairseq” Python package (Ott et al., 2019).

2.2.4 Using Facebook’s “MSA transformer” for
classification – LME (1,280 features)

Facebook’s “MSA transformer” allows to leverage a very

extensive training process to extract meaningful features from

protein sequence data (Rao et al., 2021). Facebook’s “MSA

transformer” receives as input an alignment in FASTA format

and here we used as input an “alignment” of a single sequence.

The output is a set of 1,280 weights extracted from the last (34th)

layer of the encoder. These weights are used by the neural

network to encode the sequence, and can be used as a 1,280-

dimensional feature vector.

2.2.5 Features from Hobbs et al. (17 features)
Hobbs et al. (2016) suggested a set of features that can

potentially classify effectors from non-effectors. We tested

whether the inclusion of these features improves classification

accuracy. Specifically, the following sets of amino acids are

defined: (1) Tiny: A, C, G, S, T; (2) Small: A, C, D, G, N, P, S,
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T, V, B; (3) Aliphatic: A, I, L, V; (4) Aromatic: F, H, W, Y; (5)

Polar: D, E, H, K, N, Q, R, Z; (6) Non-polar: A, C, F, G, I, L, M, P,

V, W, Y; (7) Charged: D, E, H, K, R, B, Z; (8) Basic: H, K, R; (9)

Acidic: D, E, B, Z. Each such a set defines a single feature, which

is the fraction of positions in which one of the amino acids in the

set is present. These features were implemented in Python.

The following features were implemented using the

Biopython package “ProteinAnalysis”: (10) “Charge”, which

measured the total charge of the peptide (in pH = 7); (11)

A280 molar extinction coefficient, which predicts the light

absorbance of the protein in 280 nm; (12) Isoelectric point;

(13) Instability index; (14) Aliphatic index; (15) GRAVY Score;

(16) Molecular weight. (17) “Probability of expression in

inclusion bodies (PEPIB)”, which was implemented in Python

based on Ahuja et al. (2006).
2.3 ML model

Protein sequences were classified to either effectors or non-

effectors using LightGBM, a decision-tree classifier with gradient

boosting (Ke et al., 2017), as implemented in the Python package

lightgbm. The following LightGBM hyperparameters were

optimized using ten-fold cross validation on the train data:

type of boosting algorithm (‘gbdt’, ‘dart’, ‘rf’, ‘goss’), number

of leaves in each tree (10, 30, 50, 100, 200), tree depth (10, 100,

1,000, infinite), learning rate (0.1, 0.05, 0.005), number of tree

estimators (10, 50, 100, 200, 1,000), alpha (0, 0.5, 1, 3, 10, 100),

lambda (0, 0.5, 1.5, 3, 100, 500, 1,000, 1,200), and is-balanced

(True/False). The is-balanced hyperparameter controls weights

assigned to each class (in our case, effectors versus non-

effectors), and may be highly important for unbalanced datasets.
2.4 Performance evaluation methods

Several scoring methods were used to evaluate performance.

As the data are unbalanced, i.e., the number of negative samples

is an order of magnitude higher than the number of positive

samples, traditional scoring methods such as accuracy or the

Area Under the Curve (AUC) are not well suited. Instead, the

Area Under the Precision-Recall Curve (AUPRC) and

Matthew’s Correlation Coefficient (MCC) are more suitable for

unbalanced data. While the AUPRC score is used for

probabilistic predictions, the MCC score is used for binary

predictions, and is calculated with the following formula:

MCC =
TN � TP − FN � FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP + FP)(TP + FN)(TN + FP)(TN + FN
p

)

Where TN (True Negative) is the number of non-effectors

correctly classified as non-effectors, TP (True Positive) is the

number of effectors correctly classified as effectors, FN (False

Negative) is the number of effectors misclassified as non-
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effectors, and FP (False Positive) is the number of non-effectors

misclassified as effectors. In cases where the AUPRC was

impossible to compute, i.e., in deterministic prediction rather

than a probabilistic one, the F1 score was used. The F1 score is

calculated using the following formula:

F1 =
2� precision� recall
precision + recall

While precision and recall are given in the following

formulas:

precision =
TP

TP + FP
, recall =

TP
TP + FN
2.5 Integrating the signal score into the
Effectidor web server

Our results below show that the LME model (1,280 features)

together with the 17 features from Hobbs et al. (2016), provides the

best classifier based on the secretion signal. We term the lightGBM

classifier, which was trained on the entire data based on these

features, “trained LME”. The hyperparameters of this model were

the same as those found to yield the best performance using cross

validation on the training data. This trained LME model provides

for each possible protein a score that reflects its propensity to harbor

a type III secretion signal within its 100 N-terminal positions. This

score was added as an optional feature within the Effectidor web

server (Wagner et al., 2022).

