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a b s t r a c t

The immune activity of an antibody is directed against a specific region on its target antigen known as
the epitope. Numerous immunodetection and immunotheraputics applications are based on the ability of
antibodies to recognize epitopes. The detection of immunogenic regions is often an essential step in these
applications. The experimental approaches used for detecting immunogenic regions are often laborious
and resource-intensive. Thus, computational methods for the prediction of immunogenic regions allevi-
eywords:
ntigen
ntibody
pitope
mmunogenic regions
rediction

ate this drawback by guiding the experimental procedures. In this work we developed a computational
method for the prediction of immunogenic regions from either the protein three-dimensional structure
or sequence when the structure is unavailable. The method implements a machine-learning algorithm
that was trained to recognize immunogenic patterns based on a large benchmark dataset of validated
epitopes derived from antigen structures and sequences. We compare our method to other available tools
that perform the same task and show that it outperforms them.
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. Introduction

The ability of an antibody to specifically bind an antigen is
sed in various biomedical applications ranging from immunode-
ection to immunotheraputics (Irving et al., 2001; Westwood and
ay, 2001). In many such applications it is required to computa-

ionally predict protein regions with the highest potential to elicit
ntibodies that will strongly bind the intact protein. This task is
lso important for epitope-mapping (Westwood and Hay, 2001). In
pitope-mapping, a phage-display library is initially scanned with
he antibody; following that, the affinity selected peptides need to
e mapped onto the antigen structure in order to infer the exact

ocation of the epitope (Castrignano et al., 2007; Enshell-Seijffers
t al., 2003; Halperin et al., 2003; Mayrose et al., 2007; Moreau et
l., 2006; Schreiber et al., 2005). Predicting immunogenic regions
an focus the mapping of the affinity-selected peptides to relevant
egions on the antigen, and thus to increase the accuracy of this

pproach.

Several computational methods were developed for the task
f predicting the most immunogenic regions of a given anti-
en (Emini et al., 1985; Haste Andersen et al., 2006; Hopp and

Abbreviations: ASA, accessible surface area; AUC, area under the curve; CDR,
omplementarity determining region; CEP, Conformational Epitope Prediction; PDB,
rotein data bank; ROC, receiver operating characteristic; 3D, 3-dimensional.
∗ Corresponding author. Tel.: +972 3 640 7693; fax: +972 3 642 2046.

E-mail address: talp@post.tau.ac.il (T. Pupko).
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oods, 1981; Karplus and Schulz, 1985; Kolaskar and Tongaonkar,
990; Kulkarni-Kale et al., 2005; Parker et al., 1986; Pellequer et
l., 1991). Most of these methods are sequence-based: a score
rawn from a propensity scale is assigned to each amino-acid.
he antigen sequence is then scanned for high scoring seg-
ents, which are inferred as the candidate epitopes. Different

ropensity scales were suggested for this task, each reflecting a
ertain amino-acid physico-chemical property, e.g., hydrophilicity
r backbone-flexibility. These scales were selected based on the
remise that they are correlated with antigenicity. Although this
pproach is commonly used and has been reported to be success-
ul to some extent, it was criticized since the correlations of the
ropensity scales with peaks of epitope locations are limited, and
hus the predictions are, on average, only marginally better than
andom (reviewed in Blythe and Flower, 2005).

When the 3D structure of the antigen is available or can be
eliably predicted, this information can be used to increase the
ccuracy of predicting immunogenic regions. For example, it is clear
hat immunogenic regions reside on the solvent accessible surface
f the antigen. This property was used by Novotny et al. (1986), and
y Kulkarni-Kale et al. (2005) who developed the Conformational
pitope Prediction (CEP) server, which searches for regions that are
ighly accessible. Haste Andersen et al. (2006) developed Disco-

ope, which in addition to solvent accessibility uses in its prediction
lgorithm a propensity scale that reflects the observation that the
istribution of amino-acids in epitopes varies from that of the
emaining antigen. While these structural and physico-chemical
roperties are clearly correlated with immunogenic regions, it is

http://www.sciencedirect.com/science/journal/01615890
http://www.elsevier.com/locate/molimm
mailto:talp@post.tau.ac.il
dx.doi.org/10.1016/j.molimm.2008.09.009
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ow established that additional attributes characterize epitopes
Jones and Thornton, 1997; Rubinstein et al., 2008). Accounting for
uch attributes can thus boost the accuracy of algorithms for pre-
iction of immunogenic regions. Ponomarenko and Bourne (2007)
ssessed the success of several 3D structure-based protein–protein
inding site prediction methods (including CEP and DiscoTope), at
redicting immunogenic regions. The performance of all methods
as found to be mediocre, and it was hence concluded that uti-

izing additional features that characterize epitopes is the key for
mprovement.

