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Insertions and deletions (indels) of short DNA segments are common evol-
utionary events. Numerous studies showed that deletions occur more often
than insertions in both prokaryotes and eukaryotes. It raises the question
why neutral sequences are not eradicated from the genome. We suggest
that this is due to a phenomenon we term border-induced selection. Accord-
ingly, a neutral sequence is bordered between conserved regions. Deletions
occurring near the borders occasionally protrude to the conserved region
and are thereby subject to strong purifying selection. Thus, for short neutral
sequences, an insertion bias is expected. Here, we develop a set of increas-
ingly complex models of indel dynamics that incorporate border-induced
selection. Furthermore, we show that short conserved sequences within
the neutrally evolving sequence help explain: (i) the presence of very long
sequences; (ii) the high variance of sequence lengths; and (iii) the possible
emergence of multimodality in sequence length distributions. Finally, we
fitted our models to the human intron length distribution, as introns are
thought to be mostly neutral and bordered by conserved exons. We show
that when accounting for the occurrence of short conserved sequences
within introns, we reproduce the main features, including the presence of
long introns and the multimodality of intron distribution.
1. Introduction
Insertions and deletions (indels) of short DNA segments are common molecular
evolutionary events [1], whose effect expands to macro-evolutionary processes,
such as the divergence among species [2–5]. By analysing homologous genomic
sequences across various prokaryotic and eukaryotic taxa, it was repeatedly
shown that deletions are more common than insertions [6–15], a phenomenon
termed ‘deletion bias’. The deletion bias raises a question: why genomes and
non-coding regions such as introns do not shrink over the course of evolution?
Intriguingly, the opposite has supposedly happened, as eukaryotes have larger
genomes [16], longer proteins [17] and much larger intergenic regions [18] com-
pared to prokaryotes. Petrov [19] suggested that the genome size is determined
by two competing forces: short indels that reduce the genome size and large
insertions (e.g. segmental duplications and the addition of transposable
elements) that increase it. While this description may partially explain the over-
all genome size, it does not explain the length distribution of neutral sequences,
such as introns, and the presence of short introns over a long evolutionary time.

He et al. [20] developed a deterministic model that describes how the length
of a neutral sequence evolves given insertion and deletion rates, and assuming
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that only indels of length one are allowed. The sequence
length grows exponentially when there is an insertion bias,
as one would expect. However, the sequence length grows
linearly when the insertion and deletion rates are equal,
which is quite counterintuitive. The authors explain it by
noting that insertions emerge in between nucleotides, and
thus, given a sequence of length N, there are N + 1 possible
positions for insertions and only N possible positions for del-
etions. Under the setting of deletion bias, He et al. [20]
suggested that neutral sequences will be eliminated. How-
ever, the more elaborated statistical model TKF91 [21] that
similarly allowed for indels of size one only, demonstrated
that under very weak deletion bias, neutral sequences will
be maintained.

Indel dynamics may partially explain the distribution of
intron lengths within and among organisms, and the length
difference between introns of closely related species is corre-
lated to indels [12,22]. Introns are non-coding sequences that
are mostly neutral [23], but reside between exons, which are
usually highly conserved [24]. The distribution of the intron
lengths is highly dispersed and thus it is usually plotted on
a log scale. On such a scale it is often multimodal [25]. For
example, the distribution of human intron lengths is bimodal
and ranges from 30 to 1 160 411 base-pairs [26]. Introns length
distributions of various organisms were fitted statistically
with a Frechet mixture model and demonstrated that in
almost all eukaryotes, the log intron length distribution is
composed of multiple distinct components. This phenom-
enon was hypothesized to stem from the presence of
alternative splicing mechanisms [25]. Other studies classified
introns according to their lengths and suggested that different
classes are characterized by different splicing signals [27] or
the presence of conserved elements [28].

