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ABSTRACT
Motivation: In silico prediction of functional regions on protein
surfaces, i.e. sites of interaction with DNA, ligands, sub-
strates and other proteins, is of utmost importance in various
applications in the emerging fields of proteomics and struc-
tural genomics. When a sufficient number of homologs is
found, powerful prediction schemes can be based on the
observation that evolutionarily conserved regions are often
functionally important, typically, only the principal functionally
important region of the protein is detected, while second-
ary functional regions with weaker conservation signals are
overlooked. Moreover, it is challenging to unambiguously
identify the boundaries of the functional regions.
Methods: We present a new methodology, called PatchFinder,
that automatically identifies patches of conserved residues
that are located in close proximity to each other on the pro-
tein surface. PatchFinder is based on the following steps:
(1) Assignment of conservation scores to each amino acid
position on the protein surface. (2) Assignment of a score
to each putative patch, based on its likelihood to be func-
tionally important. The patch of maximum likelihood is con-
sidered to be the main functionally important region, and the
search is continued for non-overlapping patches of secondary
importance.
Results: We examined the accuracy of the method using the
IGPS enzyme, the SH2 domain and a benchmark set of 112
proteins. These examples demonstrated that PatchFinder is
capable of identifying both the main and secondary functional
patches.
Availability: The PatchFinder program is available at: http://
ashtoret.tau.ac.il/∼nimrodg/
Contact: NirB@tauex.tau.ac.il

∗To whom correspondence should be addressed.

1 INTRODUCTION
Detection of the amino acid positions that are essential for
activities, such as catalysis, protein–protein interactions or
protein–ligand interactions, is a critical step in the study of the
biological function of proteins (Lichtarge and Sowa, 2002).
This task is especially important for proteins with a known
structure and unknown function. Detection of key amino acid
positions that are functionally important is also essential for
drug design studies, for protein classification and annotation
and for evolutionary studies (Rost, 2002). This need led to
the development of a wide variety of computational methods
for the identification of functional regions (Aloyet al., 2001;
Amitai et al., 2004; del Sol Mesaet al., 2003; Friedberg and
Margalit, 2002; Jones and Thornton, 1997; Inniset al., 2004;
Ma et al., 2003; Madabushiet al., 2002; Neuvirthet al., 2004;
Panchenkoet al., 2004; Pazos and Sternberg, 2004).

Functionally important positions are often conserved, and
many methods exploit the evolutionary history of the pro-
tein and its homologs. Dean and Golding (2000) developed a
maximum likelihood (ML)-based methodology to discrimin-
ate between slowly and rapidly evolving regions of a protein.
Unlike other methods, their algorithm does not assign a con-
servation score for each amino acid position, but rather assigns
an estimated rate of evolution to a group of amino acids that
are included in a sphere of variable diameter. The strength
of their approach is the use of an explicit stochastic process
to model protein evolution. However, by considering only
spherical shapes, patches of shapes that are far from spherical
are likely to be overlooked. Furthermore, the method does
not distinguish between exposed and buried amino acid pos-
itions. Hence, the predicted functional sphere may include
some amino acid positions that are buried in the protein, and
are most probably structurally rather than functionally import-
ant. Dean and Golding further used a statistical test to check
the rate significance for each sphere, comparing it with the
rate distribution of a random population.
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Aloy et al. (2001) used a method based on Evolutionary
Trace (ET; Lichtargeet al., 1996) to assign conservation
scores to each position. The ET method uses a phylogen-
etic tree of the query protein’s family and detects residues that
show evolutionary conservation in at least a subgroup (branch)
of the tree, i.e. trace residues. Aloyet al. consider as candid-
ates for functional patches only sites with amino acids that
are polar and totally conserved (or with one ‘residue sequence
error’). This definition suffers from low sensitivity; an amino
acid position is either ‘conserved’ or not. In practice, there
are many levels of conservation, and the exclusion of posi-
tions that are not totally conserved or not polar may obscure
functional regions. Moreover, the method is very sensitive to
the choice of the homologous protein sequences that are used;
the addition of more homologs is expected to reduce the num-
ber of putative positions, thereby counter-intuitively reducing
the power of the method. Aloyet al.’s algorithm also assumes
that the shape of the patch is spherical, which may not always
be suitable.