We have recently performed a detailed computational analysis
f all non-redundant antibody–antigen complexes available in the
rotein data bank (PDB, Berman et al., 2000), in order to reveal the
pecific characteristics of epitopes (Rubinstein et al., 2008). This
tudy delineated a range of physico-chemical, structural, and geo-
etrical properties that significantly distinguish epitopes from the

emaining antigen surface. Epitopes were found to have a unique
mino-acid composition, enriched with tyrosine and tryptophan
esidues. A strong preference for unorganized secondary structures
n epitopes was also observed. Moreover, epitopes were found to
isplay a distinct geometrical shape, with a rugged surface that
esides on bulgy regions of the antigen. Interestingly, epitopes were
ound to be less evolutionary conserved relative to the remaining
ntigen surface.

Determining the major characteristics of antigenicity is the
rst and critical step towards predicting epitopes from antigen
tructures. The challenge in the next step is to utilize these char-
cteristics in an optimal way to produce accurate predictions of
mmunogenic regions. In this work we have applied a machine-
earning approach for predicting such regions that are candidate

pitopes. We first constructed a large dataset composed of anti-
en structures, for which validated epitopes are available. We
ext trained a classifier for the prediction task, and tested its
erformance using the same data applying a cross-validation pro-
edure for avoiding over-fitting the algorithm to the data. Often,

s
a

p
c

ig. 1. Illustration of the flow of the prediction algorithm. A dataset of antibody–antigen
nd structural–geometrical properties. This collection of epitope properties is then used
egions are sought, its surface is divided to overlapping circular patches the size of an av
tructural–geometrical properties are extracted for each such patch. The trained classifier
n the similarity of its properties to pre-characterized epitope properties. This score is expr
o the residues on which each patch was centered, and the output is a list of residues and
unology 46 (2009) 840–847 841

he antigen 3D structure is unavailable. To predict immunogenic
egions from sequence alone we repeated the above process of con-
tructing a sequence benchmark dataset, selecting immunogenic
roperties relevant to sequences, training the classifier, and test-

ng its performance. We show that our novel algorithms accurately
redict immunogenic regions. Moreover, we show that they out-
erform other available structure and sequence-based tools for the
ame task.

. Methods

.1. Algorithm outline

The underlying assumption in this work is that epitope and
on-epitope parts of an antigen surface are distinct with respect
o their physico-chemical and structural–geometrical properties.

e thus trained two Naïve Bayes classifiers, one for structures and
ne for sequences, to recognize immunogenic regions based on a
arge set of physico-chemical and structural–geometrical proper-
ies. A trained classifier computes for each region of a given input
ntigen structure or sequence a score that reflects its immunogenic
otential. Specifically, the input antigen is divided into overlapping
urface patches (for a 3D structure) or stretches (for a sequence),
ith the size of a typical epitope. Then for each patch or stretch,

he trained classifier computes the probability that it is drawn
rom a population of epitopes, given its physico-chemical and
tructural–geometrical properties. The score of each patch (or
tretch) is assigned to its central residue (the middle residue in
circle-shaped patch, or the middle residue in a linear stretch),
hich enables the inference of the immunogenic potential at the
ingle amino-acid site resolution. Fig. 1 illustrates the flow of the
lgorithm for an input antigen structure.

In the sections below we first provide the formal definition of a
atch, we then explain how the properties were chosen, and pro-
eed with a description on how these properties are combined to

co-crystal structures is used to derive epitopes and extract their physico-chemical
to train the classifier. Given an input protein structure for which immunogenic

erage epitope, centered on each of the surface residues. The physico-chemical and
then computes for each patch a score that reflects its immunogenic potential based
essed in log-likelihood terms and is thus negative. Finally, these scores are assigned
their scores sorted in descending order.
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chieve maximal predictive power. We first describe this process
hen a protein 3D structure is available.

.2. Patch definition

Formally, a surface patch was defined as the group of n − 1
urface residues with the shortest distance to a central surface
esidue, and the central surface residue itself. We used n = 20, rep-
esenting the average size of an epitope (Rubinstein et al., 2008).
he distance between two residues was defined as the minimal
uclidean distance between the centers of any of their solvent-
xposed non-hydrogen atoms. Any residue was defined as a surface
esidue if its accessible surface area (ASA), computed using the Sur-
ace Racer program (Tsodikov et al., 2002) with a probe radius of
.4 Å, exceeded 5% of its maximal (theoretical) ASA (i.e., relative
SA > 0.05). The maximal ASA value of a residue was calculated in
n extended GXG theoretical tripeptide, where G denotes glycine
nd X denotes the residue in question (Miller et al., 1987).