In this work, we develop a general statistical framework
for indel dynamics and derive a set of models with increasing
complexity that depict the length distribution of neutral
sequences. We start with a simple model allowing indels of
length one only and reproduce TKF91 result stating that
under a very weak deletion bias, arbitrarily large sequences
are likely to appear. We extend this model by allowing
indels of various lengths and show that this allows the occur-
rence of neutral sequences even when the deletion bias is
substantial. This is due to selection against deletions that
encompass conserved regions at the neutral sequence bor-
ders, a phenomenon we term border-induced selection.
Moreover, we suggest a model that includes small-conserved
elements embedded within the neutral sequence. The pres-
ence of these elements may significantly increase the
neutral sequence length as they multiply the intensity of
border-induced selection. Finally, we test how well our
indel models explain the empirical intron length distribution
in human. We show that the quantitative fit of the models
improves with model complexity. Moreover, our framework
provides an explanation for the multimodality observed in
the distribution of intron lengths.
2. Results
2.1. General model of length evolution
Our general goal is to understand how the length of neutral
sequences evolves through generations. We start by
describing a simple stochastic process for sequence length
evolution. As we are only interested in length variation, sub-
stitutions are ignored, i.e. we implicitly assume that indel
evolutionary dynamics is context independent, that is, the
probability of indel events and their type does not vary as
a result of substitutions. Further, we assume that the length
can vary only due to indel events, and thus we ignore the
possible contribution of rare events such as segmental dupli-
cations. In general, the variation of sequence length through
generation can be described as follows:

Ln ¼ Ln�1 þ DLn�1, ð2:1Þ

where Ln is a random variable denoting the length of the
sequence in generation n, and DLn�1 is a random variable that
quantifies the sum of insertion and deletion lengths in the
transition from generation n� 1 to generation n. Different
assumptions regarding the indel dynamics would change
the distributions of DLn�1 and thus the stationary distribution
of Ln. In the models proposed below, we focus on neutral seg-
ments that are bordered between highly conserved segments.
We demonstrate the applicability of our models to introns,
which we approximate as neutrally evolving sequences.

2.2. Human intron length distribution—empirical
dataset for model validation

Below, increasingly complex models were tested for their fit
to the human intron length distribution, as a representative
of a large and well-curated empirical dataset. The human
length distribution is characterized by the following features:
mean intron length of approximately 7000 base-pairs (bp),
standard deviation (s.d.) of approximately 20 000 bp and a
range that spans over five orders of magnitude: the minimal
intron size is 30 bp, and the maximal is 1 160 411 bp [26]. Fur-
thermore, the distribution of the logarithm of the length is
bimodal [25], with the main and minor modes at 2100 and
100 bp, respectively (figure 1).

2.3. Model with indels of size one
We start with a simple model (M1) that allows only insertions
and deletions of size one and a uniform distribution of indel
events along the sequence. We also assume that the sequence
in question is placed between two conserved sequences that
cannot be deleted. Therefore, even if the sequence length
goes to zero in a certain generation, it can revive. This is ana-
logous to the immortal link of the TKF91 model [21]. Under
this model, the distribution of DLn�1 is

DLn�1 ¼
1 pi(Ln�1 þ 1)
0 otherwise
�1 pdLn�1

8<
: : ð2:2Þ

In this model, pi and pd are the probabilities of an inser-
tion and deletion event, per character per generation,
respectively. In each generation, the length can vary by no
more than a single character. We also assume that events
are extremely rare, and thus, both pi(Ln�1 þ 1) and pdLn�1

are much smaller than 1.0, even for sequences longer than a
million characters [29]. Since insertions occur between charac-
ters, there is an additional place for insertions compared to
deletions, i.e., deletions can only occur upstream to each char-
acter while an insertion can also occur downstream to the last



(a) (b)

(c) (d)