The algorithm developed by Madabushiet al. (2002) for
the automated, structure-based prediction of functional sites
is also based on ET. A patch is defined as a collection of
spatially close trace residues. Sets of patches are detected and
a statistical test is used to assign their collective significance,
based on the likelihood to obtain at random a cluster of trace
residues of the size of the largest patch (Yaoet al., 2003).
Alternatively, the statistical significance is assigned based on
the total number of patches of the trace residues that were
found. The outcome is a set of key amino acids, some of which
are buried and presumably important for the maintenance of
the proper protein fold. Others are exposed and comprise the
various functional sites.

We have developed the Rate4Site algorithm (Pupkoet al.,
2002), which is a rigorous statistical method for inferring
the level of conservation at each amino acid position, taking
into account the phylogenetic relations between the sequences
and the stochastic process underlying their evolution. When
Rate4Site’s conservation scores are mapped onto the protein
surface, one or more surface patches formed by spatially
close and conserved residues often appear. These surface
patches are potentially important functional regions. We sub-
sequently launched the ConSurf webserver that implements
this algorithm (Glaseret al., 2003).

The automatic nature of the ConSurf server makes it easy
to use, but the interpretation of the results is subjective; there
is no stringent criterion for determining the amino acid pos-
itions that compose a conserved region. Furthermore, while
the largest and most conserved surface patch is usually eas-
ily detected by the naked eye, it might be difficult to identify
secondary functional regions that are smaller in size and/or
include residues that are less conserved, and distinguish them
from the background noise. Thus, it is essential to discrimin-
ate between a random cluster of conserved amino acids and
conserved patches that are statistically significant.

In this work, we present a novel methodology for the
automatic identification of functionally important regions in
proteins with a known 3D structure. This methodology, which
is referred to as PatchFinder, is based on three features. First,
PatchFinder permits patches of any shape and size on the
protein surface rather than limiting the patch to any pre-set
shape (e.g. sphere) around a particular amino acid. Second,
amino acid positions that are on the protein surface are distin-
guished from those that are buried in the protein core (Jones
and Thornton, 1997). This allows us to approximately distin-
guish between amino acids that are conserved due to structural
constraints (Schueler-Furman and Baker, 2003), and those
that are conserved because they are functionally important.
Third, PatchFinder assigns a probability to each inferred patch
to be functionally important, and searches for the patch with
the highest probability. Typically, this patch corresponds to
the main conservation signal, and is relatively easy to detect.
The following non-overlapping patches are associated with
lower likelihood values, and are much more difficult to detect
even though they are often biologically important.

2 ALGORITHM
PatchFinder’s input includes the 3D structure of a query pro-
tein and a multiple-sequence alignment (MSA) of the protein
and its sequence homologs.

2.1 Assignment of conservation scores
The first step in the PatchFinder algorithm is the assignment
of an evolutionary conservation score to each amino acid pos-
ition using the Rate4Site algorithm (Pupkoet al., 2002), as
implemented in the ConSurf webserver (Glaseret al., 2003).
In brief, Rate4Site produces a ML estimate of the score at each
position, based on a MSA, a phylogenetic tree and a model of
sequence evolution, e.g. JTT (Joneset al., 1992).

2.2 Identification of exposed and buried residues
In order to approximately distinguish between positions that
are conserved due to structural constraints and those that
are conserved due to their functional importance, the patch
search procedure is limited to positions that are exposed
to the solvent. Discrimination between ‘exposed’ and ‘bur-
ied’ positions is based on the solvent accessible surface area
(ASA), computed using the Surface Racer program (Tsodikov
et al., 2002). The computation is done on the 3D structure
of the query protein, using a probe sphere of radius 1.4 Å,
corresponding to a water molecule.

