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ABSTRACT
Motivation: A number of proteins of known three-
dimensional (3D) structure exist, with yet unknown
function. In light of the recent progress in structure deter-
mination methodology, this number is likely to increase
rapidly. A novel method is presented here: ‘Rate4Site’,
which maps the rate of evolution among homologous pro-
teins onto the molecular surface of one of the homologues
whose 3D-structure is known. Functionally important
regions often correspond to surface patches of slowly
evolving residues.
Results: Rate4Site estimates the rate of evolution of
amino acid sites using the maximum likelihood (ML)
principle. The ML estimate of the rates considers the
topology and branch lengths of the phylogenetic tree,
as well as the underlying stochastic process. To demon-
strate its potency, we study the Src SH2 domain. Like
previously established methods, Rate4Site detected the
SH2 peptide-binding groove. Interestingly, it also detected
inter-domain interactions between the SH2 domain and
the rest of the Src protein that other methods failed to
detect.
Availability: Rate4Site can be downloaded at: http://
ashtoret.tau.ac.il/. It is implemented as a web server at:
bioinfo.tau.ac.il/ConSurf
Contact: tal@ism.ac.jp; rebell@ashtoret.tau.ac.il;
fabian@ashtoret.tau.ac.il; bental@ashtoret.tau.ac.il
Supplementary Information: Multiple sequence align-
ment of homologous SH2 domains, the corresponding
phylogenetic tree and additional examples are available at
http://ashtoret.tau.ac.il/∼rebell
Keywords: rate variation among sites; evolutionary con-
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servation; protein evolution; maximum likelihood; SH2 do-
mains.

INTRODUCTION
The rate of evolution is not constant among amino-acid
sites; some positions are highly conserved while others
vary substantially (Uzzell and Corbin, 1971; Yang, 1993).
These rate variations correspond to different levels of the
purifying selection acting on these sites. This purifying
selection can be either the result of geometrical constraints
on the folding of the protein into its three-dimensional
(3D) structure, constraints on amino-acids involved in
enzymatic activity or in ligand binding, or alternatively at
sites that take part in protein-protein interactions (Branden
and Tooze, 1999).

In this paper we are concerned with methods of iden-
tifying functionally important regions in proteins with
known 3D-structures and with many close sequence
homologues. We developed a rigorous statistical method
for infering the level of amino acid conservation at each
amino acid site, taking into account the phylogenetic
relations between the sequences as well as the stochastic
process underlying their evolution.

The underlying assumption in this and related ap-
proaches, such as the ‘Evolutionary Trace’ (ET) method
(Lichtarge et al., 1996) and ‘ConSurf’ (Armon et al.,
2001), which was based on the maximum parsimony
approach (MP-ConSurf), is that the slow evolution rate of
surface residues is the result of constraints due to binding,
e.g., to other proteins, ligands or DNA molecules. The
ET method is based on the following steps: (1) building
a phylogenetic tree from a multiple sequence alignment
using the UPGMA method; (2) using this tree to cluster
closely related sequences; (3) finding a ‘consensus’ se-
quence for each cluster, and each position; (4) comparing
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Fig. 1. A shortcoming of the maximum parsimony (MP) method.
While the conservation score in case A should be higher than in
case B, MP assigns the same conservation score to both cases.
The differences between the two cases are marked in bold italics
characters; see text for details. The tree is unrooted with 4 taxa.
All nodes are labeled: Leaves (1–4) and internal nodes (5–6). ti
are the branch lengths. Capital letters in parentheses are one-letter
abbreviations for amino acids.

the consensus sequences and assigning each position with
a status of either ‘variable’ or ‘conserved’; (5) mapping
the status of each site onto the 3D structure of the protein.
Using this method, a considerable amount of the original
data is lost during the computation of the consensus
sequences for each group. Furthermore, only the variation
among clusters is taken into account. In addition, the
conservation score is binary in nature.

A significant improvement to this method was intro-
duced in later versions of the ET method (e.g., Landgraf et
al., 1999, 2001) and in MP-ConSurf (Armon et al., 2001),
when weighting schemes were devised to better quantify
amino-acid replacements. In the MP-ConSurf algorithm,
the first step is to construct a maximum parsimony tree
from the multiple sequence alignment. The MP approach
strives to reconstruct a tree that minimizes the number
of replacements. The MP method, also reconstructs the
ancestral sequences (the characters in the internal nodes
of the phylogenetic tree; e.g., Figure 1). Thus, amino-acid
replacements are mapped onto the tree. The conservation
score is defined as the total number of replacements,
weighted by the physiochemical distance between each
pair of amino acids.