.3. Physico-chemical and structural–geometrical properties

In order to train a classifier one must select properties and
ombine them to achieve optimal predictive power. The physico-
hemical and structural–geometrical signature that distinguishes
pitope from non-epitope surfaces (Jones and Thornton, 1997;
ubinstein et al., 2008) is not necessarily the set of properties
hat is optimal for the prediction task. We thus selected a wider
et, comprised of 44 physico-chemical and structural–geometrical
roperties for the prediction task (Table 1). Of these, 28 properties
ere previously tested for their ability to distinguish epitope from
on-epitope surfaces (Rubinstein et al., 2008): the ratio between
he frequency of each of the 20 amino-acids in the patch and the
emaining surface (properties 1–20); the ratio between the fre-

uency of each of the main secondary-structure elements (helix,
eta-strand, and loop, obtained according to the dictionary of sec-
ndary structure of proteins (Kabsch and Sander, 1983)) (properties
1–23); a patch’s average relative solvent accessibility and aver-
ge accessibility to a large probe (with radius = 9 Å, approximating

E
P
p
i
i

able 1
mmunogenic properties for structure-based prediction

roperty number Immunogenic property

1–20 Ratio between the frequency of each of the 20 amino-acids: A, R,
W, Y, V, in the patch and the remaining surface

21–23 Ratio between the frequency of the secondary structure elements
in the patch and the remaining surface

4 The average relative-accessibility of the patch to the solvent (pro
5 The average accessibility of the patch to a large probe (radius = 9 Å
6 The average curvature of the patch atoms

27 The proportion of patch atoms that reside within 4 Å from convex
8 Average evolutionary rate of the patch
9 Solvent accessibility scale
0 Exposed residues scale

31 Amino-acid composition scale
2 Amino-acid polarity scale
3 Amino-acid molecular volume scale
4 Amino-acid hydrophilicity scale
5 Amino-acid flexibility scale
6 Amino-acid antigenicity scale

37 Amino-acid hydrophilicity scale
8 Beta-turns scale
9 Amino-acid polarity scale
0 Factor1 scale

41 Factor2 scale
2 Factor3 scale
3 Factor4 scale
4 Factor5 scale
unology 46 (2009) 840–847

CDR), which were computed using the Surface Racer program
properties 24 and 25); the average curvature of the patch atoms
atom level geometrical shape), which was also computed using
he Surface Racer program (property 26); the fraction of patch
toms that are within a distance of 4 Å from the convex hull
f the protein structure (patch level geometrical shape), which
as constructed using the computational geometry algorithms

ibrary (http://www.cgal.org) (property 27); and the average evo-
utionary conservation of the patch, which was computed using
ur Bayesian estimation method (Mayrose et al., 2004) (prop-
rty 28). The remaining 16 properties are the average score of a
atch residues according to amino-acid propensity scales, most
f which have been previously used to predict epitopes: solvent
ccessibility (Emini et al., 1985) (property 29); exposed residues
Janin and Wodak, 1978) (property 30); composition (Grantham,
974) (property 31); polarity (Grantham, 1974) (property 32);
olecular volume (Grantham, 1974) (property 33); hydrophilic-

ty (Hopp and Woods, 1981) (property 34); flexibility (Karplus and
chulz, 1985) (property 35); antigenicity (Kolaskar and Tongaonkar,
990) (property 36); hydrophilicity (Parker et al., 1986) (prop-
rty 37); beta-turns (Pellequer et al., 1993) (property 38); polarity
Ponnuswamy et al., 1980) (property 39); and a set of five scales
factor1–5) that were found to summarize ∼500 different propen-
ity scales using a multivariate statistical analysis (Atchley et al.,
005) (properties 40–44).

.4. Scoring a patch based on its immunogenic properties

The model for computing the immunogenic score of a patch is
he Naïve Bayes classifier, which follows the Bayes theorem:

(patch = E|ip1, . . . , ipn) = P(patch)P(ip1, . . . , ipn|E)
P(ip1, . . . , ipn)
denotes epitope and ipi denotes immunogenic property i. Since
(ip1, . . ., ipn), is constant and all patches have the same prior
robability P(patch), only the term: P(ip1, . . ., ipn|E) determines the

mmunogenic score. The Naïve Bayes classifier assumes conditional
ndependence between the properties. Thus, the score computed

Included in the optimal set of properties

N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, A, R, C, H, L, F, S, T, V

: helices, beta-strands, and loops, Helices

be radius = 1.4 Å) +
) approximating an antibody CDR +

+
hull of the antigen +

http://www.cgal.org/
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or the examined patch is:

(ip1, . . . , ipn|E) =
n∏

i=1

P(ipi|E).