PatchFinder further defines a residue as ‘exposed’ if its rel-
ative accessible surface area (RSA) is greater than a fixed
value; the default is 1%. The RSA for each residue is defined
as the fraction of its ASA relative to its maximal ASA. The
maximal ASA of a residue is calculated in an extended GXG
tripeptide, where G is glycine and X is the residue in question
(Miller et al., 1987).
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2.3 Identification of patches of conserved
residues

Our algorithm aims to find the most significant primary and
secondary patches containing conserved and exposed amino
acids. The challenge is to distinguish between a random clus-
tering of a few conserved amino acids and a conserved patch
that is functionally important. Based on previous studies (Aloy
et al., 2001; Dean and Golding, 2000; Landgrafet al., 2001;
Madabushiet al., 2002; Valdar and Thornton, 2001a,b), our
intuition is that the functionality of a patch often correlates
with two main factors: the number of amino acids that com-
prise it, and their average conservation. The assumption here
is that a significant cluster of conserved residues on the pro-
tein surface is usually indicative of an evolutionary pressure
presumably to maintain function. In summary, the larger
and more conserved a patch is, the more likely it is to be
a functional region.

2.3.1 Formal definition of terms A patch is defined as a
cluster of spatially close amino acids. Clustering is based on
a default cutoff distance of 4 Å between any two heavy atoms
(Valdar and Thornton, 2001a). The patch size is defined in
terms of the number of amino acids that comprise it. We define
the conservation of the patch as the average conservation score
of its residues.

2.3.2 The overall search procedure Our objective is to
search the space of possible patches and to find the patch
with the lowest probability to occur by chance. We use the
following search procedure: we set a minimal average con-
servation (MAC) cutoff for a patch, search for the biggest
patches with an average conservation equal to or higher than
the cutoff and then compute its probability. Thus, for each
possible MAC cutoff, we obtain a candidate patch and its
probability. We finally choose the value of MAC cutoff that
results with the patch with the highest probability, or in other
words, the ML patch.

In practice, the time complexity of a complete search pro-
cedure is exponential (in sequence length) and therefore not
applicable for proteins. We used a heuristic greedy search pro-
cedure because it is much faster and results in a satisfactory
performance. The search procedure has two stages: initiation
and extension. In the initiation stage, each of the 10 residues
with the highest conservation score on the protein surface is
selected as a starting point. In the extension stage, the most
highly conserved of the neighboring residues is added to the
existing patch, and the average conservation of the new patch
is calculated. If the average conservation is higher than the
cutoff, the new residue is accepted and the extension stage is
repeated. The search procedure ends when the average con-
servation of the patch drops below the cutoff. Subsequently,
a likelihood score is assigned to each patch (see below).
Thus, for each set of possible MAC cutoffs, a list of patches
and their corresponding likelihoods are obtained. The patch

with the highest likelihood is defined as the primary (main)
patch.

2.3.3 Assigning likelihood to each conserved patch Each
of the patches that were found in the previous stage is assigned
a probability to be functional. This is achieved by shuff-
ling the conservation scores (Madabushiet al., 2002; Valdar
and Thornton, 2001a; Yaoet al., 2003) between the exposed
residues, and performing the clustering identification stage
again for each MAC cutoff. This procedure is repeatedly
carried outN times (the default is 50 000). In this way, a
distribution of patch sizes is obtained for each MAC cutoff.
The probability of obtaining a cluster of sizeX and conser-
vation scoreY equals the probability of obtaining a patch of
sizeX or more, with average conservation≥Y . This value
is approximated by measuring the frequency of patch of size
X or bigger for the same MAC cutoff used for the estimated
patch. The probability assigned to the patch would be the
complementary event.

2.3.4 Use of conservation percentiles to set the MAC cutoffs
In the search procedure described above, a patch is found for
each MAC cutoff and the patch with the highest likelihood is
selected. In PatchFinder, the MAC cutoffs are chosen based on
the distribution of the conservation scores of all the exposed
amino acids. The interval between query MAC cutoff values
is 1%. The default search was limited to the 60–100 percent-
ile interval with band size 1 (100, 99, … , 60), because our
results showed that the likelihood generally drops drastically
for percentiles<60.