This method is better than ET in several respects: The
MP trees are more reliable than the UPGMA trees (Graur
and Li, 2000). Furthermore, by weighting the replace-
ments according to the physicochemical distances, and
averaging over all equally parsimonious reconstructions,
the algorithm takes into account the fact that amino
acids differ in frequency as well as the uncertainty of the
reconstructed ancestral sequences.

Nevertheless, this approach has several shortcomings
that are a direct outcome of the use of the MP criterion.
One such fault is demonstrated in Figure 1. MP-ConSurf
assigns conservation scores without taking branch lengths

into account. Thus, identical scores will be given in the
two similar but not identical cases described in Figures 1A
and 1B. In reality, conservation scores for the two cases
should differ because in the first example (Figure 1A) the
replacement from D to T is mapped to a short branch
(t4), while in the second (Figure 1B), it is mapped to a
long branch (t1). Long branches correspond to either a
high rate of evolution, or a long evolutionary time. Hence,
replacements are more likely to occur in long branches.
The MP method does not take this factor into account.
An additional problem with the MP approach is the use
of equally parsimonious reconstructions, for example,
assigning T , D or H in node 5 of Figure 1, requires three
replacements. In MP-ConSurf, the conservation score
is obtained by averaging over these three possibilities.
However, it is expected that T , D or H , should not
necessarily be attributed with the same probability. A
more robust approach would be to average over all 20
possible reconstructions in this node, weighted by their
probabilities, or preferably, weighted by the average of
all 202 possible reconstructions of the entire tree. (The
tree includes two internal nodes, hence 20 is raised to
the power of 2.) We present here ‘Rate4Site’: a novel
algorithm that overcomes these alleged problems using
the Maximum Likelihood (ML) method for phylogeny
(Felsenstein, 1981). The ML approach assumes an under-
lying stochastic process in describing sequence evolution.
Based on this process, amino-acid replacement probabil-
ities are computed for each branch in the phylogenetic
tree.

SYSTEM AND METHOD
Like the ET and the MP algorithm of ConSurf, the
input of our algorithm (Rate4Site) is a multiple sequence
alignment (MSA); if the input sequences are not aligned,
an MSA is automatically generated using CLUSTAL W
with default parameters (Thompson et al., 1994). Another
input is an amino-acid replacement model. For nuclear
genes, the most widely used model is the JTT model
(Jones et al., 1992). Based on this model, one can easily
compute the probability that an amino acid i will be
replaced by amino-acid j along a branch of length t .
We denote this probability by Pi j (t). The next step in
our algorithm is to reconstruct a phylogenetic tree. When
the number of sequences is less than 20, the ML method
can be used to find the most likely tree (e.g., Friedman
et al., 2002). However, when the number of sequences
is larger, one must resort to a heuristic approach, such
as the neighbor-joining (NJ) algorithm (Saitou and Nei,
1987). Both methods are regarded superior to the MP
approach for constructing phylogenetic trees (Felsenstein,
1996). We note that in many cases the phylogenetic tree is
known in advance. In such cases, the program can obtain
an input tree. Once the phylogenetic tree is constructed, a
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maximum likelihood rate is calculated for each position,
treating gaps as missing data. Computation of the roles
is the heart of our new algorithm and is described in the
Section Algorithm below. Once a score is assigned to each
of the positions, the conservation grades are mapped onto
the 3D structure, and can be visualized using GRASP
(Nicholls et al., 1991) or equivalent molecular graphics
programs.

To demonstrate the algorithm, we studied SH2 and
SH3 domains. These domains are common mediators of
inter-protein interactions and are involved in intracellular
signaling. (The SH2 results are presented below and
the SH3 results can be found at http://ashtoret.tau.ac.il/
∼rebell.)

Input sequences and trees
An excessive MSA of 233 homologous SH2 domains
generated by a method that combines sequence and
structure alignment was obtained from the Honig group
(Al-Lazikani et al., 2001); it includes remote homologues
with sequence identity as low as ∼15%. A limited MSA
of 34 Src-like SH2 domains (sequence identity of 60%
or more) was obtained using CLUSTAL W. Phylogenetic
trees consistent with each of the MSAs were computed
using the NJ algorithm. The MSAs and trees are available
at http://ashtoret.tau.ac.il/∼rebell.

The assumed stochastic process
In this study, probabilistic models based on amino acid se-
quences were used. The replacement probabilities among
amino acids were calculated using the JTT matrix (Jones
et al., 1992). We assume that different sites evolve inde-
pendently. Thus, we compute rates one site at a time. Here-
after we address the rate inference of a single site.

