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Abstract. The evolutionary rate at an amino acid
site is indicative of how conserved this site is and, in
turn, allows evaluating the importance of this site in
maintaining the structure/function of the protein.
When evolutionary rates are estimated, one must
reconstruct the phylogenetic tree describing the evo-
lutionary relationship among the sequences under
study. However, if the inferred phylogenetic tree is
incorrect, it can lead to erroneous site-specific rate
estimates. Here we describe a novel Bayesian method
that uses Markov chain Monte Carlo methodology to
integrate over the space of all possible trees and
model parameters. By doing so, the method considers
alternative evolutionary scenarios weighted by their
posterior probabilities. We show that this compre-
hensive evolutionary approach is superior over
methods that are based on only a single tree. We
illustrate the potential of our algorithm by analyzing
the conservation pattern of the potassium channel
protein family.

Key words: Rate variation among sites — Evolu-
tionary conservation — MCMC — Potassium chan-
nel

Introduction

The degree to which an amino acid site is free to vary
is strongly dependent on its structural and functional
importance. An amino acid that plays an essential
role, such as one within the active site of the protein,
is unlikely to change over evolutionary time. Hence,
the evolutionary rate at an amino acid site is indica-
tive of how conserved this site is and, in turn, allows
evaluating the importance of this site in maintaining
the structure/function of the protein (Lichtarge and
Sowa 2002). In silico detection of conserved regions
can thus focus mutagenesis experiments on func-
tionally important residues (e.g., Donaudy et al.
2003).
Conservation levels are typically inferred from a

multiple sequence alignment of homologous proteins.
Numerous methods for detecting site-specific con-
servation have been previously proposed. Nineteen
such scores, developed in the last 30 years, have re-
cently been reviewed by Valdar (2002). Though evo-
lution is the driving force which determines site
conservation, hardly any of these methods takes the
evolutionary relationships among the sequences
(phylogeny) into account (but see Lichtarge et al.
1996; Armon et al. 2001).
Conservation levels and evolutionary rates are, in

fact, synonymous. A conserved site is slow evolving
while a variable site evolves rapidly. It is this obser-
vation that places the problem of conservation-score
estimation in the realm of probabilistic evolutionary
models. Although probabilistic models are exten-
sively used in phylogenetic and in molecular
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evolutionary studies, they have only recently been
applied for evaluating site-specific evolutionary rates
in proteins (Dean and Golding 2000; Pupko et al.
2002). Such methods have been shown to be superior
to those reviewed by Valdar (2002) since they take
into account the branch lengths of the phylogenetic
tree and make use of explicit probabilistic-based
evolutionary models (Pupko et al. 2002). We note
that evolutionary rates are commonly measured as
the number of replacements per amino acid site per
year. Here we define a site-specific rate as the evolu-
tionary rate of the site relative to the average evolu-
tionary rate across all sites. Site-specific rates are
hence unitless.
All algorithms of rate inference presented to date

are composed of two basic steps: (1) construct the
phylogenetic tree and (2) infer site-specific rates.
Various inference methods differ in the manner in
which step 2 is performed, while all rely on the
assumption that the phylogeny is absolutely correct.
Such an approach may lead to erroneous results if the
inferred phylogeny does not reflect the true underly-
ing evolutionary relationships among the sequences.
As demonstrated in Fig. 1, inferred rates might be
substantially different under two different topologies.
An alternative approach would consider the phylog-
eny as an additional parameter of the model and
would compute site-specific rates taking into account
alternative tree topologies. More accurate predictions
of evolutionary rates are thus expected since the
inherent uncertainty in the phylogeny is integrated in
the computation. Such a comprehensive evolutionary
approach calls for the use of Bayesian phylogenetics.
Bayesian estimation of phylogeny is based upon