An overview of the entire pipeline implemented in this work

is available in Figure 1.
3 Results

3.1 Performance of all algorithms

We have implemented three new ML-based approaches to

model the secretion signal of T3Es: LME, LSTM, and HMM (see

Methods). Our results clearly show that on both testing data, the

accuracy is highest for LME, and lowest for HMM (Table 1). The

LME accuracy was highest when all 100 amino acid residues of

the N-terminus were considered (Figure 2). In all three methods,

the accuracy was higher for the test dataset compared to the

Xanthomonas dataset (for the LME methodology, the MCC and

AUPRC were 0.81 and 0.88 for the test dataset, respectively, and

0.71 and 0.77 for the Xanthomonas datasets, respectively).

We then compared these methods to nine alternative

methods to model the secretion signal (Table 2). The best of

these methods performed substantially poorer compared to the

LME method (Figure 2). For the test dataset, the highest

accuracy among these nine methods was obtained using the 20

amino acid frequencies as features, yielding an MCC and
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AUPRC values of 0.65 and 0.71, respectively. For the

Xanthomonas dataset, the best performing method was

position-specific score matrices per position (m features), with

an associated MCC and AUPRC values of 0.45 and 0.5,

respectively. These results clearly show that our proposed

novel LME methodology is well suited for modeling the

secretion signals of T3Es.
3.2 Testing feature combinations

We next tested the hypothesis that the LME method can be

further improved by integrating several features. As the various

models for amino-acid composition (see section 2.2.1) are very

similar, for the combination analysis we selected the best

performing method among them, i.e., amino-acid frequencies.

We tested seven combinations of feature groups. Results on the

test dataset as well as the Xanthomonas dataset show that

combining different groups of features had a marginal impact

on accuracy: on the test dataset, the best performing

combination increased the MCC and AUPRC scores from 0.81

and 0.88 to 0.83 and 0.91, respectively. On the Xanthomonas

dataset, the MCC and AUPRC scores were improved from 0.71

and 0.77 to 0.72 and 0.87, respectively (Table 3). We conclude

that the major improvement in modeling the secretion signal

stems from the proposed LME method.
FIGURE 1

Overview of the pipeline implemented in this work. The input for
the feature extraction are the N-terminal protein sequences,
{F1,..., F5} represent different features, and the input to the model
training and evaluation are the vectorial representations of the
protein samples, as represented by the features.
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3.3 Performance when applied separately
to plant/animal associated
bacterial effectors

The different results on the test and the Xanthomonas datasets

led us to hypothesize that plants and animal bacterial pathogens
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may have different type III secretion signals. To test this hypothesis,

we further divided our training and testing data to samples derived

from plant pathogens and from animal pathogens (see Methods).

We then evaluated the models trained on the different training sets,

on the following test sets: T3Es derived from animal pathogens,

T3Es derived from plant pathogens, T3Es derived from both plant
TABLE 1 The performance of the three methods proposed in this work. MCC and AUPRC (in parenthesis) on the test datasets (“test dataset” and
“Xanthomonas dataset”).

Hidden Markov Model LSTM LME

Test dataset 0.43 (0.4) 0.63 (0.7) 0.81 (0.88)

Xanthomonas dataset 0.12 (0.05) 0.37 (0.44) 0.71 (0.77)
fron
On the LSTM methods, instead of AUPRC, the F1 score is given, as it was a deterministic prediction. These results were obtained by analyzing the 100 N-terminal amino acids. In bold are
the best scores for each of the test datasets.
A

B

FIGURE 2

MCC (A) and AUPRC (B) of the different methods as a function of the N-terminal length. Scores are the mean scores of 10-fold Cross-Validation
on the training data.
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and animal pathogens, and T3Es derived from Xanthomonas. Our

results show that predicting T3Es from animal pathogens is best

achieved by training the model on animal-derived T3Es, and

similarly for plant pathogens (Table 4). Furthermore, as expected,

the best predictor for Xanthomonas T3Es is the model trained on

the T3Es from the plant pathogens. These results suggest that the

secretion signal of animals and plants are different to some extent.