ALGORITHM
Among site rate variation
Consider two sequences of M positions. Suppose that the
average distance between the two sequences is l. This
means that we expect l × M replacements altogether.
How many replacements should we expect at each site?
We assume that the number of replacements is l × r [ j],
where r = r [ j] is the rate parameter for this position. Our
method finds the maximum likelihood estimate of this rate
parameter. The higher the variability of the site, the bigger
r is. Since the mean rate over all sites is l, the mean r
must be equal to one. A similar approach was also used
by Yang (1993) for modeling sequence evolution when
the rate varies among sites. However, Yang averaged rates,
whilst here we are interested in estimating a rate parameter
for each site.

Estimating the rate for a specific site
Assume that we are given the phylogenetic tree and the
stochastic process. Suppose also that the internal nodes
are labeled as in Figure 1A. Let the character assignments
in the internal nodes be {D, H}. The probability of this
assignment given a rate parameter r is:

P({D, H}, data|r) = πD × PD,D(r · t1) × PH,P(r · t2)

×PH,H (r · t3) × PD,T (r · t4)

×PD,H (r · t5) (1)

where πD is the frequency of aspartic acid (D), and
PX,Y (r · t) is the probability that amino acid X will be
replaced by amino acid Y along a branch of length t given
that the rate of the site is r . Because of the reversibility of
our Markov process, the tree could have its root anywhere
(Felsenstein, 1981); in Eq (1) we arbitrarily chose internal
node 5.

In practice, we do not have the character state assign-
ment in the internal nodes. Hence, we sum over all possi-
ble assignments X , Y of the internal nodes, and obtain:

P(data|r) =
∑

X,Y∈{Amino−acids}
πx × PX,D(r · t1)

×PY,P(r · t2) × PY,H (r · t3) × PX,T (r · t4)

×PX,Y (r · t5) (2)

The only unknown variable here is r . Given the rate r ,
the expression in (2) is calculated by a standard dynamic
programming algorithm (e.g., Felsenstein, 1981). Our
estimate of r is the maximum of (2) over all possible
rates. Thus, we have a method to evaluate the rate at each
position. We repeat this calculation for all positions in
the multiple sequence alignment. We then normalize these
rates so that the average is zero and the standard deviation
is one.

Computer program
A C++ implementation of the maximum likelihood
method described above with a JAVA-based Graphic User
Interface is available at: http://ashtoret.tau.ac.il/∼rebell

IMPLEMENTATION
The Rate4Site method for calculating amino acid con-
servation grades described above is demonstrated and
compared to the MP algorithm of ConSurf (Armon et
al., 2001) in studies of the SH2 domain. This domain
mediates protein-protein interactions in cellular signaling
cascades, and is found in many proteins, including the
Src family. SH2 domains essentially bind polypeptide
segments containing a phosphotyrosine (Gonfloni et al.,
1997; Superti-Furga et al., 1993).

The SH2 domain contains two main functional regions,
shown in Figures 2 and 3. The first is the phosphopeptide

S73



T.Pupko et al.

Fig. 2. The peptide-binding groove of the SH2 domain. The
structure of the SH2 domain in complex with the C-tail of the
tyrosine kinase domain (PDB entry 1fmk, Xu et al., 1997) and
MSA of 233 homologues were used. The conservation pattern
obtained using MP-ConSurf (A) and Rate4Site (B) is color-coded
onto the molecular surface of the domain: dark violet corresponds
to maximal conservation, white corresponds to average conservation
level and dark turquoise to maximal variability. The peptide is
shown as a balls-and-sticks model with a yellow tube tracing its
backbone. The picture was drawn using GRASP (Nicholls et al.,
1991). The domain boundaries were set to Trp148 to Pro246 (Al-
Lazikani et al., 2001).

binding-groove, which is detected as highly conserved
using both methods (Figures 2A and 2B). This region
represents the major biological role of SH2. It was also
detected using the Evolutionary Trace method, mentioned
above, and can easily be traced by visual inspection
of virtually any MSA of SH2 domains. Encouragingly,
when using Rate4Site, the peptide position makes a better
match with the conservation pattern obtained than when
using the MP-ConSurf or Evolutionary Trace methods.
(Supplementary information.)