1 10 102 103

length (base-pairs)

de
ns

ity

104 105 106 1 10 102 103

length (base-pairs)
104 105 106

1 10 102 103 104 105 106 1 10 102 103 104 105 106

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

de
ns

ity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
empirical
simulated

Figure 1. Empirical and simulated distributions of intron lengths in human. In each panel, the blue line shows a length distribution derived from the human intron
empirical data. The red line is the distribution obtained using simulations with one of the models M1–M4. In all models, the length distribution was derived from 10,000
simulations. (a) The simulations are derived from M1, with the following parameters: r ¼ 0:9995, pi ¼ 0:9995 � 10�7, pd ¼ 10�7. The MSE is 0.64; (b) the simu-
lations are derived from M2 with the following parameters: r ¼ 0:9975, pi ¼ 0:9975 � 10�7, pd ¼ 10�7, mi ¼ 17, md ¼ 5. The MSE is 0.34; (c) the simulations
are derived from M3 with the following parameters: r ¼ 0:983, pi ¼ 2:68 � 10�8, pd ¼ 10�7, mi ¼ 16:5, md ¼ 4:5. The MSE is 0.31; (d ) The simulations are
derived from M4 that relies on the output of M3 model. The M3 parameters used here are r ¼ 0:9776, pi ¼ 2:65 � 10�8,pd ¼ 10�7, mi ¼ 16:5, and md ¼ 4:5.
The M4 model parameters are le ¼ 88, li ¼ 35, and pc ¼ 0:69. The MSE is 0.29.

generation

se
qu

en
ce

 le
ng

th

0

10

20

30

steady state pi < pd
40

50 pi > pd
pi = pd
pi < pd

0 500 1000 1500 2000 2500
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L0 ¼ 0, pd ¼ 0:01, pi ¼ (0:0105 or 0:01 or 0:009).
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character. For example, if an intron is of length three bases,
insertions can occur at four possible locations, while deletions
can occur at only three locations (i.e. upstream of each base).

Given the stochastic process described above, taking
expectations from both sides of equation (2.1) yields:

Ln ¼ Ln�1 þ pi(Ln�1 þ 1)� pdLn�1: ð2:3Þ

Equation (2.3) coincides with the model of He et al. [20].
The solution for equation (2.3) for the case in which pi ¼ pd
is a linear growth, where L0 is the expectation of the sequence
length at the beginning of the process:

Ln ¼ L0 þ npi: ð2:4Þ

When pi = pd the solution is

Ln ¼ ðL0 � L1Þ(1þ pi � pd)
n þ L1, ð2:5Þ

where L1 ; pi=ðpd � piÞ. This notation is used as the length
converges to L1 when pi , pd and not to pi as reported by
He et al. [20]. If pi . pd, the exponential term grows to infin-
ity. Figure 2 demonstrates the behaviour of the solution of
equation (2.3) for the three regimes: pi . pd, pi ¼ pd, and
pi , pd.

We will focus on the deletion bias regime (i.e. pi , pd), as
it was repeatedly reported that deletions are more common
than insertions. The steady-state length, L1, depends solely
on the ratio between the insertion and deletion probabilities,
r ; pi=pd (multiplying the value of pi and pd by a fixed factor
has no effect on the stationary distribution—it only affects the
time till convergence; see Appendix A):

L1 ¼ r
1� r

: ð2:6Þ
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Equation (2.6) shows that L1 can be arbitrarily long by
selecting the appropriate r-value. For example, when
r ¼ 0:9, 0:99, 0:999 then L1 � 9, 99, 999, respectively.
Under this model, when the sequence is shorter than L1,
it has an insertion bias even though pi , pd. For
example, when the sequence length is one, there are two
possible insertions and a single possible deletion, thus if
pi . pd=2 the sequence will have an insertion bias. Of
note, equation (2.6) is the same as reported in the TKF91
model [21].