In some cases, two patches are assigned to very close prob-
ability scores. It is thus also recommended to inspect over-
lapping patches that were ranked highly by the PatchFinder.
These alternative patches can serve as a ‘confidence inter-
val’ around the patch found. Patches with identical computed
likelihood (generally 100%) are ranked by theirZ-scores (i.e.
the size of the patch minus the average size divided by the
standard deviation).

2.4 Identification of secondary patches
The methodology described above yields a primary functional
patch, with a likelihood value that is often∼100%. This patch
is most likely to be the main functional region of the protein.
However, in many cases, we find that there are additional,
non-overlapping patches with high likelihood to be functional.
These patches may represent secondary functional regions.
Once the primary patch with the highest likelihood on the list
is found, we begin to search for significant patches, limiting
the search to only those residues that are not found in the
primary patch. Also at this stage, the likelihood of the patch is
determined using a random shuffling procedure, in which for
each randomization we discard the most conserved patch with
size that is equal to that of the principal patch of the previous
stage(s). This procedure is performed by the hill climbing
heuristic.
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The calculated likelihood values are used only to rank the
putative patches according to their statistical significance. In
most cases, the actual probability of the most significant patch
to be functional is reflected by its average conservation.

2.5 Final output
The final output includes up to three non-overlapping patches.
The likelihood and size of each patch, and the identities of the
residues that compose it are reported.

3 IMPLEMENTATION
The algorithm was implemented using C++ and PERL and
is available at: http://ashtoret.tau.ac.il/∼nimrodg/

3.1 Evaluation of sensitivity and specificity
We evaluated the performance of PatchFinder in terms of
sensitivity (the fraction of functional residues identified) and
specificity (the fraction of functionally important residues
identified out of the total number of residues in the patch).
For example, consider a case where the true patch was com-
posed of 9 amino acids and PatchFinder inferred a patch of
size 8, of which 7 amino acids were part of the true patch. In
such a case, the sensitivity is 7/9 and the specificity 7/8.

3.2 In-depth analysis: IGPS and the SH2 domain
The results were evaluated using previously known data and
SURFV (Sridharanet al., 1992) analysis. The gold standard
active-site residues were considered to be amino acids known
in the literature to be catalytically important, as well as those
with exposure levels that decreased by>10% when comparing
the protein chain alone to the protein–ligand complex. Similar
results were obtained where the gold standard was based on
the LIGPLOT (Wallaceet al., 1995) data.

Src was divided into domains as follows: SH2: Trp148 to
Pro246; SH3: Met82 to Glu147; Kinase: Thr247 to Glu524.
pTyr527 and the three residues following it were considered
as the phosphopeptide (Xuet al., 1997).

Conservation analysis for IGPS was carried out using an
MSA of 153 homologs from the HSSP database (Sander and
Schneider, 1991). For the SH2 domain, an MSA of residues
Trp148 to Pro246 was used (Pupkoet al., 2002). It contained
34 Src-like SH2 domains with sequence identity of>60%.
The MSAs are available as Supplementary material.

3.3 Benchmarking
3.3.1 Dataset Benchmarking was based on a non-
redundant set of 112 single-chain proteins with functional
residues that are documented in the PDB (del Sol Mesaet al.,
2003). The documentation is of varied quality. Nevertheless,
since the researchers who determined the structures manually
annotated it, we assume that the annotations are reliable, and
represent at least portion of the functional positions.

3.3.2 Evaluation of the benchmarking results The active
site residues documentation is, in many cases, partial, so the

SITE residues cannot be treated as a perfect gold standard. We
therefore used a statistical test similar to the one presented
by del Sol Mesaet al. (2003) to assess the performance of
PatchFinder results. The test examines the null hypothesis
that PatchFinder locates the patch at random, regardless of
functionality, and is based on the distance between the residue
that is closest to the patch center and the residue that is closest
to the SITE’s center. Under the null hypothesis, the patch
center is a random choice from among the exposed residues,
and theP -value of the test for a single protein is computed
from the resulting distribution of distances from the SITE’s
center. The full collection ofP -values is then compared to a
uniform distribution.