(ipi|E) is an abbreviated expression for the probability of observing
specific value of immunogenic property i given that the patch is

n epitope. These expressions are computed based on the training
tage of the algorithm (described below).

.5. Training the classifier

The value of each immunogenic property was measured for all
pitopes in the train dataset (e.g., for each structure the frequency of
yrosine residues in each epitope divided by their frequency in the
orresponding non-epitope surface). Then, for each property these
alues were binned in order to construct a discrete histogram. The
istogram was initially subjected to the Grubbs test for removing
utliers (Grubbs, 1969). Following that, the number of equally sized
ins in each histogram was determined. To this end, we require
hat a histogram will be unimodal. This requirement stems from
ur belief that multiple local maxima are an artifact that is cre-
ted because the train data do not contain enough observations
o reliably populate all bins. Thus, the binning process begins by
electing an initial high number of bins, which is iteratively reduced
s long as the histogram contains multiple maxima. Each such his-
ogram is thus used to compute the probability that a certain patch
s drawn from a population of epitopes given its corresponding
mmunogenic property. For example, if a certain patch is evalu-
ted for its immunogenic potential according to the ratio of the
requency of tyrosines in it versus the corresponding remaining
urface. The observed value of this property for that patch is 1.25
nd it corresponds to a histogram bin with probability = 0.5. Then,
(iptyrosine = 1.25|E)=0.5 for that patch.

.6. Benchmark dataset

We compiled a benchmark dataset of antigens for which the epi-
ope is reliably determined. This dataset was used both for training
nd testing the algorithm. Each dataset member is a protein anti-
en, for which the epitope (or epitopes) is reliably determined.
raining and testing an algorithm on the same data can signif-
cantly bias the results, due to over-fitting of the algorithm to
he data. To avoid this, we used a cross-validation procedure in
hich one part of the data is used for training and the remain-

ng part—for testing. This procedure is repeated several times, each
ime with a different part of the data serving as the train set and the
emaining part as the test set. The overall performance is eventu-
lly computed as the average performance over all data partitions
o train and test sets. In this work, we implemented the leave-one-
ut cross-validation approach, which is suitable for small datasets
Cawley, 2006). Thus, in each of the n cross-validation iterations
n is the size of the dataset) the algorithm is trained on all but
ne of the dataset members, and tested on this left-out dataset
ember.
For the structure dataset, all available antibody–antigen

o-crystal structures were retrieved from the SPIN server of
rotein–protein complexes (http://trantor.bioc.columbia.edu/cgi-
in/SPIN/). This dataset was then subjected to a filtering process as
escribed in Rubinstein et al. (2008). This produced a dataset of 49

o-crystal structures. Dataset members of antigens that were co-
rystallized with different antibodies were united. Consequently,
7 non-redundant co-crystal structures of antibody–antigen com-
lexes were retained. During completion of this work Ponomarenko
nd Bourne (2007) published a benchmark dataset of epitopes

w
p
u
o
p

unology 46 (2009) 840–847 843

lso inferred from 3D structures of antibody–antigen complexes.
s both datasets share approximately 90% of the structures we
ecided to use only the dataset constructed by us. Validated epi-
ope residues were defined as those for which at least one exposed
tom was found to be in contact with the antibody. This was deter-
ined from the antibody–antigen complex, using the Contacts of

tructural Units program (Sobolev et al., 1999).
A non-redundant set of validated linear epitopes was obtained

rom the Bcipep database (Saha et al., 2005). Only epitopes for
hich the antigen sequence is available in the NCBI protein
atabase (http://www.ncbi.nlm.nih.gov/sites/entrez?db=Protein)
ere retained from this list. In case a certain antigen sequence
ad more than one epitope, these epitopes were united. This
esulted in 194 antigen sequences. The datasets can be found at:
ttp://www.tau.ac.il/∼talp/EpitopePrediction.

.7. Performance evaluation

In the algorithm training stage, each antigen residue in both the
tructure and the sequence datasets is regarded as either a validated
epitope residue” or a “non-epitope residue”. As described above,
he algorithm computes a score for each residue, which reflects
ts immunogenic potential. Intuitively, in a successful prediction,
epitope residues” should be scored higher than the average over
ll residues. We thus considered a prediction to be successful if
he average score of “epitope residues” exceeds the average score
ver all residues. Hence, the prediction for each dataset member is
egarded as either successful or not. This approach was applied to
valuate the performance of our prediction method, and for com-
arison to other prediction methods that also assign a score to each
esidue.