In the above results, we compared plant versus animal

models that were trained on the same number of effectors. We

next asked whether the plant-based model can benefit from the

inclusion of animal T3Es and similarly, whether the animal-

based model can benefit from the inclusion of plant T3Es. Our

results clearly show that the accuracy is increased when the

largest number of positive samples is considered (Table 4). These

results suggest that despite evidential differences between

secretion signals of plant and animal pathogens, a model

extracting information from all known effectors better captures

the secretion signals, compared to a more specialized model

trained on a smaller number of effectors.
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3.4 Integrating the secretion signal
feature into the Effectidor web server
and running example on Ralstonia
solanacearum GMI1000

We next tested the effect of integrating the secretion

signal score based on the LME model and the Hobbs et al.

(2016) features on the performance of Effectidor. This effect

was evaluated on the plant pathogen Ralstonia solanacearum

GMI1000. To separate training from testing data and to

mimic the applicability of Effectidor to detect T3Es in a

newly sequenced bacterium, we removed all Ralstonia

effectors from the database of known T3Es that is used

within the Effectidor web server for homology searching

(see Methods). We ran Effectidor twice, with or without the

additional feature of the signal score. To obtain the signal

score for this testing case, we trained the model based on the

non-redundant T3Es data, as described in the methods,

excluding Ralstonia data.
TABLE 3 The performance of combinations of top-scoring features from each group of features.

Feature combination Test dataset Xanthomonas data

Amino acids frequencies + LME 0.81 (0.83) 0.70 (0.72)

LME + HMM 0.8 (0.8) 0.68 (0.7)

LME + Features from Hobbs et al. (2016) 0.83 (0.91) 0.72 (0.87)

Amino acids frequencies + LME + HMM 0.81 (0.81) 0.7 (0.7)

Amino acids frequencies + LME + Features from Hobbs et al. (2016) 0.8 (0.81) 0.7 (0.72)

HMM + LME + Features from Hobbs et al. (2016) 0.82 (0.85) 0.71 (0.73)

Amino acids frequencies + LME + HMM + Features from Hobbs et al. (2016) 0.82 (0.83) 0.72 (0.72)
The results were obtained on the test datasets by analyzing the 100 N-terminal amino acids. The scores are MCC and AUPRC (in parenthesis). In bold are the best scores for each of the
test datasets.
TABLE 2 The performance of alternative methods to model the secretion signal.

Test dataset Xanthomonas dataset

Euclidean distance to known T3Es versus known non-T3Es based on amino-acid composition (1 feature) 0.56 (0.6) 0.41 (0.5)

Euclidean distance to known T3Es and Euclidean distance to known non-T3Es (2 features) 0.54 (0.58) 0.32 (0.28)

Position-specific score matrix (1 feature) 0.65 (0.7) 0.34 (0.45)

Position-specific score matrices (2 features). 0.61 (0.66) 0.31 (0.4)

Position-specific score matrices, per position (20 features) 0.53 (0.59) 0.45 (0.5)

Position-specific score matrices, per position (40 features) 0.5 (0.52) 0.31 (0.42)

One-hot encoding (20m features) 0.5 (0.51) 0.24 (0.2)

One-hot encoding with a sliding window (20w features) 0.5 (0.49) 0.24 (0.3)

Amino acid frequencies in peptide (20 features) 0.65 (0.71) 0.41 (0.5)

Features from Hobbs et al. (2016) 0.61 (0.69) 0.44 (0.49)
MCC and AUPRC (in parenthesis) on the test datasets. These results were obtained by analyzing the 100 N-terminal amino acids. In bold are the best scores for each of the test datasets.
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Nine effectors were found to harbor homology to T3Es outside

Ralstonia and were considered as the positive trainingset for

Effectidor. The inclusion of the secretion signal feature

substantially increased performance: the confusion matrices are

given in Table 5. TheMCCs with and without this featurewere 0.72

and 0.65, respectively, while the AUPRC with and without this

feature were 0.94 and 0.93, respectively. The newly added feature

was found to be highly informative (Figure 3).

