
A Structural EM Algorithm for Phylogenetic Inference

Nir Friedman�

School of Computer Science & Engineering

Hebrew University

Jerusalem, 91904, Israel

nir@cs.huji.ac.il

Matan Ninio

School of Computer Science & Engineering

Hebrew University

Jerusalem, 91904, Israel

ninio@cs.huji.ac.il

Itsik Pe'er

School of Computer Science

Tel-Aviv University

Tel-Aviv, 69978, Israel

izik@math.tau.ac.il

Tal Pupko

Department of Zoology

Tel-Aviv University

Tel-Aviv, 69978, Israel

tal@kimura.tau.ac.il

Abstract

A central task in the study of evolution is the reconstruction of a phylogenetic tree from
sequences of current-day taxa. A well supported approach to tree reconstruction is by max-
imum likelihood (ML) analysis. Unfortunately, searching for the maximum likelihood tree is
computationally expensive. In this paper, we describe a new algorithm that uses Structural-EM
for learning maximum likelihood phylogenetic trees. This algorithm is similar to the standard
EM method for estimating branch lengths, except that during each iteration the tree topology
is also optimized. Our algorithm performs iterations of two steps. In the E-Step, we use the
current tree topology and branch lengths to compute expected su�cient statistics, which sum-
marize the data. In the M-Step, we search for a topology that maximizes the likelihood with
respect to these expected su�cient statistics. As we show, searching for better topologies inside
the M-step can be done e�ciently, as opposed to standard search over topologies. Successive

iterations of this procedure provably increase the likelihood. We evaluate our new algorithm on
both synthetic and real sequence data, and show that it is both dramatically faster and �nds
more plausible trees than standard search for maximum likelihood phylogenies.

�Contact author.

1 Introduction

The understanding that many biological sequences share a single common origin is fundamental to

biology. Such a set of contemporary sequences diverged from their ancestral sequence in a tree-

like fashion. Inferring this phylogenetic tree has been a major research problem since the dawn

of computational molecular biology, more than 30 years ago [3, 29]. The input data available is

usually a set of sequences, one per species. The goal is to �nd the tree that describes the true

evolutionary history of these sequences.

Many attempts have been made to formalize the distinction of the true tree into a mathematically

tractable criterion, giving rise to a variety of reconstruction algorithms. We mention a few of these

(see [11] for more details). One such criterion is accordance of the tree with observed distances

between pairs of sequences. The prominent method which uses this criterion is Neighbor Joining

(NJ) [28], in which partial trees are iteratively combined to form a larger tree, in a bottom-up

manner. A second important criterion is Maximum Parsimony . It states that substitutions are

rare, and thus calls for �nding the tree topology which implies as few substitutions as possible.

Although it is NP-hard to �nd the most parsimonious tree [6, 14], e�ective heuristics [16, 17, 18, 30]

exhibit reasonable performance in a�ordable time.

The criterion which we study is probabilistic. It builds on the view of evolution as a stochastic

process, in which characters change over time according to some predetermined probabilities. Along

each tree branch, such probabilities depend on the duration of the period that this branch represents,

i.e., the branch length. These probabilities were estimated in many studies [1, 7, 19, 20, 21, 33]. This

description of evolution in stochastic terms allows computing the likelihood of a speci�c phylogeny,

and gives rise to Maximum Likelihood (ML) methods [9]. Indeed, �nding the ML phylogenetic tree

proves superior to other methods in terms of accuracy [10]. However, speed is the major obstacle,

as we now explain.

ML reconstruction consists of two tasks. The �rst task involves branch length estimation: Given

a topology, �nd branch lengths to maximize the likelihood. This task is accomplished by itera-

tive methods such as Expectation Maximization (EM) [8, 9], or using Newton-Raphson optimiza-

tions [25]. Each iteration of these methods requires traversing all tree branches. In addition, these

methods are only guaranteed to �nd local maxima, although in practice they often recover the

global maximum [4].

The second, more challenging, ML reconstruction task is to �nd a tree topology that maximizes

the likelihood. Naive, exhaustive search of the tree space is infeasible, and also the e�ectivity of

exploring this space by heuristic paradigms, like simulated annealing [23] or genetic algorithms [24],

is hampered by the costly procedure of re-estimating branch lengths afresh for di�erent trees.

Indeed, this task is usually tackled by iterative procedures that greedily construct the desired tree.

The leading ML application is the MOLPHY software package [2]. It uses the Star Decomposition

top-down heuristic, in which an initial, star-like tree with a single internal node is iteratively

re�ned [2]. In this method, the scoring of each intermediate topology considered requires �nding

its best branch lengths. The main cost of the algorithm is due to these repeated invocations of

branch length optimization.

Our approach builds on Structural EM, the extension of the EM algorithm for learning combi-

natorial constructs [12]. As all EM-type algorithms, we use an expected value of the likelihood,

computed using su�cient statistics, which are collected from the data. The basic EM-theorem

states that improving this expected likelihood implies an increase in the likelihood itself [8]. In

contrast to standard EM or Structural EM algorithms, we do not just iterate this improvement

procedure over and over. After each iteration, which improves the expected likelihood, we employ a

modi�cation step. This novel step, which is necessary due to the nature our problem, is guaranteed

1

not to change the likelihood.

The paper is organized as follows: In Section 2 we review the framework of maximum likelihood

phylogenetic reconstruction. In Section 3 we present theoretic basis to our algorithm, which we

present in Section 4. Section 5 reports application to simulated and real data. We conclude, in

Section 6, with a discussion of related and future work.