the posterior probability distribution of trees. The
posterior probability distribution for an unrooted
phylogenetic tree involves a huge number of tree
topologies [(2n)5)!/2n)3(n)3)! unrooted trees for n
sequences (Felsenstein 2004)]. For each such tree,
there are infinite possibilities of branch length com-
binations. This parameter space is too complex to
solve analytically. Markov chain Monte Carlo
(MCMC) (Metropolis et al. 1953; Hastings 1970) is a
numerical method that can be used for Bayesian
inference from this complex parameter space.
MCMC is firmly grounded in probability theory (see,
e.g., Gelman et al. 1995) and has recently been ap-
plied in phylogenetic studies (Yang and Rannala
1997; Larget and Simon 1999; Mau et al. 1999; Li et
al. 2000; Huelsenbeck and Ronquist 2001; McGuire
et al. 2001; Jow et al. 2002). In this paper we describe
a novel Bayesian method for site-specific rate esti-
mation. Using MCMC, we integrate over the space of
all possible tree topologies, branch lengths, and evo-
lutionary model parameters to obtain site-specific
rate estimates that account for the stochastic nature
of the underlying evolutionary process. We show that

by doing so a significant improvement in site-specific
rate estimation is achieved.

Methods

The Evolutionary Model

In this study, the JTT model of amino acid replacements (Jones et

al. 1992) with among-site rate variation, as specified by a gamma

distribution, is used. The only additional parameter required by

this model is the shape parameter of the gamma distribution, a.
Thus, the free parameters in our model are s, t, and a, which are the
tree topology, the branch lengths, and the among-site rate variation

parameter, respectively.

Site-Specific Rate Estimation Given a Fixed
Phylogenetic Tree

A phylogenetic tree T= (s, t) is defined by its tree topology s and
associated branch lengths t. The branch lengths of the phylogenetic

tree represent the average evolutionary rate across all sites. A rel-

ative site-specific rate r indicates how fast this site evolves relative

to the average rate across all sites. For example, a rate of 2.0

indicates a site that evolves two times faster than the average. Thus,

site-specific rates inferred here are not absolute evolutionary rates

that require knowledge of divergence times but, rather, represent a

comparative quantity.

Within the Bayesian framework, the posterior probability of

any given rate r is obtained from the likelihood function and the

prior probability. The most commonly chosen prior distribution

for modeling rate variation across sites is the gamma distribution.

The gamma distribution has a single parameter, a, which deter-
mines its shape (Swofford et al. 1996; Yang 1996). Given a tree T

and a parameter a, the posterior probability for any given rate r is
obtained using Bayes� (1763) theorem

Pðrjdata;T; aÞ ¼ Pðdatajr;TÞPðrjaÞR1
r0¼0

Pðdatajr0;TÞPðr0jaÞdr0
ð1Þ

where the likelihood P(data|r,T) can be calculated using Felsen-

stein�s (1981) postorder tree traversal algorithm, and P(r|a) is the
prior distribution on the rates. A detailed description of the cal-

culation is given by Mayrose et al. (2004). We denote by P both

probabilities and densities, depending on the context. The gamma

distribution is approximated by a discrete rate distribution with

k = 16 categories (Yang 1994). For the task of site-specific rate

inference this number of categories sufficiently approximates the

continuous gamma distribution (Mayrose et al. 2004). After the

discrete approximation Eq. (1) becomes

Pðr ¼ rijdata;T; aÞ ffi
Pðdatajri;TÞPk

j¼1
Pðdatajrj;TÞ

ð2Þ

The prior probabilities in Eq. (1) are canceled out since all rate

categories have equal prior probabilities (l/k).

The goal is to estimate the site-specific rates for all positions.