The second significant SH2 surface is that of the
interfaces between the SH2 domain and the rest of Src.
The SH2 domain makes contacts with the SH3 domain, the
kinase domain and the SH2-kinase linker loop (Figure 3).
Here the two methods show different results, where
Rate4Site proves more powerful than MP-ConSurf in
detecting the biologically important patches. In analysis
of all 233 SH2 homologues, Rate4Site displays a patch of
conserved residues, which overlaps nicely with the SH2-
SH3 interface (Figure 3B, circled in pink). In contrast,
this interface appears to have an average conservation
grade using the MP-ConSurf (Figure 3A). Within the
context of human Src, this conserved patch contains three
hydrophobic residues, Trp148, Tyr149 and Phe150, at the
N-terminal of the SH2 domain. It has been suggested
that the residues coupling the SH2 and SH3 domain, play
a significant role in regulation of the catalytic domain
(Young et al., 2001). The SH2 and SH3 domains are
connected by the SH2-SH3 connector, which adapts their

Fig. 3. SH2 domain within the context of intact Src. The interfaces
with the SH3 and kinase domains are circled in pink and yellow, re-
spectively, and the linker loop interaction site is circled in green. (A-
B) The conservation pattern obtained using the 233 homologous se-
quences and the MP-ConSurf and Rate4Site methods, respectively.
(C-D) The conservation pattern obtained using only 34 close SH2
homologues from the Src family and the MP-ConSurf and Rate4Site
methods, respectively. The picture was drawn using GRASP and
conservation is color-coded as in Figure 2. The domain boundaries
were set to Trp148 to Pro246.

orientations to one another and couples their dynamic
fluctuations. The connector forms crucial hydrogen bonds
with the N-terminus of the SH2 domain, thus enabling
formation of a rigid linkage between the SH2 and SH3
domain. This rigid coupling of the SH2 and SH3 domains
enables regulation of Src by locking the protein into a
closed and inactive state. Simulations have shown that
flexibility in the SH2-SH3 connector mimics the effect
of activation of the protein. Furthermore, mutation studies
have shown that disrupting the water mediated interactions
formed with the highly conserved Trp148 disrupts the
regulatory interactions between the SH2 and SH3 domains
(Young et al., 2001).

The conservation pattern of 34 close SH2 homologues
from the Src family, including Src, Yes, Hck, Lck, Lyn,
Blk, Fgr, Fyn and Yrk, displays wide patches of highly
conserved residues, due to limited divergence between
the sequences. In the Rate4Site analysis (Figure 3D)
the interfaces with the kinase and SH3 domains are
highly conserved. These results are anticipated, as the Src
family is a highly conserved signaling family of proteins,
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in which coupling of the SH2 and SH3 domains and
formation of intramolecular interactions between these
and the kinase domain enables repression of Src’s catalytic
activity. This is in contrast with the results obtained in
the analysis of all 233 SH2 sequences (Figure 2B), in
which these interfaces were detected as averagely and
moderately conserved, respectively, suggesting that SH2
domains may function differently depending on whether
they comprise a Src-like or another protein.

Analysis of the same 34 Src homologues using MP-
ConSurf (Figure 3C) also detects these interfaces well,
although as opposed to Rate4Site, the high conservation
appears to expand beyond the interface boundaries.
Furthermore, the linker loop interface appears to be
variable (Figure 3C; circled in green) while Rate4Site
assigns it conservation scores slightly above the average
(Figure 3D). This is probably due to the method of
handling gapped positions (see Discussion).

DISCUSSION
We recently developed MP-ConSurf for calculating amino
acid conservation scores, based on phylogenetic recon-
struction of the evolutionary relations between sequence
homologues using the parsimonious principle (Armon et
al., 2001). Comparison has shown that MP-ConSurf is
more sensitive than previously suggested methods, e.g.,
the Evolutionary Trace method. We proposed here a novel
method, Rate4Site, for calculating conservation grades
by estimating the rate of evolution at each site using
the maximum likelihood paradigm. The comparison dis-
played sensitivity even higher than that of MP-ConSurf.
For example, it detected a patch of conserved residues
at the SH2-SH3 inter-domain interface, even when using
an MSA containing distant homologues with a sequence
identity as low as ∼15%; this region appears to be
averagely conserved using MP-ConSurf and the same
MSA (Figures 3B versus 3A; pink circles).