2 Maximum Likelihood Phylogenetic Inference

We view evolution as a process involving the change (substitution) of characters into other charac-

ters. These characters are assumed to be elements of a �xed, �nite, alphabet �, which is usually

the set of 4 DNA nucleotides, 20 amino-acids, or 64 codon triplets.

A model of evolution is the distribution of substitutions along time. Such a model de�nes the

probability pa!b(t) of the character a transforming into the character b in the duration t. Such

models have been devised, for instance, by [20, 21, 33] for nucleotides, [1, 7, 19] for amino acids,

and [13] for codons. Di�erent models imply di�erent biological assumptions. However, all standard

models satisfy one major property, which is Lack of Memory -

pa!b(t+ t
0) =

X
c2�

pa!c(t)pc!b(t
0) (1)

This assumption implies that the model can be fully described by a single, j�j � j�j matrix. The

(a; b) entry in this matrix is pa!b(1). To obtain pa!b(t) for t 6= 1, just exponentiate this matrix to

the power of t, and take the (a; b) entry of the resulting matrix.

In addition to this, most models satisfy Reversibility - they assume that there is a prior distri-

bution over characters, fpag such that

papa!b(t) = pbpb!a(t) (2)

for all a; b 2 � and t � 0. This assumption essentially states that the events \a evolved into b" and

\b evolved into a" are equiprobable.

So far, we have described the evolution of a single character over time. However, phylogeny deals

with a plurality of species. Consider a set of N current day species. They are assumed to be

the descendants of a single ancestral species, their lineages having diverged during history. The

pattern, or topology of this divergence process is usually unknown, and its inference is the main

goal of this study. A hypothetic topology is represented by a tree T with N leaves, corresponding

to the contemporary species. For reversible models, this tree is undirected (and so unrooted), while

irreversible models are represented with a directed tree, with a root node. Internal nodes correspond

to events of divergence. Branches represent periods in the history of some past-time species between

those events. We label leaves by the indices 1; : : : ; N , and internal nodes byN+1; : : : ; NT . Formally,

the topology T is described by the set of its branches. We use the notation (i; j) 2 T to indicate T

having a branch between nodes i and j. We reserve the term branch for pairs of nodes in T , while

using the term edge for arbitrary pairs of nodes, not necessarily in T .

In this paper, we pay special attention to directed binary tree topologies, in which each internal

node has exactly two children, and to their undirected analogs, bifurcating topologies, in which

each internal node is adjacent to exactly three other nodes. Thus, in a bifurcating topology there

are N � 2 internal nodes, indexed N + 1; : : : ; 2N � 2, while in the binary topology, there in one

additional node (the root), and the internal nodes are indexed N + 1; : : : ; 2N � 1.

We would like to introduce the model of evolution to our phylogenetic hypothesis, T . To this

end, we also consider the duration of time that separates adjacent nodes. A parameterization of a

2

topology T is a vector t, comprising of a non-negative duration or branch length ti;j for each branch

(i; j) 2 T . The pair (T; t) constitutes a phylogenetic tree.

Based on the model of evolution, we can assign probabilistic semantics to the phylogenetic tree.

Formally, we associate with each node i a random variable Xi that describes the character at this

node. The distribution of such a variable Xi, i.e., the set fP (Xi = a)ga2� of probabilities, is

denoted by P (Xi), for short. The joint distribution P (X[1:::NT]) is de�ned as follows. We call the

root node r (for the reversible version, it can be picked arbitrarily) For each node i 6= r de�ne

its parent, �(i) to be i's neighbor which is closer to the root. (Since T is a tree, this neighbor is

uniquely de�ned.) Then the distribution P (Xi) depends only on P (X
�(i)) and t

i;�(i) � � . Hence,

the joint distribution P (X[1:::NT]) is:

P (X[1:::NT] j T; t; �) = P (Xr)
Y
i 6=r

P (Xi j X�(i); ti;�(i) � �) (3)

where P (Xr = a) = pa, P (Xi = b j X�(i) = a; ti;�(i)) = pa!b(ti;�(i)) and � is the rate of the current

position. It is fairly straightforward to show that the joint distribution P (X[1:::NT]) is invariant to

the choice of r:

P (X[1:::NT] j T; t; �) =
Y
i

P (Xi)
Y

(i;j)2T

P (Xi j Xj ; ti;j � �)

P (Xi)
(4)

Usually, we observe only the characters in the leaves 1; : : : ; N . The likelihood of a single observation

x[1:::N], given the phylogenetic hypothesis, is therefore themarginal distribution over these variables:

P (x[1:::N] j T; t; �) =
X
xN+1

: : :

X
xNT

P (x[1:::NT] j T; t � �): (5)

From a computational standpoint, we do not want to compute the marginal probability by sum-

ming over the j�jNT�N possible assignments to X[N+1:::NT]. Instead, we can exploit the structure

of the distribution, as speci�ed by Eq. 3, for e�cient computation. This is done by dynamic

programming over the set of nodes [34]. In addition, this dynamic program can also answer

marginal queries about variables, and branches. These compute the induced, aposteriori prob-

abilities P (Xi = a j x[1:::N]; T; t) and P (Xi = a;Xj = b j x[1:::N]; T; t). In Appendix A we review

this procedure, as we rely on its outputs in our algorithm. However, its precise details are not

necessary for understanding the developments below.

Our main task is recovering phylogeny from observed data. An input data set D consists of M

observations, drawn from the marginal distribution. That is, we have a sequence xi[1]; : : : ; xi[M]

of characters for each leaf Xi, and these sequences are assumed to be aligned in the following sense:

For each m, the characters in the m-th position across all species evolved from a single ancestral

character, and thus comprise a single observation drawn from the marginal distribution. We further

assume the model of evolution to be known.