Our site-specific rate estimate is defined as the expectation of r over

its posterior rate distribution:

Eðrjdata;T; aÞ ffi
Xk
j¼1

rjPðrjjdata;T; aÞ ð3Þ

This estimate was shown to be more accurate than the maximum

likelihood (ML) estimate that assumes no prior rate distribution

(Mayrose et al. 2004).
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Evolutionary-Rate Inference over the Entire Tree
Space

Equation (3) can be read as ‘‘the expectation of r given that the tree

topology is s, the set of associated branch lengths is t, and the shape
of the gamma distribution is a.’’ In the case where the combined
state x = {s, t, a} is unknown, we can use the law of total prob-
ability to obtain a site-specific rate estimate over the whole tree

space and over all a values:

EðrjdataÞ ¼
XCs

i¼1

Z
ti

Z
a

Eðrjdata; si; ti; aÞPðsi; ti; ajdataÞdtida ð4Þ

The symbol si labels the ith tree topology, ti is the set of branch
lengths associated with this topology, and Cs is the number of

possible topologies for a data set containing S sequences.

According to Bayes� law, the second term on the right-hand side of
Eq. (4) can be expressed as

Pðsi; ti; ajdataÞ ¼
Pðdatajsi; ti; aÞPðsi; ti; aÞPCs

j¼1

R
tj

R
a0
Pðdatajsi; tj; a0ÞPðsj; tj; a0Þdtjda0

ð5Þ

Each one of the expressions within Eq. (5) can be readily com-

puted. However, the enumeration over all possible tree topologies

and, for each topology, the integration over all possible combina-

tions of branch lengths and a values is intractable for realistic-sized
problems. MCMC is therefore used to generate a large sample from

the posterior probability distribution of states without the explicit

computations of these sums and integrals.

MCMC

The basic Metropolis–Hastings MCMC algorithm (Metropolis

et al. 1953; Hastings 1970; Gelman et al. 1995) follows a two-step

process. First, a new state, x*, is proposed according to some
stochastic proposal mechanism. Second, the new state is either

accepted or rejected according to a transition probability. If the

proposed state, x*, is accepted, it becomes the next state of the
chain, xn+1. Otherwise the chain remains in its current state and so

xn+1 = xn. The transition probability is defined as

Pðx�jx00Þ 	 min 1;
Pðx�jdataÞ
PðxnjdataÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Posterior ratio


 fðxnjx�Þ
fðx�jxnÞ|fflfflfflfflffl{zfflfflfflfflffl}
Hasting ratio

2
6664

3
7775

¼ min 1;
Pðdatajx�Þ
PðdatajxnÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Likelihood ratio


 Pðx�Þ
PðxnÞ|fflffl{zfflffl}
Prior ratio


 fðxnjx�Þ
fðx�jxnÞ|fflfflfflfflffl{zfflfflfflfflffl}
Hasting ratio

2
6664

3
7775

ð6Þ

f(x*|xn) is the probability of proposing the new state given the old

one and f(xn|x*) is the probability of the reverse move, which is not
actually made. These two terms are calculated based on the specific

proposal mechanism implemented, which defines how a new state

will be proposed given the current state of the chain. The advantage

of the formulation in Eq. (6) is that the complex denominator in

Eq. (5) is canceled out. The above formula reduces to three ratios,

each of which can be readily calculated. Note that if the right-hand

term in Eq. (6) is bigger than 1.0, the move is always accepted. This

reflects a general tendency of the chain to go ‘‘uphill’’ when pos-

sible and to go ‘‘downhill’’ only occasionally. The starting state of

the chain, x0, is chosen randomly from the entire parameter space.
The points sampled during an initial portion of the chain (called

burn-in) are discarded since they are still characteristic of the

starting point and do not reflect properly the posterior distribution.

The proportion of the time any single state is visited after the burn-

in stage is a valid approximation of its posterior probability.

For each state x in the sample, a site-specific rate estimation is
calculated (Eq. [3]). The result of the algorithm is a rate estimate (r̂)

over all states sampled. This estimate can be expressed as

r̂ ¼ 1

N

XN
i¼1

Eðrjxi; dataÞ ð7Þ

where N is the number of sampled states. Note that this expression

is different from the estimate presented in Eq. (4). In Eq. (4) a rate

distribution over the entire tree space is first obtained, and only

then is the expectation derived. However, the MCMC algorithm

ensures that as N becomes large enough, r̂ converges to the

expectation in Eq. (4).