We also report the area under the receiver operating charac-
eristic (ROC) curve (AUC) (Fawcett, 2006). Although the AUC is
raditionally used for diagnosing the performance of classification

odels (e.g., Ponomarenko and Bourne, 2007 used the AUC mea-
ure for evaluating several extant epitope prediction methods), we
ote that it is somewhat inadequate when it comes to assessing
he performance of epitope prediction methods. This is because the
OC analysis considers predictions that are not part of any validated
pitope as false predictions. However, since the antigens in our data
ossibly contain a far larger number of epitopes than are currently
nown, the AUC underestimates the actual predictive power of the
lassifier.

.8. Feature selection

Among the 44 immunogenic properties (Table 1), not all nec-
ssarily contribute to the prediction of epitopes. Moreover, while
any properties can independently contribute to the prediction

ask, some may be highly correlated and such redundancy may
ctually prevent reaching optimal predictive power. Hence, a sub-
et of these properties may produce optimal predictive power. To
his end, an exhaustive search over all possible combinations of
mmunogenic properties should be performed. However, due to the
arge number of properties, this option is computationally unfea-
ible. Therefore, we applied a top-down heuristic search for this
ask. Starting with all 44 immunogenic properties, this set was
teratively reduced until only a single property remained (to pre-
ent premature convergence to a suboptimal set of properties). The
mmunogenic property deleted at each iteration was the one for
hich its deletion had the least effect on the number of successful
redictions (as defined above), computed for the entire test dataset,
sing the leave-one-out cross-validation procedure. Finally, the set
f properties that resulted with the highest number of successful
redictions was selected as the optimal set.

http://trantor.bioc.columbia.edu/cgi-bin/SPIN/
http://www.ncbi.nlm.nih.gov/sites/entrez?db=Protein
http://www.tau.ac.il/~talp/EpitopePrediction
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.9. Applying the algorithm to antigen sequences

When only the sequence of the antigen is available, a few mod-
fications for the prediction algorithm are applied. Whereas for an
ntigen structure each residue is scored based on a patch surround-
ng it, for an antigen sequence each residue is scored based on a
egment of n − 1 consecutive residues (stretch) flanking it, and the
enter residue itself. We used n = 7, which was found to be the aver-
ge length of an epitope segment in the sequence dataset. The three
esidues at the N and C terminals of the antigen sequence do not
efine any stretch of 7 residues and hence are given the same score
s the first and last stretches in the sequence, respectively.

Some of the immunogenic properties derived from antigen
tructures are irrelevant for antigen sequences. These include for
xample, structural–geometrical properties that cannot be derived
rom the sequence. Nevertheless, a few structural features can be
eliability predicted from the protein sequence (Rost et al., 2004).

e thus defined 41 immunogenic properties (Table 2): the ratio
etween the frequency of each of the 20 amino-acids in the stretch
nd the corresponding remaining sequence (properties 1–20);
he ratio between the frequency of each of the main secondary-
tructure elements (helix, beta-strand, and loop) in the stretch,
nd the corresponding remaining sequence, which were obtained
sing the PredictProtein program (Rost et al., 2004) (properties
1–23); the predicted average relative solvent accessibility (Rost
t al., 2004) (property 24); the average evolutionary conservation
f the stretch (Mayrose et al., 2004) (property 25); and the same 16
ropensity scales used for structure-based prediction (properties
6–41). Using the same performance assessment method as for the
tructure-based algorithm, we also applied the top-down heuris-
ic search to select the optimal set of immunogenic properties for
equence-based prediction.

.10. Program availability

The algorithms described in this work are implemented in C++.

he obligatory inputs for the structure-based algorithm are the PDB
le of the antigen and the corresponding required chains. For the
equence-based algorithm, the obligatory input is a Fasta format file
f the antigen sequence. The executable and accompanying scripts
re available at: http://www.tau.ac.il/∼talp/EpitopePrediction.

t
p
w
b
I

able 2
mmunogenic properties for sequence-based prediction

roperty number Immunogenic property

1–20 Ratio between the frequency of each of the 20 amino-acids: A, R,
W, Y, V, in the stretch and the remaining sequence

21–23 Ratio between the frequency of the secondary structure elements
in the stretch and the remaining sequence

4 The average relative-accessibility of the stretch to the solvent
5 Average evolutionary rate of the stretch
6 Solvent accessibility scale

27 Exposed residues scale
8 Amino-acid composition scale
9 Amino-acid polarity scale
0 Amino-acid molecular volume scale

31 Amino-acid hydrophilicity scale
2 Amino-acid flexibility scale
3 Amino-acid antigenicity scale
4 Amino-acid hydrophilicity scale
5 Beta-turns scale
6 Amino-acid polarity scale