4 RESULTS
4.1 The IGPS Enzyme
4.1.1 General description Indole-3-Glycerol Phosphate
Synthase (IGPS) catalyses one of the reactions in the path-
way of biosynthesis of tryptophan. The structure of the IGPS
from Sulfolobus solfataricus was determined with both CdRP
(PDB ID: 1lbl) and IGP (PDB ID: 1a53) (Henniget al., 2002).
This allows a comprehensive examination of the active site.

4.1.2 Patch analysis PatchFinder analysis of this structure
(PDB ID: 1lbl) yielded a few overlapping patches, each with
likelihood of 100%. Of these, the one that is composed of
19 residues and was assigned the bestZ-score is presented in
Table 1. The experimental data indicate that six residues of
IGPS are directly involved in ligand binding (Darimontet al.,
1998) and the patch includes them all. A total of 23 residues
are in contact with either IGP or CdRP, 18 of which are in
the patch (Table 1). The other five residues (Leu83, Asp111,
Ile213, Ile232 and Ser234) were detected in patches that are
assigned lower MAC cutoffs and with high likelihood values.
One residue, Gly 91, was in the patch but does not contact any
of the ligands examined. Nevertheless, it shows a high level
of conservation.

In this example, the PatchFinder analysis yields a single
functional patch that corresponds approximately to the ligand-
binding site (Fig. 1). The sensitivity in this case is 18 out of
23 amino acids (∼78%) and the specificity is 18 out of 19
residues in the patch (∼95%).

4.2 The SH2 domain
4.2.1 General description Src is a tyrosine kinase that
functions in receptor-mediated signal transduction. It is
an intracellular protein, composed of three main domains:
kinase, SH2 and SH3. Regulation of the kinase activity
is achieved through the interactions among these domains
(Brown and Cooper, 1996). In the basal state, Src’s Tyr527,
which is located on the C-tail, is phosphorylated; the tail binds
to a phosphopeptide-binding pocket in the SH2 domain and
the enzyme is inactive. The exchange of the C tail with an
external phosphopeptide may lead to Src activation.
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Table 1. PatchFinder results for IGPS

Residuea IGPb CdRPc

False Leu 83 +
negatives Asp 111 +

Ile 213 + +
Ile 232 + +
Ser 234 + +

Glu 51* +
Lys 53* + +
Ser 56 +
Pro 57 +
Phe 89 + +
Lys 110* + +
Phe 112 + +
Leu 131 +

True Ile 133 +
Glu 159* + +
Asn 180* + +
Arg 182* + +
Leu 184 + +
Glu 210 + +
Ser 211 + +
Gly 212 + +
Leu 231 + +
Gly 233 + +

False positives Gly 91

The residues were partitioned into three groups: True, false negatives and false positives.
aThe amino acid type and number. Amino acids marked with ‘*’ were confirmed exper-
imentally as catalytically important residues (Darimontet al., 1998).
bThe ‘+’ sign marks amino acids that were found to be in contact with the IGP substrate
(PDB ID 1a53).
cThe ‘+’ sign marks amino acids that were found to be in contact with the CdRP substrate
(PDB ID 1lbl).

Here we present an analysis of Src’s SH2 domain. This regu-
latory domain contains∼100 amino acids and is very common
in signaling proteins (Xuet al., 1997). For the analysis, we
used the crystal structure of Xuet al. (1997) (PDB ID: 1fmk),
where Src is in its inactive state.

4.2.2 Patch analysis PatchFinder analysis of the domain
yielded patches as described in Table 2 and Figure 2. The
first patch (patch 1; Table 2) includes 14 highly conserved
residues. This is the peptide-binding groove. Using SURFV,
11 residues were inferred to be a part of the binding site.
Eight of them are in the patch identified by PatchFinder;
one (Thr215) is identified in the next best patch and two
(Thr179 and Cys185) are located on the boundary of the
binding groove and assigned conservation scores that are
significantly lower than the average conservation of the
patch.