MCMC Implementation

In each step of the Markov chain a new state is proposed according

to a predefined proposal mechanism. We have implemented four

different types of moves (described below). At each step we choose

one of these moves randomly according to a predefined distribu-

tion. All move types are symmetrical, i.e., the probability of moving

from state X to state Y is the same as the probability of the reverse

move from Y to X. The Hastings ratio in Eq. (6) thus equals 1.0.

The nearest-neighbor interchange (NNI) proposal randomly

selects an internal branch of the tree. It then randomly interchanges

two of four ‘‘neighboring’’ subtrees, one from each end of the

internal branch. The lengths of all branches are kept unchanged.

The NNI proposal, or equivalent variations of it, is currently em-

ployed in all four MCMC computer programs available for phy-

logeny (Larget and Simon 1999; Huelsenbeck and Ronquist 2001;

McGuire et al. 2001; Jow et al. 2002).

A second proposal mechanism changes the length of a ran-

domly chosen branch according to a sliding window mechanism: a

window of some fixed width, d, is placed around the current length

Fig. 1. The rate of a position depends on the assumed phylogenetic tree. The inferred evolutionary rate is different for the two topologies. a
The inferred rate would be relatively low since only one replacement is sufficient to explain the data. b The inferred rate would be higher
since at least two replacements are necessary. Branches that differ between the two trees are dashed. Capital letters in parentheses are one-
letter abbreviations for amino acids.

347



of the branch, x. d is a tuning parameter. The proposed length, x*,
is then chosen uniformly from the interval (x ) d, x + d). If x*
becomes negative an NNI move is employed, and the length of the

proposed branch is set to |x*|. If the branch is an external branch,

then the topology of the tree remains the same. This proposal

mechanism mainly results in branch length changes but can also

induce a local topology change via an NNI move (see also Jow

et al. 2002).

The third proposal mechanism modifies all branch lengths of

the tree simultaneously. For each branch a number u is randomly

drawn from the interval (1, 1 + e), where e is a tuning parameter.
For a branch of length d, a new length, d*, proposed with equal

probability to be either (d · u) or (d / u). The fourth proposal

mechanism modifies the gamma distribution parameter a to be
either (a · u) or (a / u),where u is randomly drawn from the interval
(1, 1 + f).
The values of the tuning parameters (d, e, and f) need to be

carefully chosen for an efficient MCMC algorithm to traverse the

entire parameter space. As a rule of thumb, the acceptance rate

should be between 20 and 60% to provide a good mixing of the

data (Huelsenbeck 2000). In the present implementation, the

starting value for each tuning parameter is 0.1. During the burn-in

period, each tuning parameter is increased or decreased depending

on the acceptance rate of the move it controls, so that the accep-

tance rate will be between 20 and 60%.

A practical problem associated with MCMC is to determine

how many steps are necessary in order to obtain a good approxi-

mation of the posterior distribution. The most useful diagnosis is to

run multiple independent chains each with a different starting point

(Huelsenbeck et al. 2002). If these chains converge to the same

estimated rates, it is a strong indication that the chains have

appropriately sampled the parameter space. Here convergence is

defined when all pairwise correlation coefficients between the in-

ferred rates from all chains are higher than 0.99. The rates inferred

by the independent chains are then averaged to produce final rate

estimates. A second diagnostic was performed to ensure that, at all

sites, estimated rates have reached their limiting values. We

therefore test if all rate estimates are restricted to a small interval of

size e for more than M steps. In all runs conducted, e and M were

set to 0.01 and 800, respectively. These values appear to balance

between computation time limitations (which calls for a large e and
a smallM) and precision (which calls for a small s and a largeM).

According to this diagnostic tool the run is halted when all sites

have converged to their limiting values. Combining the two tests

described above, the run is halted when both diagnostic criteria are

satisfied.

Prior Probabilities

In order to calculate the transition probability between states (Eq.