We assume that di�erent positions evolve independently. This allows computing the likelihood

of the whole data set D given the phylogeny (T; t) and the rates R = f�mg, as follows:

L(T; t;R) = P (D j T; t;R) =
MY

m=1

P(x[1:::N][m] j T; t � �m) (6)

The Maximum Likelihood reconstruction task is to �nd a topology T and associated parameters

t that maximize this likelihood. The phylogenetic tree (T; t) is, in some sense, the most plausible

candidate to having generated the data.

3

3 Expected Likelihood and Counts

The likelihood of a tree is a complicated function to compute, let alone to maximize. However,

as we detail below, it can be conveniently presented in terms of frequency counts, registering co-

occurrences of characters along branches, across both the observed and ancestral sequences. These

counts are therefore su�cient statistics. Unfortunately, we can not know the ancestral sequences,

nor their counts. However, given some phylogenetic assumption (T 0
; t0), we can induce probabilities

on these sequences. Assuming (T 0
; t0) we can thus compute the expected counts, which allow

computing the expected log likelihood.

A key observation we make is that this expected likelihood can be decomposed into a sum of

local terms, one per branch, each of which being a function of only some of the expected counts.

Moreover, each term can be optimized independently of the other ones. We can thus perform an

iteration of improving the current tree (T 0
; t0). In this section, we detail the di�erent steps of these

ideas.

3.1 Complete Data

We �rst deal with a somewhat unreasonable situation, where we get to observe the ancestral

sequences, and we know the position-speci�c rates. The study of this case constitutes the basis of

later analysis.

In the complete-data scenario, our input is not only the set D = fxi[m] : 1 � i � N; 1 � m �Mg
of contemporary sequences, but also the set H = fxi[m] : N + 1 � i � 2N � 2; 1 � m � Mg of

ancestral sequences and the set R = f�m : 1 � m �Mg of positions speci�c rates .
When we observe the values of all 2N � 2 nodes for each position, the likelihood function is

Lcomplete(T; t) = P (D;H j T 0
; t0) =

Y
m

P (x[1:::2N�2][m] j T; t � �m)

Note that since in this case we do not marginalize over unobserved nodes, each P (x[1:::2N�2][m] j T; t�

�
m) term is a product of conditional probabilities. Thus, by rearranging the order of multiplications

as in Eq. 4, we can reformulate the likelihood in a more manageable form, as follows:

Proposition 3.1 Consider the frequency counts
1
Let Si;j(a; b; �) =

P
m
1fXi[m] = b;Xj[m] =

a; �
m = �g, Si;�(a;R) =

P
m
1fXi[m] = a j �mg collected from the complete data D;H;R. Then

logLcomplete(T; t) =
X

(i;j)2T

Llocal(Si;j ; ti;j) +
X
i

X
a

Si(a) log pa???

where

Llocal(Si;j; t) =
X
�

X
a;b

Si;j(a; b; �)(logpa!b(t � �)� log pb)

This formulation is motivated by the approach of Chow and Liu [5] for learning tree models.

It is important for several reasons. First, only the term which involves the weight function Llocal

depends on the topology and branch lengths. Thus, when maximizing the likelihood we can ignore

the term on the right. Second, the log-likelihood is a linear function of the counts. Finally, the

term Llocal(Si;j ; ti;j) can be optimized independently of other such terms. We de�ne a matrix W ,

with entries wi;j = maxtLlocal(Si;j; t). Then the (log-likelihood) score of a tree is simply

max
t

logLcomplete(T; t) = W (T) + constant

1For an event Y , denote by 1fY g its corresponding indicator variable.

4

where W (T) =
P

(i;j)2T wi;j . This reduces the problem of �nding the highest scoring tree, in the

case of complete data, to a combinatorial optimization problem in terms of the edge weights. This

problem is addressed in Section 4.

3.2 Expected Likelihood Score

We now return to the case where we only observe the values of the N leaves. In this case our

objective function is the likelihood according to Eq. 6. We use the notion of complete data to help

us devise an approximate likelihood function that will guide us in �nding high likelihood trees.

Assume that we are given a data set D = fxi[m] : 1 � i � N; 1 � m � Mg. Suppose we have

some candidate phylogeny (T 0
; t0). We aim at computing a function on arbitrary trees (T; t), which

is the expected value of the log-probability of the complete data. We can use expected counts based

on (T 0
; t0) to compute this expected log-likelihood of (T; t):

Q(T; t : T 0
; t0) = E[logLcomplete(T; t) j D; T

0
; t0]

=
X
m

X
�

X
x[N+1:::2N�2][m]

logP (x[1:::2N�2][m] j T; t)P (x[N+1:::2N�2][m] j x[1:::N][m]; T 0
; t0; �)P (� j x[1:::

This term is a sum over an exponential number of assignments of values to the ancestors in each

position. Before we analyze Q(T; t : T 0
; t0) further, we examine its theoretical properties.

Theorem 3.2 (based on [12]) For any T; t

Q(T; t : T 0
; t0)�Q(T 0

; t0 : T 0
; t0) � logL(T; t)� logL(T 0

; t0)

Proof: By de�nition, Q(T; t : T 0
; t0) =

P
H
P (H j D; T 0

; t0) logP (H;D j T; t). Therefore:

Q(T; t : T 0
; t0)� Q(T 0

; t0 : T 0
; t0) =

X
H

P (H j D; T 0
; t0) log

P (H;D j T; t)

P (H;D j T 0; t0)

� log
X
H

P (H j D; T 0
; t0)

P (H;D j T; t)

P (H;D j T 0; t0)

= log

P
H
P (H;D j T; t)

P (D j T 0; t0)
= logL(T; t)� logL(T 0

; t0)

where we apply Jensen's inequality in the second step. (note: We may want to change H to fH,Rg)

Theorem 3.2 implies that improving the Q score forces an improvement of the objective likelihood.