Using this feature alone, the achieved AUPRC and MCC were

0.79 and 0.53, respectively. Despite these low scores compared to

the scores achieved by Effectidor, only three effectors out of 80

T3Es known in this strain were misclassified as non-effectors by

this feature. Specifically, RS_RS23105 (RipAR, formerly Rip61),

RS_RS10690 (RipS6, formerly SKWP6), and RS_RS26010

(RipBM) signal scores were 0.477, 0.252, and 0.166, respectively.

The latter is reported to be present only as a pseudogene in R.

solanacearum GMI100 in the “Ralstonia T3E” dataset (https://

iant.toulouse.inra.fr/T3E) (Peeters et al., 2013). However,

classification based only on the secretion signal score led to a

high number of false-positives: 168 non-effectors were classified as

effectors, i.e., they obtained a signal score higher than 0.5
Frontiers in Plant Science 10
(Table 5). The Precision-Recall curves, of Effectidor and of the

signal feature alone, are available in Figure 4.
3.5 Interpreting the secretion signal
using attention maps

In transformer-based neural networks, a key component is

the attention mechanism (Vaswani et al., 2017). This mechanism

allows the model to learn which “words” attend to which other

“words”. In our case the attention maps provide information

regarding interactions among positions within the secretion

signal. This, in turn, allows us to better understand, for each

position within a specific sequence, which other positions are

most important for the embedding. By contrasting the average

attention matrix across all positive versus the average matrix

over all negative sequences, we reviled different interactions

among sites between T3E versus non-effectors (Figure 5). In

the positive sequences, a large number of interactions among

positions across the sequence is observed, even though there is

strong variability of amino acids in each position. In contrast,
TABLE 4 The performance of the best set of features when applied separately to animal and plant associated bacterial effectors.

A

Training data Plant test
dataset (40)

Animal test
dataset (20)

Animal + plant test
dataset (20 + 40)

Animal + plant test
dataset (20 + 20)

Xanthomonas

Animal pathogens T3Es (229) 0.63
(0.65)

0.77
(0.78)

0.69
(0.7)

0.7
(0.71)

0.44
(0.46)

Plant pathogens T3Es (229) 0.8
(0.8)

0.71
(0.7)

0.76
(0.78)

0.77
(0.76)

0.64
(0.67)

Both animal and plant pathogens
T3Es (115 + 114)

0.53
(0.54)

0.55
(0.56)

0.6
(0.63)

0.62
(0.61)

0.58
(0.58)

B

Training data Plant test
dataset (40)

Animal test
dataset (20)

Animal + plant test
dataset (20+40)

Animal + plant test
dataset (20+ 20)

Xanthomonas

Animal pathogens T3Es (229) 0.63
(0.64)

0.77
(0.76)

0.69
(0.71)

0.7
(0.71)

0.44
(0.46)

Plant pathogens T3Es (268) 0.8
(0.8)

0.71
(0.72)

0.76
(0.77)

0.77
(0.77)

0.64
(0.66)

Both animal and plant pathogens
T3Es (497)

0.86
(0.88)

0.79
(0.72)

0.83
(0.85)

0.84
(0.85)

0.72
(0.73)
(A): each training data include 229 T3Es; (B): the training data include the maximum possible T3Es from that category. In bold is the best training data for each testing data. Data sizes are in
parenthesis. The scores are MCC and AUPRC (in parenthesis).
TABLE 5 The effect of including a novel feature that quantifies the strength of the secretion signal on the performance of Effectidor.

A B C
T3Es Non-T3Es T3Es Non-T3Es T3Es Non-T3Es

Predicted T3Es 34 0 42 0 77 168

Predicted non-T3Es 46 2,661 38 2,661 3 2,493
fro
(A): without the secretion signal feature; (B): with the secretion signal feature; (C): the signal feature alone.
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when embedding the negative sequences, each position does not

attend to many other positions. This analysis shows the diffusive

nature of the type III secretion signal and warrants further

research into each of these multi-position interactions.
4 Discussion

In this study, we aimed to better characterize the secretion

signal of T3Es. We developed a novel NLP-based approach,
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using transformers that were specially derived for capturing

information in protein MSAs, and demonstrated that

classification based on this approach is more accurate than

previous approaches. All models were compared using T3Es

from various bacteria, including both plant and animal

pathogens. Finally, we integrated this feature as part of the

Effectidor web server for predicting T3Es.