The main conceptual advantage of Rate4Site over MP-
ConSurf is that it takes branch lengths explicitly into ac-
count. Branch lengths correspond to the expected number
of substitutions per site. If two close sequences have a
small branch length, Rate4Site ‘expects’ fewer exchanges
between them, i.e., higher conservation. The longer the
branch length, the more divergence is ‘expected’ between
the sequences. MP-ConSurf on the other hand, weighs the
exchanges between different sequences equally, without
taking into account their branch length. Phe150, an SH2
residue from the linker loop patch, provides an example.
Examining its position in the MSA of the 233 sequences
reveals that it is conserved within the closely related se-
quences. However, in more distant sequences it diverges
mainly to His, and rarely to other residues; a few gaps ap-
pear in this position as well. In the Rate4Site analysis, it
appears conserved, yet in MP-ConSurf it is variable. Such

differences between the methods are not major, as gen-
erally residues involved in the most important biological
functions such as binding sites or active sites residues will
receive very high conservation scores in both methods.

Gaps are considered differently in Rate4Site and in
MP-ConSurf. The scoring method used in MP-ConSurf,
heavily penalizes positions exchanged with deletions.
Thus, biologically variable regions such as loops, which
contain many gapped positions, frequently appear as
excessively variable. Also, the sequence homology within
protein families is often very low at the N- and C-terminal
segments. Methods used for detecting homologous
sequences often overlook it and provide homologous
sequences that are somewhat shorter than the target se-
quence. The result is that the N- and C-terminal segments
in MSAs are overly populated with gaps and appear
extremely variable in MP-ConSurf. In contrast, Rate4Site
disregards such gapped positions and calculates the
conservation scores based only on the available data for
these positions. Such a liberal scoring scheme, in which
the conservation grade at each position is calculated
using a different number of taxa, may also not always
supply truly reliable information. Taking gapped positions
into account is problematic because it contradicts the
assumption of independency among positions. In practice,
by treating gapped positions as missing data, Rate4Site
determines the conservation score for only a subset of the
sequences.

One of the main problems in calculating conservation
grades is distinguishing between amino acids that are
conserved due to their functionality and those that appear
to be conserved due to shortness of divergence time.
This problem is pronounced when dealing with close
homologues of limited diversity. Again, Rate4Site appears
to be superior to MP-ConSurf. For example, the Rate4Site
conservation signal (Figure 3D) is less expanded than the
MP-ConSurf signal (Figure 3C) and appears to correlate
more closely with the boundaries of the inter-domain
interfaces (supplementary information). Thus, Rate4Site
appears to differentiate better between amino acids that are
conserved due to their functionality and those that appear
to be conserved due to shortness of divergence time. This
is most probably due to the incorporation of the branch
lengths in the calculations.

Multi-domain proteins are also challenging, since the
conservation signal from one domain often overrides
secondary signals from others. For example, in Src,
the dominant signal from the tyrosine kinase domain
prevents the detection of the peptide binding-grooves at
the SH2 and SH3 domains (data not shown). Thus, it
is recommended to analyse the domains composing such
proteins one at a time.

The choice of the domain boundaries is important as
changes in the MSA can produce conflicting conservation
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patterns, especially when the termini residues are of
interest. The domain boundaries are difficult to define
and in fact even their classification is questionable. For
example, the SCOP database (Murzin et al., 1995) defines
the SH2 domain from residue Glu146 to Ser248. Xu et al.
(1997, 1999) who deciphered the X-ray crystal structures
of Src (PDB entries 1fmk and 2src), defined the SH2
domain from Ile143 to Cys245, whereas the definition
in the CATH database (Orengo et al., 1997; Pearl et
al., 2000) is from Glu146 to Pro246, and in the Pfam
database (Bateman et al., 2000) from residue 148 to 230.
Analysis using the different domain boundaries yielded
contradictory conservation patterns for the inter-domain
interfaces in Src. These secondary signals appeared in
some cases conserved, and in others variable, depending
on where the sequence began (data not shown). Here we
followed a recent definition of the SH2 domain boundaries
(from Trp148 to Pro246), obtained from a combination of
multiple sequence and structural alignment (Al-Lazikani
et al., 2001).

CONCLUSION
Recently, a radically different variant of the ET approach
was developed, in which contributions from residues at
spatial proximity to each other were explicitly taken
into account (Landgraf et al., 2001). In this approach,
the rate is not inferred for a single site, but rather to
a spatial ‘environment’. In the future, we will adapt
Rate4Site to calculate the collective evolutionary rates
of such spatially proximal sites. Further improvements,
such as implementation of a superior tree building method
based on the maximum likelihood process, and different
methods of handling the gapped positions (Hein, 2001;
Holmes and Bruno, 2001; Mitchison, 1999) will be
examined.

To conclude, Rate4Site is a very accurate and sensitive
method for detecting functionally important regions in
proteins of known 3D-structure. It is likely to be useful in
the context of structural genomic effort, in which the 3D-
structures of many proteins with yet unknown function has
been determined.
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