Fortunately, maximizing Q(T; t : T 0
; t0) is feasible. Recall that Llocal is a linear function of the

counts S;i;j . Thus, by linearity of expectation, we have that

Q(T; t : T 0
; t0) =

X
i

Llocal(E[Si;j j D; T
0
; t0]; ti;j) + constant

COMMENT: what is \j" here? should we not be summing over (i,j)?? Matan Thus, once we

compute the expected counts E[Si;j j D; T
0
; t0], we can optimize each Llocal(E[Si;j j D; T

0
; t0]; ti;j)

term separately, by choosing an appropriate ti;j . As in Section 3.2, we can de�ne the edge weights

wi;j to be these optimized local terms, thus allowing e�cient evaluation of the expected score

for di�erent topologies. These weights de�ne a combinatorial optimization problem, equivalent to

�nding the tree with highest (expected log-likelihood) score. We address this problem in Section 4.

5

3.3 Computing Expected Counts

Before we consider how to use the expected score in our algorithm, we address the issue of computing

expected counts. At each iteration we compute these counts for all edges, not just for branches of

the current topology T 0. Recall that

E[Si;j(a; b) j D; T; t] = E[
X
m

1fXi[m] = b;Xj[m] = ag j D; T 0
; t0]

=
X
m

P (Xi[m] = b;Xj[m] = a j x[1:::N]; T
0
; t0)

Thus, the problem of computing expected counts reduces to the problem of computing conditional

probabilities over edges. We solve that using the following observation.

Proposition 3.3 Let (T; t) be a phylogenetic tree. Assume that internal nodes i; j and k are such

that j is on the path from i to k in T
0
. Then

P (xi; xk j x[1:::N]; T
0
; t0) =

X
xj

P (xi; xj j x[1:::N]; T
0
; t0)P (xj ; xk j x[1:::N]; T

0
; t0)

P (xj j x[1:::N]; T
0; t0)

(7)

Based on this corollary we design a simple procedure of dynamic programming. We start by

computing induced probabilities P (xi; xj j x[1:::N]; T
0
; t0), for each branch (i; j) 2 T

0, using the

upward-message method described in Appendix A. Then for l = 2; : : : ; N we compute P (xi; xk j

x[1:::N]; T
0
; t0) for pairs i; k of nodes that are l branches apart, by choosing xj on the path between

them, and applying Eq. 7. After a quadratic number of such computations we would have computed

all the conditional probabilities of interest.

4 Structural EM Phylogenetic Inference

We now describe our algorithm. It is based on recent development of the Structural EM method in

learning Bayesian networks [12]. The general outline is similar to the standard EM procedure [9],

with the important exception that we optimize the topology during each EM iteration.

This algorithm proceeds in iterations. We start by choosing a tree (T 1
; t1) using, say, Neighbor-

Joining. Then we improve the tree in successive iterations. In the l-th iteration, we start with the

bifurcating tree (T l
; tl) and construct a new bifurcating tree (T l+1

; tl+1). The high level idea is to

use (T l
; tl) to de�ne the expected likelihood measure Q(T; t : T l

; tl) on trees, and then to �nd a

bifurcating tree that maximizes this expected likelihood.

4.1 Structural EM iterations

A Structural-EM iteration consists of two steps, the E-step and the M-step. We now describe these

in detail.

To de�ne the expected likelihood we need to compute expected counts:

E-Step: Compute E[Si;j(a; b) j D; T
l
; tl] for all edges (i; j), as discussed in Section 3.3.

Next, we turn to the maximizing the expected likelihood. This is done in two phases.

M-Step I: Optimize edge lengths by computing, for each edge (i; j) its best length

t
l+1
i;j

= argmaxtLlocal(E[Si;j(a; b) j D; T
l
; tl]; t), as discussed in Sections 3.1 and 3.2.

Now we have the edge lengths that maximize the expected likelihood for each tree. This is similar

to standard EM for computing branch lengths, except that we compute edge lengths also for pairs

(i; j) that are not adjacent in T
l.

6

Once we have tl+1, we can de�ne W
l+1 to be the 2N � 2 by 2N � 2 matrix fwl+1

i;j
g, where

w
l+1
i;j

= Llocal(E[Si;j(a; b) j D; T
l
; tl]; tl+1

i;j
). At this stage, by Theorem 3.2 we have that for any tree

T

if W l+1(T) � W
l+1(T l) then L(T; tl+1) � L(T l

; tl) (8)

Since we are learning bifurcating topologies, the appropriate maximization step is to construct a

bifurcating topology T l+1 with leaves 1; : : : ; N such thatW l+1(T l+1) is maximized. Unfortunately,

�nding such a topology is an intractable problem.

Theorem 4.1 Let W = (wi;j) be a 2N�2 by 2N�2 matrix of edge weights. Finding a bifurcating

topology T , whose leaves are the nodes 1; : : : ; N , such that W (T) is maximized is an NP-hard

problem.

Proof: Reduction from s-t-Hamiltonian path.