We next focused on SH2’s interactions with the SH3 and
kinase domains within the intact Src protein. SH2’s interfaces
with these domains were identified based on SURFV analysis

of the difference in the water-accessible surface area of each
SH2 residue with and without the other domains. The res-
ults yielded the interface between the domains. However, the
interfaces can only be viewed as an approximated gold stand-
ard, since the functionally important residues are only part
of the interface (DeLano, 2002). Thus, the SURFV analysis
can only be used to confirm true positive hits and point to a
possible function.

Of the secondary patches, the one that was assigned the ML
has three invariable residues (Gly210, Gly211 and Phe220).
These three residues constitute the core of a larger patch of 16
residues, which was ranked second in its likelihood (patch 2;
Table 2). The latter patch corresponds to the interface between
the SH2 and SH3 domains and to a part of the interface
between the SH2 and kinase domains.

The third, non-overlapping patch (patch 3; Table 2) is com-
posed of three amino acids: Glu159, Arg160 and Leu163, that
are mainly located at the interface between the kinase and SH2
domains.

Overall, 33 amino acids were detected in the 3 patches. As
demonstrated in Figure 2, they correspond well to the peptide-
binding groove and the interfaces of the SH2 domain with
the rest of intact Src. The sensitivity in the peptide-binding
groove in this case was 8/11 (∼72%), and the specificity 8/14
(∼57%).

The SH2 domain examined here was also crystallized with a
high-affinity phosphotyrosyl peptide (Waksmanet al., 1993).
In this complex, three extra residues were added to those iden-
tified as the C-tail contacts, two of which (Gly236 and Leu237)
were in the PatchFinder result. The differences between the
two experimental results demonstrate some of the problems
associated with the definition of a gold standard in this and
similar cases.

4.3 Benchmarking
4.3.1 General description Analysis of 112 protein struc-
tures, that contain 931 annotated SITE residues, was conduc-
ted in order to assess the overall performance of PatchFinder.
The data are available on the accompanied website. A total
of 3221 residues, including 431 of the annotated SITEs,
were found in the 112 main patches that were detected by
PatchFinder. In 85% of the cases the first patch is composed
of at least one of the SITE residues, and in 63% of the cases,
at least half of these residues are in the patch.

A simple approach to the detection of functional sites
involves mapping of all the surface residues that are evolu-
tionarily conserved regardless of whether they are located in
spatial proximity to each other. Our survey included all the
exposed residues for which the conservation scores were at
least as high as the minimal score in the ML patch. In compar-
ison with the PatchFinder results, the number of SITE residues
that are detected correctly this way is 476, i.e. a∼10% increase
in the detection rate. However, the total number of predicted
functional residues is 4548, i.e. a∼41% increase. Thus, the
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A B

Fig. 1. The active site found by PatchFinder in the IGPS enzyme (PDB ID: 1lbl). (A). ConSurf conservation profile of the enzyme mapped onto
the space-filling representation of the protein. The conservation color-coding plate is presented below and the ligand is colored yellow. (B).
The same view as in A, with the residues identified by PatchFinder color-coded by conservation, while the rest of the molecule is gray. Only
residues with a RSA>0.1% were considered in the search procedure. The picture was produced using RASMOL (Sayle and Milner-White,
1995).

results suggest that PatchFinder’s search for patches of spa-
tially close residues helps to reduce the rate of false positive
predictions.

4.3.2 P -value assessment Because of the incomplete
nature of PDB annotation of the active sites, we consider the
P -value measure, based on the ‘centers’ of the patch and the
active site, to be particularly suitable for this statistical sur-
vey. In 48 of the proteins (∼43%), the main patch that was
detected has aP -value<0.05. Sixty nine results (62%) have a
P -value<0.1. SimilarP -values were obtained for both small
and large proteins.