The above model clearly does not fit the human empirical
intron data. Shown in figure 1 is the distribution of the intron
lengths of the human genome (see Materials and Methods).
The mode of this distribution is 2100 bp. Simulations with
the above model allow obtaining estimate of the stationary
distribution for each value of r. We searched for the value
of r that provides the best fit in terms of mean squared
error (MSE) between the empirical and simulated length dis-
tributions of human introns (see Materials and Methods). The
optimal value of r was 0.9995 with an MSE of 0.64. Although
for this value of r the main mode of the empirical distribution
matches the mode of the simulated stationary distribution,
the two distributions vary greatly with respect to their
shapes (figure 1a). Specifically, while the empirical distri-
bution has a heavy right tail, these long introns are missing
from the stationary distribution generated by the model. In
addition, the empirical distribution has a second mode near
100 bp, which is missing from the simulated distribution.
Given this discrepancy, we now turn to a more complex
model that relaxes the oversimplified assumption that all
indels are of size one.
2.4. Model with indels of fixed arbitrary size
We generalize the above-described model by adding par-
ameters mi and md that are the insertion and deletion
lengths, respectively. Of note, these lengths are considered
constant (below, we relaxed this assumption by allowing a
distribution of indel sizes). Under M2, the distribution of
Ln�1 is

DLn�1 ¼
mi pi(Ln�1 þ 1)
0 otherwise

�md pdpvalidLn�1

8<
: : ð2:7Þ

We note that because deletions are no longer restricted to
have a length of one, some deletions may extend from the
neutral sequence to its conserved flanking regions, entailing
substantial fitness reduction, and thus such deletions
are rejected. This is reflected in the extra factor pvalid in
equation (2.7). Given the value of Ln�1 and md, pvalid can be
computed by

pvalid ¼ max
Ln�1 � md þ 1

Ln�1
,0

� �
: ð2:8Þ

Of note, if the proposed deletion length is larger than the
current sequence length, equation (2.8) will assign a prob-
ability of zero to pvalid, suggesting that neutral sequence
segments are immune to deletions larger than their size.
Under this scenario, there is a bias for insertions in neutral
sequences that are very short (see also [30]).

Taking the expectation of both sides of equation (2.1),
accounting for the distribution of DLn�1 as in equations
(2.7–2.8) yields

Ln ¼ Ln�1 þ pimi(Ln�1 þ 1)

� pdmd
(Ln�1 � md þ 1), if md � Ln�1

0, if md . Ln�1

�
: ð2:9Þ

The first two termson the right-hand side resemble equation
(2.3), except that the second term is multiplied by the insertion
lengthmi. The third term indicates that no deletions are allowed
when md . Ln�1. As expected, when we choose mi ¼ md ¼ 1,
equation (2.9) reduces to equation (2.3). Of note, equation (2.9)
is effectively a three-parameter difference equation. Let r be
the ratio between the expectation of the insertion length and
the expectation of the deletion length: r ; ðpimiÞ=ðpdmdÞ. Note
that r, as defined for M1 (equation 2.6), is a special case of the
r in M2, when mi ¼ md ¼ 1. Using these definitions, we can
rewrite equation (2.9) with three parameters r, pd, and md:

Ln ¼ Ln�1 þ rpdmd(Ln�1 þ 1)

� pdmd
(Ln�1 � md þ 1), if md � Ln�1

0, if md . Ln�1

�
: ð2:10Þ

When the steady-state length, L1, is substantially larger
than md, we can approximately ignore the md . Ln�1

condition and solve the following equation:

Ln ¼ Ln�1 þ rpdmd(Ln�1 þ 1)� pdmd(Ln�1 � md þ 1): ð2:11Þ

The solution of equation (2.11) resembles the solution of
equation (2.3):

Ln ¼ ðL0 � L1Þ(1þ (r� 1)pdmd)
n þ L1: ð2:12Þ

The steady-state sequence length, L1 is

L1 ¼ rþ md � 1
1� r

: ð2:13Þ

It is interesting to compare the properties of M2 and M1.
First, as expected, if md and mi are set to be 1, M2 reduces to
M1. Second, when r is close to 1, L1 under M2 is roughly md

fold larger than L1 under M1. Third, when r is close to 0,
there are substantially more deletions than insertions, and
thus the md . Ln�1 condition of equation (2.10) may not be
negligible. Under such a high-deletion regime, many del-
etions are rejected and L1 should be larger than the value
predicted by equation (2.13). Hence, in this case, the value
in equation (2.13) can be considered as a lower bound for
the steady-state length.