Fortunately enough, though, we have an alternative solution to this problem. Indeed, �nding

the maximum weight bifurcating topology is intractable. But as we show, we can e�ciently �nd

the maximum weighted topology. This topology is not necessarily bifurcating, however (8) still

applies to it and thus it improves the likelihood. In fact, this topology provides a lower bound

on the improvement in the likelihood. Once we have such a topology we can transform it into a

bifurcating topology T l+1. As we show, this transformation does not change the likelihood of the

tree.

Thus, we are using the following maximization step.

M-Step II:

� Construct a topology T l+1
� in that maximizes W l+1(T) under the constraint that

1; : : : ; N are leaves.

� Construct a bifurcating topology T l+1 such that L(T l+1
� ; tl+1) = L(T l+1

; tl+1).

In the next two sections we elaborate both steps.

4.2 Maximum Weighted Topology

Assume that we are given an 2N � 2 by 2N � 2 matrix of weights W . Our goal is to to �nd a

topology in which the nodes 1; : : : ; N are leaves with maximum weight. (It can have other leaves

as well.) This is the Maximum Spanning Tree problem with a slight twist that some nodes are

required to be leaves. As we now show, we can easily reduce this problem to a Maximum Spanning

Tree problem, and then apply a standard algorithm, e.g., [22].

Our transformation is motivated by ideas of Held and Karp [15] in approximating TSP using

maximum weighted spanning trees. Let W = fwi;j : i; j = 1; : : : ; 2N � 2g, and let c be a constant.

We de�ne W c to be the matrix with the following entries:

w
c

i;j
=

8><
>:

wi;j � 2c if i � N and j � N

wi;j � c if i � N or j � N , but not both

wi;j otherwise

It is easy to see that W c(T) = W (T) � c
P

N

i=1 degT (i) where deg
T
(i) is the degree of node i in

the topology T . Clearly, if T and T
0 are two topologies in which the nodes 1; : : : ; N are leaves,

then W (T) �W (T 0) = W
c(T) �W

c(T 0). Thus, the modi�ed weight matrix does not change the

comparisons between such topologies. On the other hand, if T is such that some of the nodes

1; : : : ; N are not leaves, then it is penalized by W c. Carefully choosing the constant c ensures that

such topologies have smaller weight than topologies in which 1; : : : ; N are leaves. Formally:

7

Proposition 4.2 Let W be an 2N � 2 by 2N � 2 matrix, and let c � (2N � 2) � (maxi;jwi;j �
mini;j wi;j). Then, the topology that maximizes W c(T) is such that the nodes 1; : : : ; N are leaves.

Thus, we have an algorithm of complexity O(N2 logN) for constructing the maximum weighted

topology with leaves 1; : : : ; N , as required.

4.3 Transforming a Tree to an Equivalent Bifurcating Tree

Suppose we have a phylogenetic tree (T; t) with 2N � 2 nodes, in which the nodes 1; : : : ; N are

leaves. We want to construct a bifurcating tree (T 0
; t0) that has the same likelihood. We take

advantage of the lack of memory in our models of evolution, to apply a series of likelihood-preserving

modi�cations to the tree, which we introduce in the following propositions.

Proposition 4.3 Let (T; t) be a phylogeny, and let N < j � 2N � 2g. Consider two cases:

� If deg
T
(j) = 1, then let (T 0

; t0) be equal to (T; t), except that j is removed.

� If deg
T
(j) = 2, and (i; j); (j; k) 2 T , then let (T 0

; t0) be equal to (T; t), with (i; k) replacing

(i; j); (j; k), and t0
i;k

= ti;j + ti;k

In either case, L(T; t) = L(T 0
; t0).

Proof: For the �rst case, let i be the only neighbor of j. Consider the marginal distribution as

a sum of products, as in Eq. 5. Re-order the summation indices in that equation so that xj is

innermost. By Eq. 3, each product in this sum has only one term pa!b(ti;j) involving xj . Then:

P (x[1:::N] j T; t) =
X

fxk jk 6=j;N<k�2N�2g

P (fxkjk 6= jgjT 0
; t0)

X
xj=b

pa!b(ti;j)

But
P

xj=b pa!b(ti;j) = 1, and the result follows.

The second case follows from similar arguments, using Eq. 1.

Whenever T is not bifurcating we can use Proposition 4.3 to simplify T by removing a single

node. Let T 0 be the resulting topology. Since 1; : : : ; N are leaves of T and T 0, there must be a node

i > N of T 0 whose degree is larger than 3.

Proposition 4.4 Let (T; t) be a phylogenetic tree, let i be a node with deg
T
(i) > 3, and let

i1; i2; : : : ; idegT (i)
be i's neighbors in T . Let (T 0

; t0) be a tree with a new node i
0
such that T is

equal to T 0 except that (i; i1) and (i; i2) are replaced by (i; i0); (i0; i1); (i
0
; i2), and let t0 be equal to t,

except that t
0

i;i0
= 0, t0

i0;i1
= ti;i1 , and t

0

i0;i2
= ti;i2 . Then L(T; t) = L(T 0

; t0).

Proof: For a 6= b, pa!b(ti;i0) = 0, and pa!a(ti;i0) = 1. All remaining terms in Eq. 3 remain

unchanged when switching from (T; t) to (T 0
; t0). The result follows.

As long as our tree is not bifurcating, we can alternately apply the deletion step (Proposition 4.3)

and the insertion step (Proposition 4.4), reusing the index of the deleted node for re-insertion. We

eventually end up with a bifurcating tree.

We note, that in practice, we slightly modify the insertion procedure in two respects. First, we

use a small positive duration instead of a zero branch length. This ensures that later rounds will

allow the two nodes i; i0 to di�erentiate. Second, we choose the neighbors i1; i2 carefully, rather

than arbitrarily. In the spirit of the Neighbor-Joining heuristic, we choose, among the neighbors of

i, to group the nodes i1; i2 which are closest to each other.