[6]) a prior distribution for x must be specified. Since there is no
a priori biological justification for supporting any particular prior,

a simple factorized prior P(x) = P(si)P(ti)P(a) was chosen (as in
Jow et al. 2002). A discrete uniform prior was set over topologies

such that P(si) = 1/Cs. Continuous uniform priors were given for

branch lengths and a. The interval of possible branch lengths was
set to (0, 5) while the interval for a was set to (0, 10). This choice
ensures that all reasonable values of the parameters are reachable.

The Computer Program

The MCMC rate-inference algorithm described here is imple-

mented in the program McRate, written in C++. The program is

available at http://www.tau.ac.il/�talp/MCMC/McRate.html. The
sole obligatory input to McRate is a multiple sequence alignment

file. The program allows users to specify a number of optional

parameters such as the burn-in period and number of chains.

Simulations

Simulations were used in order to compare the accuracy of the rates

inferred by McRate and those inferred by an empirical Bayesian

approach, in which inference is based on a single phylogenetic tree

(i.e., rates are inferred using Eq. [3]). We refer to this single tree

method as ST. Our simulation runs were conducted using two

different schemes. The first simulation set tested the effect of dif-

ferent rate distributions, while the second set tested different model

trees.

For the first set, we chose a model tree with 17 operational

taxonomic units (OTUs) (Fig. 2a). This tree was chosen because it

was shown to be a difficult case for phylogeny inference (Alfaro

et al. 2003). The rate at each position was drawn from a specified

rate distribution. Three different sets of rate distributions were

examined: (1) a gamma distribution with a = 0.3 that represents a

severe among-site rate variation, (2) a gamma distribution with

a = 1.0 that represents a case of little among-site rate variation,

and (3) an empirical distribution inferred by ST from a multiple

sequence alignment of 57 potassium channel proteins (see Biolog-

ical Results, below). This distribution can be considered a realistic

one because it is based on a large number of homologs and because

of the good quality of the alignment. In all runs, the simulated rates

were scaled so that the average equals 1.0.

In the second set of simulations, we used model trees with

different number of OTUs. In addition to the 17-OTU model

tree used in the first simulation set, we generated two trees with

7 and 27 OTUs (Figs. 2b and c). For this set of simulations, the

rates were drawn from a gamma distribution with a = 0.3. In

all runs, the simulated rates were scaled so that the average

equals 1.0.

Site-specific rates were drawn from the given rate distribution

and were assigned to each site. Protein sequences were then gen-

erated by simulating evolutionary changes along the branches of

the given model tree. The simulation used the JTT model of amino

acid replacement (Jones et al. 1992), in which each site evolves

independently. For each run, 100 sites were generated in this

manner. The generated sequences were given as input to both

McRate and ST. ST requires for its computations an assumed

phylogenetic tree and a given a parameter. Two different tree

reconstruction algorithms were examined: (1) ST-ML, in which an

ML tree was constructed using the Semphy program (Friedman

et al. 2002) and (2) ST-NJ, in which the tree was constructed

according to the neighbor-joining (NJ) algorithm (Saitou and Nei

1987) with pairwise distances estimated by ML. Branch lengths in

the resulting tree were then optimized using ML. In both cases the

a parameter was inferred from the data by maximizing P(data| a,T)
using a 16-category discrete gamma distribution (Yang 1994). For

each simulation condition studied (e.g., a 7-OTU tree with a = 0.3)

a total of 30 identical and independent simulation runs were con-

ducted.

In each simulation run, three vectors of rates were inferred:

one vector by McRate and two by ST (ST-NJ and ST-ML). The

accuracy of inference was analyzed by the sum-of-squares (SOS)

distance between the simulated rates and the rates inferred by

each method. The SOS distances obtained from McRate and ST

are dependent because, for each run, inferences were performed

based on the same simulated data. For each simulation condition

tested, 30 SOS measures were obtained for each inference method.