4.3.3 A closer look at failures We examined about 20 of
the cases that were assigned the highestP -values, in search
for the main reasons for failures. Our analysis revealed four
main categories: (1) The MSA included only several pro-
teins that were too closely related to each other. In such
cases, it is difficult to distinguish between amino acid pos-
itions that are conserved due to the evolutionary pressure
and those that appear to be conserved due to insufficient
evolutionary time. (2) Most of the SITE residues are less
conserved than the patches that were detected (or not con-
served at all). For example, the serine protease of PDB ID
1 thm (Teplyakovet al., 1990) includes 17 SITE residues
and PatchFinder detected an evolutionarily conserved patch of
14 residues. However, the vast majority of the SITE residues
were assigned a conservation score that was lower than the
average conservation of the patch residues. Thus, only three
of the SITE residues were included in the patch. Interestingly,
eight of the remaining patch residues are in contact with the
protein’s inhibitor (Groset al., 1989), which suggests that

PatchFinder’s patch is functionally important nevertheless. (3)
In PDB ID: 1mup (Bocskeiet al., 1992) and other cases, most
of the SITE residues are buried. (4) PatchFinder’s patch is
much bigger than the documented active site; this may indic-
ate a partial documentation of the SITE residues. Pyruvate
dehydrogenase (PDB ID 1iyu; Berget al., 1996), which has
only one documented SITE residue, is a very likely example
of such a case.

In the first two categories, evolutionary conservation is
obviously unsuitable for functional site inference, and com-
plementary approaches should be used.

5 DISCUSSION
In this work, we presented a novel procedure for the iden-
tification of functional regions of proteins with known 3D
structures. The procedure identifies the boundaries, sizes and
statistical significance of evolutionarily conserved patches of
residues on the protein surface. In the following, we will relate
the current methodology to similar approaches.

Unlike the previously described methods, PatchFinder sep-
arates exposed and buried residues as an approximate means
to distinguish between functionally and structurally import-
ant residues. The importance of this feature was demonstrated
in test calculations that were carried out without taking into
account the buried/exposed nature of the amino acids. The
rates of false-negative and -positive predictions in these
calculations (data not shown) were significantly higher than
the rates reported above. Moreover, analysis of the benchmark
dataset showed that∼86% of the residues that are documented
as SITEs are exposed. In comparison, only∼64% of the
conserved residues are exposed. Our survey (Supplementary

i333



“bti1023” — 2005/6/10 — page 334 — #7

G.Nimrod et al.

Table 2. PatchFinder results for the SH2 domain

Interface Residuea PatchFinderb

Phosphopeptide Arg 155 1
Arg 175 1
Ser 177 1
Thr 179
Cys 185
Asp 190* 1
Lys 200 1
His 201 1
Tyr 202 1
Lys 203 1
Arg 205* 2
Tyr 213* 1
Ile 214 1
Thr 215 2
Leu 237* 1
Cys 238* 1

SH3 Trp 148 2
Tyr 149 2
Tyr 184
Leu 223
Gln 224
Val 227* 2
Val 244

Kinase Phe 150 2
Arg 155 1
Arg 156
Glu 157
Glu 159 3
Arg 160 3
Leu 161
Leu 163* 3
Asn 164
Glu 178
Thr 179
Cys 245 2
Pro 246

Others Leu 207 2
Asp 208 2
Gly 210 2
Gly 211 2
Arg 217 2
Gln 219 2
Phe 220 2
Tyr 229 2
Asp 235 2
Gly 236 1
Leu 241 1

Residues are segregated into four classes: ‘Phosphopeptide’ those that comprise the
interface with the phosphopeptide; ‘SH3’ the SH3 domain; ‘Kinase’ the kinase domains,
and ‘Others’ residues that are not in any of these interfaces. It is noteworthy that a residue
can belong to more than one category.
aThe amino acid type and number are partitioned according to their contacts with the
relevant domain. Amino acids marked with ‘*’ were not detected as contacts but are in
close proximity (<4 Å) to the ones that compose the patch.
bThe three patches found by PatchFinder with numbers corresponding to the iteration
where the patch was located.

material) showed a factor of 2.9-enrichment in SITE residues
in the conserved-and-exposed amino acids compared with the
conserved-and-buried.

Similar to Madabushiet al. (2002), PatchFinder does not
impose any initial constraints on the shape of the functional
patches. Like Dean and Golding (2000), the patch cluster-
ing procedure is flexible and allows inclusion of moderately
conserved residues by the use of the average conservation of
the patch. PatchFinder is also capable of identifying second-
ary functional regions with a weaker conservation signal than
the main one.