8

(a) [Likelihood vs. Length] (b) [Likelihood vs. #Taxa]

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

10 100 1000

lo
g-

lik
el

ih
oo

d
di

ffe
re

nc
e

pe
r

ch
ar

ac
te

r

#positions)

Training data: SEMPHY
MOLPHY

Original
Test data: SEMPHY

MOLPHY
Original

-2

-1.5

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100

lo
g-

lik
el

ih
oo

d
di

ffe
re

nc
e

pe
r

ch
ar

ac
te

r

#taxa

Training data: SEMPHY
MOLPHY

Original
Test data: SEMPHY

MOLPHY
Original

(c)[Running time vs. #Taxa]

0

200

400

600

800

1000

1200

1400

1600

1800

0 10 20 30 40 50 60 70 80 90 100

tim
e

(s
ec

)

#taxa

SEMPHY
MOLPHY

(a) Train/test likelihood as a function of

training sequence length; (b) Train/test like-

lihood as a function of number of taxa,

for SEMPHY, MOLPHY, and for the origi-

nal topology with optimized branch lengths.

The baseline is the likelihood of the original

phylogeny. (c) Average running times (on a

750 MHZ Pentium machine) for SEMPHY

runs in chart (b).

Figure 1: Summary of results from synthetic data.

5 Empirical Evaluation

We have implemented our algorithm in a program called SEMPHY. The program is written in

C++, and runs on several Unix platforms, as well as Windows.

To evaluate the performance of SEMPHY we performed comprehensive evaluation on synthetic

data sets. These data sets were generated by constructing an original phylogeny, and then sampling

from its marginal distribution. Each synthetic data set comprised of two sets of sequences: a training

set and a test set. Both sets were simulated assuming the same phylogeny. That is, both consisted

of observations drawn from the same marginal distribution, which we wish to characterize. Only

the training set has been used for inferring a phylogeny. We graded the inferred phylogenetic tree

by two �gures of merit, which are the log-likelihood values of each such set (training/test). While

the likelihood of the training set is exactly the target of ML optimization, the second �gure of merit

aims at detecting undesired e�ects of over�tting the inferred phylogeny to the data. Log-likelihoods

were normalized as follows: A baseline, which is the log-likelihood of the original phylogeny, was

subtracted from the log-likelihood of the inferred tree. The result was divided by the number of

positions.

In these tests we used MOLPHY [2] as the main reference point against which we compared

SEMPHY. For comparison, we also considered the likelihood of a tree obtained by optimizing

branch lengths for the original topology. The branch lengths for this tree are over�t, by de�nition,

and hence, this comparison provides a clue regarding the e�ects of over�tting the topology by

SEMPHY or MOLPHY.

To explore the performance of our method, we examined phylogenies of

� 48 taxa, di�erent training sequence length.

9

� Di�erent numbers of taxa, generating 100 training positions.

The size of the test-set was 1000 positions for all benchmarks. A series of 10 data sets was generated

for each such case. These phylogenies had uniform topology (whose directed analogue is a fully

binary tree), and branch lengths that are sampled from the Gamma distribution to simulate a mix

of short and potentially very long branches. The distribution parameters, � = 0:01; � = 0:067,

were chosen to �t the data of [26]. Sequences for these trees were simulated using the model of

evolution by [19].

Figure 1 summarizes the results for these tests. As we can see in charts (a) and (b), SEMPHY

clearly outperforms MOLPHY in terms of quality of solutions (both in terms of train and test

likelihood). We see that SEMPHY is close to optimal, even if sequences are only a couple of dozens

of positions long, or if the tree has dozens of leaves, In addition, we see in chart (c) that SEMPHY's

speed allows, for the �rst time, ML phylogenetic inference on a large scale.

We also applied both SEMPHY and MOLPHY to real data sets, one of nuclear lysozyme pro-

teins [26], and another of concatenated mitochondrial proteins [27]. Both data sets focused on

mammalian genes, with the exception of several outgroup species. The proteins in each data set

were aligned using CLUSTALW [31], and columns with deleted amino-acids were excluded from

the analysis. Naturally, we did not have any test set in these cases.

The lysozyme data set consists of 43 protein sequences, of length 122. SEMPHY has found a tree

for this data set, whose overall likelihood is -2892.11. MOLPHY only found a tree whose likelihood

is -2916.67.

The mitochondrial data set consists of 34 sequences, each being a concatenation of the 13 proteins

coded by mammalian mitochondria. The total length of each sequence is 3578. The log-likelihood

of the tree we obtain using SEMPHY is -70575.7, compared to -74227.9 attained by MOLPHY on

this data set. The improvement is of 1.02 on average, per position. Unfortunately, this is not the

global maximum. The tree available in the biological literature [27] tops ours by 0.012 per position.

6 Discussion

This paper presents a new approach for maximum likelihood phylogenetic reconstruction. On the

theoretic aspect, we build on existing theory of learning and inference, while on the applicative

aspect we show promising results, both on real and synthetic data. This raises many research

questions, both theoretic and practical.

Our algorithm assumes a constant rate of evolution. Recently, it was shown that the assumption

of rate heterogeneity across sites is statistically superior to the constant-rate assumption [32]. An

important extension to this work would be to incorporate this model of variable rates into our

development. This can be posed as a missing data problem where the rate of each position is

an additional unobserved variable. Our decomposition of expected log likelihood extends in a

natural manner to this case, and so the general procedure we described can be applied to the more

expressive model. Another direction for future research, is to combine the advantages of gradual

tree construction (either bottom-up, or top-down), with those of our method. A hybrid approach

may prove even faster, and more accurate than existing ones.