A two-sided Wilcoxon nonparametric test between two dependent

samples (Sokal and Rohlf 1981) was then performed in order to

check whether the inference techniques attain comparable accu-

racy. A nonparametric test was used to eliminate the assumption

that the SOS measures are normally distributed. The null

hypothesis is that the two methods produce equal results. Rejec-

tion of the null hypothesis indicates that the rates inferred with

one of the methods are significantly more accurate than those

inferred by the other.
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Results

Simulation Results

A comparison between the inference accuracy of
McRate and the two ST methods for different num-
ber of OTUs is shown in Table 1. In all cases McRate
is found to be the most accurate method, while ST-NJ
seems the least accurate one. This difference is sig-
nificant in all but one case (Table 1). The simulation
shows that the accuracy of all three methods increases
as the number of OTUs increases. This finding is

expected since more data are available at each posi-
tion for rate inference.
The simulation results obtained with different rate

distributions showed a similar trend (Table 2). Mc-
Rate is superior to both ST methods under all dis-
tributions, although this superiority is not always
statistically significant. As Table 2 shows, the shape
of the rate distribution influences the accuracy of rate
inference. Mayrose et al. (2004) have recently shown
that the accuracy of prediction decreases when the
amount of among-site rate variation increases (small
a values in the gamma distribution). Our results here

Fig. 2. Model trees used for simulations. The scale in the upper left corner is indicative of branch length. The number of OTUs is (a) 17, (b)
7, and (c) 27.
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show that McRate superiority over ST is more
noticeable in these cases (Table 2). The difference
between McRate and ST-ML is 0.23 and 0.04 when
simulating with a = 0.3 and a = 1.0, respectively.
Thus, when inference accuracy is less reliable,
McRate superiority is more pronounced. In order to
obtain a conclusive conclusion regarding McRate�s
advantage, we pooled the data from all simulation
scenarios (Tables 1 and 2). McRate was found to be
significantly superior over both ST methods (p <
0.00001) for this comprehensive data set.
McRate integrates both over trees and a values.

Another set of simulations was constructed in order
to identify which of these factors contributes most to
the accuracy. Three MCMC schemes were compared.
(1) In McRate, the integration is over all parameters.
(2) In McRate_Tree, the integration is over trees
only, keeping the a parameter constant. The a used is
the mean value estimated using the MCMC integra-
tion over all parameters, i.e., the resulting a estimate
of McRate above. (3) In McRate_Alpha, the inte-
gration is over a values only. The tree was inferred by
ML and was kept constant. Table 3 shows that the
SOS scores of the McRate and McRate_Tree are al-
most identical. It seems that in most cases averaging
over topologies is the main effect responsible for the
greater reliability of the rate estimates.

Biological Results: The Potassium Channel

Potassium channels are tetrameric integral membrane
proteins that form transmembrane aqueous pores

through which K+ ions can flow. Potassium channels
take part in many different cellular processes includ-
ing cell volume regulation, hormone secretion, and
electrical impulse formation in electrically excitable
cells (MacKinnon 2003). The most fundamental role
carried out by all K+ channels is to allow the rapid
permeation of K+ ions while rejecting, with extreme
efficiency, the smaller Na+ ions (or other potential
competitors). The solved three-dimensional (3D)
structures of a bacterial K+ channel (Doyle et al.
1998; Jiang et al. 2002) have clarified the mechanism
of selective ion transfer across the membrane.
We used McRate to study the conservation pattern

of the potassium channel protein family. Fifty-seven
homologous sequences of the Streptomyces lividans
potassium channel, for which the 3D structure is
known (PDB ID: 1bl8 [Doyle et al. 1998]), were used
in the analysis. The homologous sequences were ob-
tained by a BLAST search (Altschul et al. 1997)
against the SwissProt database (http://us.expasy.org/
sprot/). A multiple sequence alignment of these ho-

Table 1. Simulation results: Model trees with different numbers of OTUsa

Mean SOSb

Number of OTUs McRate ST-ML (ST-NJ) p valuec, McRate vs. ST-ML (ST-NJ)

7 10.46 10.64 (10.91) 0.0196 (0.0003)

17 8.36 8.59 (9.12) 0.12 (0.0007)

27 7.17 7.62 (8.16) 0.037 (0.0008)

aSimulated rates were drawn from a gamma distribution with a = 0.3.
bMean SOS is the average score obtained over 30 independent runs.
cp value was calculated using Wilcoxon nonparametric test between two dependent samples.