The modeling of biological sequence data as a language and

the incorporation of ML tools for languages, led to many

advances in various biological domains (Rao et al., 2020; Rives
FIGURE 3

Distribution of the secretion signal score among the 2,661 non-effectors and among the 80 effectors in R. solanacearum GMI1000.
FIGURE 4

Precision-Recall Curves of predicting T3Es in R. solanacearum GMI1000 based on the secretion signal feature as a sole feature, and based on
the predictions of Effectidor, with and without the inclusion of the secretion signal feature.
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et al., 2021; Trotter et al., 2021). Naturally, the problem of

classifying proteins to either T3Es or non-effectors can also be

approached using NLP-based methodologies. The first effort in

this direction, from Fu and Yang (2019) was based on the now

classic algorithm called Word2Vec, specifically, the Skip-Gram

version with negative sampling (Mikolov et al., 2013). This

algorithm embeds each possible protein sequence in a high-

dimension space. The coordinates of this vector are used as

features in standard classification algorithms. When adapting

Word2Vec to protein sequences, each k-mer sequence is a word,

and the entire sequence is represented as multiple overlapping k-

mers. The embedding is done so that k-mers that appear

together are close to each other in the abovementioned space.

The final sequence embedding is obtained by averaging all k-mer

embeddings. To learn this embedding protein sequences in this

space, Fu and Yang (2019) analyzed a corpus of 25 million

proteins from the UNIPROT50 data.

The Word2Vec algorithm clearly advanced the field of NLP

in general. Since its publication, more advanced NLP algorithms

were developed. These algorithms enable more efficient and

accurate embedding of biological sequences. Among these

advanced algorithms is Facebook’s MSA-transformer (Rao

et al., 2021). Unlike Word2Vec, this algorithm applies large,

transformer-based language models, which were trained on the

entire RefSeq protein data. One advantage of this transformer-

based algorithm is that unlike Word2Vec, there is no need to

“parse” protein sequences into “words”, which do not appear

naturally in sequence data, i.e., the transformer-based method of

embedding allows to consider relations between amino acids

across the entire protein sequence and not only a k-mer away. Of

note, the LME approach developed here bypasses the need to

explicitly design specific features.
Frontiers in Plant Science 12
When training and testing the algorithm, it is important to

determine which proteins are included as negatives and

positives. First, we note that in most applications of ML-based

algorithms for effector identification, the input is the entire set of

proteins encoded in a given bacterial genome. In such a scenario,

we expect a few positive instances (effectors) in a sea of non-

effectors (the rest of the proteins). This motivated us to establish

a benchmark dataset that includes thousands of non-effectors.

We note that in some previous works, the set of negatives did not

well reflect this scenario. For example, in EP3 (Li J. et al., 2021),

the negative set was composed of effectors of different secretion

systems, other than T3SS. Clearly, this negative set is a biased

sample of non-T3Es. Moreover, in Bastion3 (Wang et al., 2019)

and in T3Sepp (Hui et al., 2020) the negative and positive sets

were of the same size. The negative dataset used in pEffect

(Goldberg et al., 2016) was enriched with eukaryotic proteins,

such that only 37% of the negative dataset were bacterial. Of

note, in this work, we tested the possibility of using another

bacterial genome that does not encode a secretion system to

define the negative set (Lysobacter capsici strain 55). This yielded

performance almost identical to that obtained when negatives

were defined based on the E. coli K12 genome (not shown).

Having an accurate list of positives is also important. Each T3E

assumed to be positive in this work was tested by ensuring that it

is encoded within a genome that encodes the T3SS. Using this

criterion, we discovered that erroneous T3Es were included in

previous studies. We provide both the non-redundant data that

were used in this work, and the entire data, which include

effectors with high sequence similarity, from which the non-

redundant data were derived. Finally, each effector is associated

with the pathogen from which it is derived, allowing to test the

accuracy on different taxonomic groups. Our benchmark data
A B

FIGURE 5

Attention maps of non-T3Es (A) and T3Es (B) demonstrating the effect of different positions in the amino acids sequence in the embedding
process. The lighter the color, the more significant the interaction is. In these maps, each column (j) is a position in the sequence, and each
entry (i,j) is the effect of position i on position j. The diagonal, which reflects the effect of each position on itself, was blacked out.
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are available at https://github.com/naamawagner/T3ES_

secretion_signal_analysis/tree/main/data.