This paper still does not explore the power of our method in depth. More thorough examination

of its performance, and comparison to several existing methods, are in place. Furthermore, inferring

phylogeny for dozens of species should not be the �nal goal. Rather, the challenge of analyzing

hundreds of sequences, in a maximum likelihood framework, seems almost practical.

Finally, it still remains to exploit the new method for extensive biological research. Recent data

sets in molecular evolution are becoming bigger and bigger, holding the promise to resolve classical

questions about the divergence of life. Although these sets contain lots of potential information,

10

the lack of a fast and accurate inference tool stands in the way of their utilization. We hope our

maximum-likelihood based solution will support this analytic endeavor, and promote new insights.

References

[1] J. Adachi. Modeling of Molecular Evolution and Maximum Likelihood Inference of Molecular

Phylogeny. PhD thesis, The Graduate University for Advanced Studies, Hayama., 1995.

[2] J. Adachi and M. Hasegawa. Molphy version 2.3, programs for molecular phylogenetics based

on maximum likelihood. Technical report, The institute of Statistical Mathematics, Tokyo,

Japan, 1996.

[3] J. H. Camin and R. R. Sokal. A method for deducing branching sequences in phylogeny.

Evolution, 19:311{326, 1965.

[4] B. Chor, M. D. Hendy, B. R. Holland, and D. Penny. Multiple maxima of likelihood in

phylogenetic trees: an analytic approach. In Proceedings of the Fourth Annual International

Conference on Computational Molecular Biology (RECOMB 2000), pages 108{117, 2000.

[5] C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence

trees. IEEE Trans. on Info. Theory, 14:462{467, 1968.

[6] W. H. E. Day. Computationally di�cult parsimony problems in phylogenetic systematics.

Journal of Theoretical Biology, 103:429{438, 1983.

[7] M. O. Dayho�. Atlas of Protein Sequence and Structure, Volume 5, Supplement 3. National

Biomedical Research Foundation, Washington, D.C., 1978.

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data

via the EM algorithm. Journal of the Royal Statistical Society, 39:1{39, 1977.

[9] J. Felsenstein. Evolutionary trees from DNA sequences: a maximum likelihood approach.

Journal of Molecular Evolution, 17:368{376, 1981.

[10] J. Felsenstein. Phylogenies from molecular sequences: Inference and reliability. Annual Reviews

in Genetics, 22:521{565, 1988.

[11] J. Felsenstein. Inferring Phylogenies. Sinauer Associates, Sunderland, Massachusetts, 2000.

In press.

[12] N. Friedman. Learning belief networks in the presence of missing values and hidden variables. In

D. Fisher, editor, Proceedings of the Fourteenth International Conference on Machine Learning,

pages 125{133. Morgan Kaufman, San Francisco, 1997.

[13] N. Goldman and Z. Yang. A codon-based model of nucleotide substitution for protein coding

DNA sequences. Molecular Biology and Evolution, 11(5):725{736, 1994.

[14] R. L. Graham and L. R. Foulds. Unlikelihood that minimal phylogenies for a realistic biological

study can be constructed in reasonable computational time. Mathematical Biosciences, 60:133{

142, 1982.

[15] M. Held and R.M. Karp. The traveling-salesman problem and minimum spanning trees. Op-

erations Research, 18:1138{1162, 1970.

[16] M. D. Hendy and D. Penny. Branch and bound algorithms to determine minimal evolutionary

trees. Mathematical Biosciences, 59:277{290, 1982.

11

[17] D. H. Huson, S. M. Nettles, and T. J. Warnow. Disk-covering, a fast-converging method for

phylogenetic tree reconstruction. Journal of Computational Biology, 6(3{4):369{386, 1999.

[18] D. H. Huson, L. Vawter, and T. J. Warnow. Solving large scale phylogenetic problems using

DCM2. In Thomas Lengauer et al., editors, Proceedings of the Seventh International Confer-

ence on SIntelligent Systems for Molecular Biology (ISMB '99), pages 118{129. AAAI press,

1999.

[19] D. T. Jones, W. R. Taylor, and J. M. Thornton. The rapid generation of mutation data

matrices from protein sequences. Computer Applications in the Biosciences, 8:275{282, 1992.

[20] T. H. Jukes and C. R. Cantor. Evolution of protein molecules. In H. N. Munro, editor,

Mammalian protein metabolism, pages 21{132. Academic Press, 1969.

[21] M. Kimura. A simple model for estimating evolutionary rates of base substitutions through

comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16:111{120, 1980.

[22] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.

Proceedings of the American Mathematical Society, 7:48{50, 1956.

[23] P. J. M. Van Laarhoven and E. H. L. Aarts. Simulated Annealing. Kluwer, 1988.

[24] P. O. Lewis. A genetic algorithm for maximum likelihood phylogeny inference using nucleotide

sequence data. Molecular Biology and Evolution, 15(3):277{283, 1998.

[25] G. J. Olsen, H. Matsuda, R. Hagstrom, and R. Overbeek. fastDNAmL: a tool for construction

of phylogenetic trees of dna sequences using maximum likelihood. Computer Applications in

the Biosciences, 10(1):41{48, 1994.

[26] T. Pupko. Algorithmic improvements and biological applications of maximum likelihood meth-

ods of reconstruction of ancestral amino-acid sequences. PhD thesis, Tel Aviv University, Tel

Aviv, 2000.