37 Factor1 scale
8 Factor2 scale
9 Factor3 scale
0 Factor4 scale

41 Factor5 scale
unology 46 (2009) 840–847

. Results

.1. Prediction performance

For evaluating the performance of our algorithm we applied
he leave-one-out cross-validation procedure both for the struc-
ure and sequence predictions and computed the resulting success
ate. When the entire set of 44 properties (Table 1) was used
or prediction of immunogenic regions of the structure dataset,
he number of successful predictions amounted to 33 out of 47
ataset members (70.3%). For prediction of immunogenic regions
f the sequence dataset, the number of successful predictions, using
he entire set of 41 properties (Table 2), amounted to 137 out
f 194 dataset members (70.6%). Naturally, one would expect a
igher success rate for the structure-based prediction given that
he corresponding classifier is provided with a richer set of prop-
rties (structural–geometrical properties that are unavailable for
equences). Nevertheless, as we show below, this is probably the
esult of dilution of the structural signal with many sequence
elated properties, which constitute the majority among the set
f 44 properties used to obtain the above results.

.2. Determining the optimal set of immunogenic properties

Using an exceedingly large set of properties may result with
uboptimal predictive power since the inclusion of several prop-
rties contributes more noise than signal. Thus, a feature selection
rocedure was applied to obtain the set of properties that max-

mizes the algorithm’s predictive power in terms of success rate.
or the structure-based prediction, the feature selection procedure
educed the number of properties from 44 to 14 (Table 1), and sig-
ificantly improved the success rate from 33 to 43, out of 47 dataset
embers (from 70.3% to 91.4%, P = 0.04; G-test). Although the fea-

ure selection was not devised for optimizing the AUC measure,
e note that this procedure also significantly increased the aver-

ge AUC from 0.6 to 0.65 (P < 10−20; paired t-test). Interestingly,

he optimal set of properties included both structural–geometrical
roperties (e.g., the average curvature of the patch atoms) as
ell as physico-chemical properties (e.g., the frequency ratios
etween patch and remaining antigen surface of valine residues).

n contrast, none of the propensity scales (properties 29–44,

Included in the optimal set of properties

N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, N, Q, L, K, M, S, T, V

: helices, beta-strands, and loops,

+

+
+
+

+
+

http://www.tau.ac.il/~talp/EpitopePrediction
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able 1) were retained in the optimal set of immunogenic
roperties.

For the sequence-based prediction, the feature selection proce-
ure reduced the number of properties from 41 to 14, and increased
he success rate from 137 to 156, out of 194 dataset members (from
0.6% to 80.4%, P = 0.1; G-test). The corresponding improvement
n average AUC was from 0.55 to 0.59 (P < 10−20; paired t-test).
n contrast to the structure-based prediction, none of the pre-
icted structural properties were retained in the optimal set of
roperties (Table 2), however five propensity scales did remain

n this set. We hypothesize that this stems from the fact that at
east part of the epitopes in the sequence data were defined as
uch since they manifest peak scores using different propensity
cales.

A comparison between the structure and sequence based pre-
ictions shows that the structure-based prediction has greater
redictive power (91.4% versus 80.4%, respectively, P < 10−4; G-test).
ince these results are approximately optimal, it can now be rea-
oned that this difference stems from the fact that the classifier
or the structure-based prediction is provided with a richer set of
roperties.

Two predictions of the structure-based algorithm are presented
n Fig. 2. Fig. 2A presents a typical prediction of the algorithm
pplied to the interferon-gamma receptor alpha chain (PDB iden-
ifier 1jrh, Sogabe et al., 1997), co-crystallized with its binding
ntibody. The largest predicted highly immunogenic region on the
urface of this antigen considerably overlaps the validated epitope.
everal other highly immunogenic regions are predicted, yet they
re much smaller and thus do not seem to be good epitope can-
idates. Fig. 2B presents a very successful prediction applied to
he vascular endothelial growth factor (PDB identifier 1bj1, Muller
t al., 1998), also co-crystallized with its binding antibody. In this
ase, 16 out of the 17 validated epitope residues are within the
ost immunogenic region predicted by our algorithm. As can be
een in the figure, the least immunogenic region on the surface of
his antigen is very bulgy, which is a favorable immunogenic prop-
rty. Nevertheless, its amino-acid composition is immunogenically
nfavorable. Thus, when all properties are considered this region
eceives a low immunogenic score.