Table 2. Simulation results: Different rate distributionsa

Mean SOSb

Rate Distribution McRate ST-ML (ST-NJ) p valuec, McRate vs. ST-ML (ST-NJ)

Gamma, a = 0.3 8.36 8.59 (9.12) 0.12 (0.0007)

Gamma, a = 1.0 5.32 5.36 (5.36) 0.40 (0.42)

K+ channel 5.55 5.96 (6.01) <0.0001 (<0.0001)

aIn all cases 17-OTU trees were used.
bMean SOS is the average score obtained over 30 independent runs.
cp value was calculated using Wilcoxon nonparametric test between two dependent samples.

Table 3. Simulation results obtained using different MCMC
schemes

Mean SOSa

Rate Distribution McRate McRate_Tree McRate_alpha

Gamma, a = 0.3 8.36 8.35 9.99

Gamma, a = 1.0 5.32 5.32 5.3

K+ channel 5.55 5.57 5.83

aMean SOS is the average score obtained over 30 independent runs.
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mologs was built using CLUSTALW (Thompson
et al. 1994). The alignment was given as input to the
McRate program. Three independent chains with
burn-in period of 10,000 steps were run until con-
vergence was reached (see Methods). The conserva-
tion scores were then projected onto the 3D structure.
For this projection the continuous rates estimated are
mapped into nine different colors (bins), as in the
ConSurf server (Glaser et al. 2003). The range of each
bin varies so that each one contains one-ninth of the
sites. We define highly conserved sites as those that
fall in bin 8 or 9. A total of 98 sites were visualized,
which corresponds to the length of the sequence in
the PDB entry.
The conservation pattern obtained by McRate

correlates well with the known functional features
that contribute to the channel�s high potassium
selectivity and throughput. A well-conserved surface
patch of residues (all in the most conserved bin) is
found at the extracellular entryway (Fig. 3a). This
patch functions as the selectivity filter of the channel.
The backbone of this signature sequence forms a rigid
opening into which K+ ions fit precisely, but in which
the smaller Na+ ions would fit only loosely (Miller
2000). Not surprisingly, mutating these amino acids
disrupts the channel�s ability to discriminate between
K+ and Na+ ions (Heginbotham et al. 1994). A

second conserved region is formed by residues of
medium to high conservation levels (Fig. 3b). This
region forms the inner vestibule, which is lined mostly
by hydrophobic residues. This hydrophobic lining
provides the diffusing K+ ion with a direct inert path
through the membrane (Doyle et al. 1998). The
medium conservation levels can be explained since
the residues are bound only by a hydrophobic con-
straint. McRate also detected some highly conserved
sites other than those forming the two patches above.
Noteworthy, these conserved residues are known to
be important in maintaining the function and struc-
ture of the channel (e.g., sites involved in interhelical
contacts or in the allosteric mechanism of pore clos-
ing and opening).
In order to evaluate McRate�s potential advantage

over existing methods, the conservation pattern of the
potassium channel was studied with two additional
methods. First, we used ST-ML—the second-best
performing method in our simulations. Second, we
estimated the rate at each site with the maximum
parsimony (MP) score calculated on the ML tree. The
MP method represents a very fast yet naı̈ve approach
for rate estimation. The conservation analysis ob-
tained using ST-ML identified approximately the
same conserved patches as McRate. The similarity
between these two methods is also reflected in the high