PatchFinder depends on the quality of the input MSA
provided. When the alignment is unreliable or not diverse
enough the inferred conservation scores are incorrect, and the
search for functional regions may become meaningless.

The accuracy of the calculations also depends on the input
3D structure of the protein. Some proteins are known to
fluctuate between two or more biologically relevant conform-
ations; for example, active and inactive states of an enzyme.
This variability might change the level of exposure of amino
acids and their mutual distances; both quantities are exploited
by PatchFinder. Using only a single structure might increase
the rate of false-negative predictions.

In the two examples that were presented in detail (Figs 1
and 2, Tables 1 and 2), we show the potency and advantages
of this new methodology. As other algorithms (Madabushi
et al., 2002; Aloy et al., 2001), PatchFinder successfully
identified many of the reported/inferred functional residues
of the primary site on the protein surface, while the predicted
functional patches included a few potentially non-functional
residues. Studies performed on the benchmark set yielded sim-
ilar results (see Supplementary material). Thus, PatchFinder
can be used for automatic, high-throughput detection of
the approximate location of the main functional regions of
proteins.

The detection of secondary patches is more challenging
because of their weaker conservation signal and/or smaller
size. PatchFinder detected such patches in the SH2 domain
and assigned them with reasonably high average conserva-
tion scores (Fig. 2, Table 2). However, they were assigned
with low likelihood values, thus complicating their automatic
identification.

There are several features and improvements that could
be introduced into PatchFinder: (1) PatchFinder currently
searches for patches of highly conserved positions, while in
some cases the functionally important region may even be
hyper-variable, as the peptide-binding groove of the MHC
class I heavy chain (see the GALLERY of the ConSurf server
at http://consurf.tau.ac.il). (2) The inclusion of information
about the sequential location of the conserved amino acids
may improve PatchFinder’s sensitivity (Mihaleket al., 2003).
(3) Currently, PatchFinder does not take into account specific
attributes of different kinds of functional sites; for example,
the residues that compose catalytic sites are generally partially
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Fig. 2. The functional regions found by PatchFinder in the SH2 domain of human Src (PDB ID: 1fmk, Xuet al., 1997). The kinase domain is
colored yellow, the SH3 domain is colored orange and the C-tail is in bright green. The SH2 domain is shown in a space filled representation,
colored as follows: (A) and (C) colored by the conservation scale of Figure 1, (B) and (D) patch residues are colored by conservation, and the
rest of the amino acids are gray. Only residues with a RSA>1% were considered in the search procedure. The picture was produced using
RASMOL (Sayle and Milner-White, 1995).

buried and highly conserved, while protein–protein inter-
action regions are typically found in larger cavities with
lower average conservation. This suggests the adjustment of
parameters when searching for a patch of a specific type. In
fact, we took a first step in this direction by using differ-
ent criteria for discrimination between buried and exposed
residues in active sites (a cutoff of 0.1%) and in inter-protein
interfaces (a cutoff of 1%). Similarly, the accuracy of detec-
tion of enzyme active sites can be enhanced by the addition

of a requirement that at least one of the residues be polar
(Aloy et al., 2001). (4) We could also consider other proper-
ties of the patch, such as the curvature, the identity and nature
of the amino acids comprising it and their class specificity
(Chakrabarti and Jannin, 2002; Shanahanet al., 2004). This
is likely to improve PatchFinder’s accuracy in the detection
of functional regions. Moreover, the improved procedure is
likely to provide information on the function of the region
(protein–protein interface, ligand- or DNA-binding, etc.),
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which is completely missing now. Finally, the combination
of some of these measures in the clustering procedure may
also improve the accuracy and sensitivity of the calculations
(Mihalek et al., 2004; Oliveiraet al., 2003).

In conclusion, we believe that PatchFinder’s capacity for
high-throughput screening of functional regions in proteins
of known 3D structure will be useful in the context of the
proteomics and structural genomics initiatives, and may be
used to further characterize known functional regions, as well
as to reveal conserved regions that are as yet unknown.
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