i
2
a
s
(

ig. 2. Visualization of two predictions of the structure-based algorithm. The antigens and
f the antigen surface residues is color-coded according to its immunogenic level, defin
he prediction of immunogenic regions for interferon-gamma receptor alpha chain, co-cr
rediction of immunogenic regions for vascular endothelial growth factor, co-crystallized
unology 46 (2009) 840–847 845

.3. Comparison with other methods

Propensity scales have been traditionally used for predicting
mmunogenic regions in antigens. In this methodology, each anti-
en residue is assigned its corresponding score from the propensity
cale and the antigen is then scanned for high scoring regions. Since
oth our method and the propensity-scale-based method assign a
core for each residue in the antigen reflecting its immunogenic
endency, we were able to compare the two. For the structural
ataset, out of all 16-propensity scales, which were evaluated inde-
endently, those that produced the highest success rate, amounting
o 29 out of 47 dataset members (61.7% and a corresponding aver-
ge AUC of 0.57), are factor2 and factor5 (properties 41 and 44,
espectively, Table 1). Each of these propensity scales summarizes
n independent structural-functional aspect of nearly 500 different
ropensity scales (Atchley et al., 2005), where factor2 corresponds
o secondary structure propensity and factor5 corresponds to elec-
rostatic charge propensity. To the best of our knowledge, these
ropensity scales have not been used for epitope prediction. Among
he propensity scales that have been traditionally used for epi-
ope prediction, the solvent accessibility scale (Emini et al., 1985)
property 29, Table 1) was the most successful, producing a success
ate of 28 out of 47 dataset members (59.5%) and a correspond-
ng average AUC of 0.55. Since our method obtained a significantly
igher success rate (91.4% with AUC of 0.65, P = 0.004 and 0.0007;
-test, and paired t-test, respectively), it can be concluded that our
ethodology along with the suggested optimal set of immunogenic

roperties are much more appropriate for predicting immunogenic
egions in protein structures.

We repeated the above comparison, this time with our
equence-based prediction algorithm applied to the sequence
ataset. The two propensity scales that produced the highest suc-
ess rate, amounting to 132 out of 194 dataset members (68%
ith corresponding average AUCs of 0.57), are two different polar-
ty scales (Grantham, 1974; Ponnuswamy et al., 1980) (properties
9 and 36, respectively, Table 2). These two propensity scales are
mong the five propensity scales that were retained in the feature-
election procedure applied to the sequence-based algorithm
Table 2). Notably, the predictive power of the propensity-scale-

antibodies are represented in a space-fill and backbone models, respectively. Each
ed in the color legend. Non-surface residues are colored gray. (A) Visualization of
ystallized with its binding antibody (PDB identifier: 1jrh). (B) Visualization of the
with its binding antibody (PDB identifier: 1bj1).
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ased methodology is higher when applied to the sequence dataset
han to the structural dataset (68% versus 61.7%, P = 0.06; G-test).
his strengthens the notion that the epitopes of the sequence data
ere defined as such based on their peak scores computed using
ifferent propensity scales. In conclusion, this comparison suggests
hat relying on a set of properties rather than a single propensity
cale results with higher predictive power.

We further compared our method to several additional methods
hat perform the same task, which do not rely on a single propensity
cale. For the structure-based comparison we chose CEP (Kulkarni-
ale et al., 2005) and DiscoTope (Haste Andersen et al., 2006). In
rief, CEP locates linear stretches of residues on the antigen struc-
ure that are highly accessible to the solvent, and groups them into
atches if the spatial distance between them is below a certain
hreshold. These patches are then regarded as candidate immuno-
enic regions. DiscoTope on the other hand, operates in a mode
ore similar to the method described here. That is, it computes
score for each residue of the antigen, albeit, using fewer prop-

rties and without applying a machine-learning methodology. As
he candidate immunogenic regions predicted by CEP are not com-
uted a score, our performance evaluation method is inapplicable.
e thus decided to compare our method with CEP using the AUC
easure. We followed the methodology described in Ponomarenko

nd Bourne (2007) for computing the AUC values for CEP predic-
ions. The average AUC for 45 out of the 47 dataset members, for
hich a CEP prediction could be obtained, was 0.52. For the same