The effort to classify effectors based on their secretion signal

alone, demonstrates our limited understanding of the secretion

signal, i.e., the classification accuracy is a measure of our

computational ability to characterize which proteins are

recognized and secreted by the T3SS. Our results clearly show

that despite years of progress in this field, we still do not have

sufficiently accurate models of the secretion signals, and on test

data, we still experience dozens of false positives and negatives.

Why is the classification mediocre? Several computational

explanations are possible. First, the performance may be

improved by applying more advanced algorithms on the same

data. Second, the training data may be too small and do not

capture the true variety of T3Es. Third, it could be that some

errors in the benchmark data exist, which reduces accuracy. For

example, E. coli K-12 does not have a T3SS and therefore we

assume that its proteins are not secreted. However, it is possible

that if such proteins were introduced to a bacterium with a

secretion system – they would be secreted, i.e., they are not true

negatives. In support of this hypothesis, (Wang et al. 2013b)

tested the translocation of yeast proteins that had secretion

signal features in their N-terminus in Salmonella. It was

shown that these yeast proteins were translocated, despite the

fact that yeast lacks a T3SS.

When discussing secretion of T3Es it is important to mention

the involvement of chaperones. Chaperones were shown to affect

the secretion of some T3Es while other T3Es were often found to

be unaffected by chaperones (Ernst et al., 2018). In addition,

chaperone binding sites were found to reside in the N-terminus of

effectors, but were also found to bind to regions beyond the first

100 N-terminal residues (Parsot et al., 2003). Moreover, while the

secretion apparatus and possibly the secretion signal is shared

among T3Es from both animal and plant associated bacteria, the

chaperones and their binding sites are highly variable. It is highly

possible that the secretion signal provides the main driving force

for secretion, and the chaperones fine-tune the secretion process,

e.g., by scheduling the order of secretion or by preventing their

aggregation or degradation when stored within the bacterial cell

(Parsot et al., 2003).

The challenge of computationally characterizing the

secretion signal could be of great importance to the in-silico

synthesis of new effectors. Several efforts have been done to use

Transcription Activator-Like Effectors Nucleases (TALEN)

and Transcription Activator-Like Effectors (TALE) for

manipulating gene expression and for gene editing purposes

(Yang L. et al., 2013; Gao et al., 2014). Such technological

advances may improve crop production or cure genetic

diseases. As stated by Cheng et al. (2021), TALEs have the

potential to perform better for such tasks than CRISPR/Cas9

because TALEs recognize more specific DNA segments than

the CRISPR/Cas9 system and thus they are less prone to

mistakes. Moreover, they are also encoded on a shorter DNA
Frontiers in Plant Science 13
sequence, which may facilitate their usage in various systems.

Better elucidating the secretion signal of T3Es could assist the

engineering of such secreted proteins.

As stated above, the underlying assumption in this work is

that a universal secretion signal exists that characterizes all T3Es.

In this study we have shown that learning the secretion signal

from T3Es encoded in animal-associated pathogens can be used

to identify T3Es in plant-associated pathogens and vice versa,

although a slight reduction in prediction ability was observed in

such comparisons. Given the diversity of T3SS among

pathogenic bacteria, it is highly possible that many T3Es are

clade specific. To our knowledge, translocation tests of plant-

associated T3Es in animal-associated bacteria, and vice versa,

have not been conducted in large numbers. Such experiments

have the potential to reveal how universal the secretion signal is.

In this work we explored the utility of different ways to

extract meaningful representation of sequence data in vector

space. We tested these methods for the task of identifying T3Es.

These methods can also be applied to many additional

bioinformatics tasks that rely on the analysis of protein

sequences, e.g., predicting type IV effectors (Lewis et al., 2019),

predicting fungal effectors (Sperschneider et al., 2018), protein

contact prediction (Fukuda and Tomii, 2020), and predicting

protein localization (Peabody et al., 2020).
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