[27] A. Reyes, C. Gissi, G. Pesole, F. M. Catzeis, and C. Saccone. where do rodents �t? evidence

from the complete mitochondrial genome of Sciurus vulgaris. Molecular Biology and Evolution,

17:979{983, 2000.

[28] N. Saitou and M. Nei. The neighbor-joining method: A new method for reconstructing phy-

logenetic trees. Molecular Biology and Evolution, 4(4):406{425, 1987.

[29] R. R. Sokal and P. H. A. Sneath. Principles of numerical taxonomy. W. H. Freeman, San

Francisco, 1963.

[30] D. L. Swo�ord. PAUP: Phylogenetic analysis using parsimony. Technical report, Smithsonian

Institution, Washington, DC., 1993.

[31] J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W: Improving the sensitivity

of progressie multiple sequence alignment through sequence weighting, position speci�c gep

penalties and weight matrix choice. Nucleic Acids Research, 22:4673{4680, 1994.

[32] Z. Yang. Maximum likelihood estimation of phylogeny from DNA sequences when substitution

rates di�er over sites. Molecular Biology and Evolution, 10:1396{1401, 1993.

[33] Z. Yang. Estimating the pattern of nucleotide substitution. Journal of Molecular Evolution,

39:105{111, 1994.

[34] Z. Yang, S. Kumar, , and M. Nei. A new method of inference of ancestral nucleotide and

amino acid sequences. Genetics, 141:1641{1650, 1995.

12

A Computation of Likelihood by Dynamic Programming

In this section we review the computation of likelihood and marginal probabilities by dynamic

programming on trees. See [34] for more details.

Consider a single observed assignment fX1 = x1; : : : ; XN = xNg, to the leaves of a bifurcating

tree (T; t). Each branch e = (i; j) 2 T , partitions the tree into two subtrees. De�ne the set S(i; j)

to include the leaves of the subtree which includes i. We inquire for the probability of the observed

characters in S(i; j) conditioned on possible assignments to Xi or Xj . More formally, for each

character a 2 �, we de�ne upward-messages as follows:

Ui!j(a) � P (fXk = xkgk2S(i;j) j Xi = a; T; t)

ui!j(a) � P (fXk = xkgk2S(i;j) j Xj = a; T; t)

We can recursively compute upward-messages, according to the following formulae:

Ui!j(a) =

(
1fxi = ag i is a leafQ

k 6=j:(k;i)2T uk!i(a) i is an internal node

ui!j(a) =
X
b

pa!b(ti;j)Ui!j(b)

The computation of these messages across the whole tree can be completed in linear time.

The upward messages allow us compute the marginal probability from the messages that reached

an arbitrary branch (i; j):

P (x[1:::N] j T; t) =
X
a

paUi!j(a)uj!i(a):

Another task of interest is computing conditional probabilities of the form P (Xi j x[1:::N]; T; t)

and P (Xi; Xj j x[1:::N]; T; t), for a branch (i; j) 2 T . Fortunately, the upward messages allow

computing these as well:

P (Xi = a j x[1:::N]; T; t) =
P (a)Ui!j(a)uj!i(a)

P (x[1:::N] j T; t)

and

P (Xi = a;Xj = b j x1; : : : ; xN ; T; t) =
P (a)Ui!j(a)pa!b(ti;j)Uj!i(b)

P (x[1:::N] j T; t)

B Adding Gamma to the rates

One variant of the model we have shown so far, assumes that the rate of substitutions is not

identical for each of the positions. The common way of dealing with this is assuming that there is

some rate � which is site speci�c, and that so Eq. 4 now becomes:

P (X[1:::NT] j T; t; �) =
Y
i

P (Xi)
Y

(i;j)2T

P (Xi j Xj ; �
_ti;j)

P (Xi)
(9)

� is assumed to be drawn from a gamma distribution with mean 1. In practice, instead of

integrating over all possible values of �, it is enoth to numerically integrate by dividing the range

into bins, and averaging the representatives from the di�erent bins:

P(X[1:::NT] j T; t) =
X
�i

P (�i) � P (X[1:::NT] j T; t; �) (10)

This is entered here without the needed explanations, so it at least be written somware safe (?).

13

B.1 up

for internal nodes

Up (n; x; �) =
Y

n2sons(n)

X
�2�

[P (x! �jt (m) � �) � Up (m;�; �)]

while for leves we get

Up (n; x; �) = 1 fx = Xi [m]g+ 1 fx =?g

B.2 down

note a down value for an node referes to the down value of it's fater directed at it.

For nodes that are not sons of the root, we have

Down (n; x; �) =
hQ

y2brather(n)

P
�2� (P (x! �jt (y) � �) � Up (y; �; �))

i
�

�
P

�2� [down] (father (n) ; �; �) � p (�! xjt (father (n) � �))

and for roots sons, we get

Down (n; x; �) =
Y

y2brather(n)

X
�2�

(P (x! �jt (y) � �) � Up (y; �; �))

B.3 exact

exact (n; x; �) is de�nes as the marginal probability of having the symbole x in node n. For nodes

that are not the root, we have that

Exact (n; x; �) =
X
�2�

Down (father (n; �; �) � up (n; x; �) � P (�! xjt (n � r)))

while for the root, it is simply equal to Up (n; x; �).

B.4 counts

Counts in the expected number of coocorences of two cahrs in a node and it's father. Counts (n; x; y; �)

is the counts for seeing x in the father of n, y in n, with the rate �. for this we have

Counts (n; x; y; �) = Up (n; y; �) �Down (n; x:�) � P (x! yjt (n � r))

14