5 dataset members, the average AUC obtained by our method was
.65 (P < 10−8; paired t-test). The success rate, defined in this work,
f the DiscoTope method was found to be 40 out of 47 dataset mem-
ers (85.1%), with a corresponding average AUC of 0.56. For the
ame dataset our method succeeded in 43 out of 47 dataset mem-
ers (91.4%) with a corresponding average AUC of 0.65. We note
hat although the difference in average AUCs is statistically signif-
cant (P < 10−8; paired t-test), the difference in success rates is not
P = 0.47; G-test). Still, it should be reminded that the leave-one-
ut cross-validation procedure was only applied to evaluate the
erformance of our method; hence, this comparison may be biased

n favor of DiscoTope.
For comparison to our sequence-based algorithm we chose

BCpred (Saha and Raghava, 2006). ABCpred uses a recurrent neu-
al network scheme for predicting continuous epitopes for protein
equences. In their work, the authors show that ABCpred outper-
orms other extant sequence-based methods. In addition, we found
BCpred most appropriate for comparison since it was trained and
valuated on essentially the same data used in this work. This
omparison revealed that our method significantly outperforms
BCpred both in terms of success rate: 156 successful predictions
ersus 123 successful predictions, out of 194 dataset members,
espectively (80.4% versus 63.4%, respectively, P < 10−06; G-test),
nd in average AUCs: 0.59 versus 0.42, respectively (P < 10−32;
aired t-test).

. Discussion

The problem of predicting immunogenic regions is one of the
ldest (e.g., Arnon and Sela, 1969) and most challenging in immuno-
ormatics (Ponomarenko and Bourne, 2007). In early methods, the
xtent of available data upon which they were developed, was
xtremely limited and thus their premises and performance could

ot be thoroughly assessed. Although the availability of epitope
ata experienced a sharp incline in the recent decade, current
ethods do not fully utilize the large number of features that

haracterize epitopes within a robust inference framework. The
bservation, which motivated this work was that the problem of

g
(
T

unology 46 (2009) 840–847

pitope prediction is in fact a classical classification problem, and
hould be tackled as such with the rich methodology of machine-
earning already in hand.

In their evaluation of epitope prediction methods, Ponomarenko
nd Bourne (2007) concluded that current methodologies perform
oorly. This conclusion stemmed from the mediocre AUC values
valuated by the authors. Indeed, the use of the AUC as a per-
ormance measure is fully justified when each prediction can be
ccurately ascribed as true or false. However, such a reliable clas-
ification cannot be achieved for the current tested data, and it is
easonable to claim that these data contain a far larger number
f epitopes than are currently known. For this reason, the result-
ng AUC values are an underestimate of the actual predictive power
f epitope detection methods. The performance evaluation method
efined in this work is free from this limitation. This method simply
xamines whether validated epitope residues are distinct from the
orresponding non-epitope surface. Thus, in contrast to the AUC
easure, which accounts both for sensitivity and specificity (i.e.,

rue and false positive and negative predictions), in our approach
hese terms need not be directly defined. Moreover, a successful
rediction according to our approach not only indicates that val-

dated epitope residues obtained higher scores than average, but
lso that residues that are not part of a validated epitope and are
nlikely to be immunogenic obtained lower scores than average.
his approach is thus a more reliable measure for assessing how
ell a prediction algorithm succeeds in detecting its targets.

In Rubinstein et al. (2008), we detected a set of physico-chemical
nd structural–geometrical properties, which significantly distin-
uish epitopes from the remaining antigen surface. Out of such
1 properties, only six were ultimately included in the set of 14
roperties, which yielded optimal epitope predictions. This partial
verlap shows that not all properties that significantly distinguish
pitope from non-epitope surfaces in a robust statistical compari-
on can be used together to produce optimal predictive power. The
ifference between the two sets of properties presumably stems
rom the inherent differences between the two computational
pproaches (characterizing what distinguishes epitopes versus pre-
icting them). Perhaps the set of properties which is optimal for the
rediction task is comprised of the set of properties that best distin-
uish epitope from non-epitope surfaces under the limitation that
hey are non-redundant.

The challenge in this work was to rationally combine infor-
ation on epitope characteristics to develop a sophisticated tool

or predicting immunogenic regions. Such a challenge was also
oted by Ponomarenko and Bourne (2007) when suggesting future
irections for improving epitope prediction methods. As our algo-
ithm outperforms other methods for detection of immunogenic
egions, we believe that a significant progress towards solution of
his problem has been accomplished. The superiority of our method
lso indicates that the machine-learning approach is the natural
aradigm to address the problem at hand. Currently, our struc-
ural train data consist of merely 47 antibody–antigen co-crystals.
he continuous accumulation of additional data would certainly
oost the training stage, and is expected to continuously improve
he method’s predictive power. This increase in data should also
nhance the biological insights gained from this work as to which
roperties are most informative of immunogenicity.
This work was supported by the Wolfson Foundation, an ISF
rant no. 1208/04, and a grant from the Israeli Ministry of Science
to T.P.); and, by the Edmond J. Safra Program in Bioinformatics at
el Aviv University (to I.M. and N.D.R.).
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