Fig. 3. The conservation pattern of the potassium channel as inferred by McRate. a The four subunits are viewed from the extracellular
side. b Conservation scores are shown on one subunit only, oriented with the extracellular surface on top. Conservation scores are color-
coded onto the van der Waals surface of the protein. The K+ ions are yellow.
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correlation between the estimated rates (r2 = 0.934).
We note, however, that 35 of 98 sites were assigned to
a different conservation bin with differences spanning
up to three bins. Some of these differences were lo-
cated in functionally important domains.
Results obtained from the MP method were sub-

stantially different from those calculated by either
McRate or ST-ML. The main conserved patch was
only partially detected. Moreover, the patch com-
prising the hydrophobic lining could not be identified
due to its average conservation. Additionally, only 16
sites fell into the same conservation bins as in the
analysis performed by McRate. The calculation time
required by the three methods varied substantially.
McRate�s analysis took about a day, and only a
few minutes for ST-ML and MP (using Pentium 4,
2.40 GHz, with 512 MB of RAM).

Discussion

TheMCMC approach presented here has a number of
advantages. It allows us to effectively integrate over all
possible trees and model parameters. MCMC samples
from the entire phylogeny space, rather than relying
on a single best tree. Moreover, prior distributions are
assumed for all parameters of the evolutionary model
(e.g., the gamma shape parameter, a). The inference of
evolutionary rates is then based on all possible values
of the parameters in addition to all possible trees.
The simulation results indicated that the MCMC

approach, as implemented with the computer pro-
gram McRate, is superior to methods that rely on a
single tree. McRate and the ST method utilize the
same probabilistic approach for computing site-spe-
cific rates, i.e., the expectation over the posterior rate
distribution. Therefore, McRate�s improved accuracy
clearly arises from considering different evolutionary
scenarios rather than the particular rate computation
method implemented. McRate advantage was veri-
fied for different model trees and different distribu-
tions of simulated rates. Our simulations revealed
that the performance of ST is, at best, similar to
McRate under some scenarios. Our simulations fur-
ther showed that when ST is based on the ML tree,
rather than on the NJ tree, better results are obtained.
This difference evidently arises from using a better
tree-inference technique.
When presenting the first Bayesian rate-inference

technique for DNA sequences, Yang and Wang
(1995) found a very high correlation between the
rates inferred from an ML tree and those obtained by
using a star-like tree. They have subsequently argued
that the prediction of evolutionary rates is tolerant to
errors in phylogenetic tree reconstruction. This means
that inferred rates would be highly similar, no matter
which tree is assumed. If this hypothesis proves fac-

tual then averaging over many possible trees will have
little effect on the predicted rates. However, their
conclusion was based on 4-OTU trees only. Yang and
Wang�s (1995) conclusion is compatible with our re-
sults obtained when 4-OTU trees were simulated
(results not shown). In these cases the correlations
between rates inferred by McRate and ST were ex-
tremely high (r > 0.99), which means that the dif-
ferences between the two methods are trivial.
However, upon inclusion of additional taxa, our
simulations showed that the topology has a sub-
stantial effect on the estimated rates.
McRate�s capabilities for predicting functionally

important protein regions were demonstrated using
the thoroughly studied potassium channel protein
family. Both McRate and ST-ML successfully
recovered the known functional regions. The differ-
ence is limited to specific sites that are assigned to
different conservation bins. However, in light of
McRate�s superiority in most simulation schemes it is
likely that its predication regarding the potassium
channel is more accurate. The MP analysis demon-
strated that such a naı̈ve method is too simplistic for
real biological examples. Our results indicate that
even the most conserved area was only partly recov-
ered. Indeed, poor performance was also observed
when using the MP score in all simulations schemes
(results not shown).
Bayesian methods in phylogeny were recently

criticized in the context of overestimating the Baye-
sian support for internal nodes as compared with the
traditional bootstrap and jackknife techniques (Sim-
mons et al. 2004; Suzuki et al. 2002). In this study,
however, the Bayesian technique is used only to ob-
tain a large set of plausible trees and not to produce a
measure of support to one single best tree.
We expect that in cases where the phylogenetic tree

is hard to recover (short sequences, many gapped
positions, etc.), the differences between MCMC and
the single-tree approach will intensify. Practically,
McRate is time-consuming and should be the tool of
choice when there are indications that the inferred
phylogenetic tree is unreliable.
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