To fit this model to the human empirical intron data, we
assume that the mean insertion and deletion lengths are 16.5
and 4.5 bp, respectively, as reported by Matthee et al. [31] for
introns in mammals. We use 17 and 5 bp, as this model sup-
ports only integers. We scanned the r parameter, using the
same procedure we applied for M1, and the r-value that
yielded the optimal fit was 0.9975 with an MSE of 0.34,
which is a substantial improvement over the MSE obtained
for M1. The inferred r-value is slightly lower than that
obtained using the M1 model. The increased fit and the fact
that the shape of the M1 and M2 distributions are different
emphasize the importance of the conserved regions at the
edges of the neutrally evolving sequence, i.e. boundary-
induced selection. Figure 1b shows that despite the increased
fit as measured by the MSE value, substantial discrepancies
remain between the simulated and the empirical
distributions.
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2.5. Model with indels of varying sizes
We generalize the above model by relaxing the assumption
that the insertions and deletions are of constant length.
Thus, in M3 we assume that the length of each indel is
drawn from a specified distribution. Let f( � ) and g( � )
be the length distributions of insertions and deletions,
respectively. The distribution of Ln�1 under this model is

DLn�1 ¼
i pif(i)(Ln�1 þ 1) 1 � i � mzip

0 otherwise
�d pdg(d)pvalid(d)Ln�1 1 � d � mzip

8<
: : ð2:14Þ

The probability that a deletion is valid depends on the
deletion length, as described in equation (2.8). The larger
the deletion length d is, the smaller pvalid(d) is. In equation
(2.14), pvalid(d) is a function of Ln�1, which complicates the
analytic computation of the expectation of DLn�1.

In this work, we assume a truncated Zipfian distribution
for both insertions and deletions, as in Loewenthal et al. [10]:

f(kja,mzip) ¼ k�aPmzip

i¼1 i�a
: ð2:15Þ

This distribution has two parameters a and mzip, which
control the shape of the distribution and the maximally
allowed indel length, respectively. We assume that both
insertion and deletion lengths are Zipfian distributed, but
we allow different a parameters for insertions and deletions.
Unless otherwise stated, mzip is set to 150 throughout this
work. We denote by mi and md the expectations of the trun-
cated Zipfian distribution for insertions and deletions,
respectively.

In Appendix B, we show using simulations that the mean
value of this distribution, L1, for M3 is about 4.5 fold higher
compared to model M2 when using the same set of par-
ameter values. The higher mean in M3 compared to M2
stems from the higher probabilities that proposed long
deletions are rejected.

The mean of the stationary distribution in M3 (i.e. L1) is
often larger than the mean deletion length, even under a
very strong deletion bias regime. For example, when r =
0.25, md ¼ 15, and mi ¼ 5, the mean length is 23.2 bp
(figure 3). This can be explained by the fact that when the
segment length is shorter than the mean deletion length,
most deletions are rejected, and thus, effectively, a strong
bias for insertions exists.

Applying this model to the human intron length distri-
bution, we found that the best fit is obtained with
r ¼ 0:983, yielding an MSE of 0.31. In this computation we
applied the mean indel lengths as reported in Matthee et al.
[31] (i.e. md ¼ 4:5 and mi ¼ 16:5; figure 1c). The modes of
the empirical and simulated distributions are similar. How-
ever, major discrepancies between the shapes of the two
distributions exist: the means and s.d. of the distributions
are (6793; 21 860) and (1684; 2354) bp for the empirical and
simulated distributions, respectively. There is also an
additional peak in the empirical distribution (bimodality)
that is absent in the simulated distribution.
2.6. Conserved segments
We propose a toy statistical model, M4, to qualitatively
demonstrate that conserved segments embedded within the
neutrally evolving sequence may explain the gap between
the theoretical and empirical distributions. Accordingly, in
M4 we assume that in each neutral sequence there is some
probability, pc, that it includes a single conserved sequence
of length li within it. Let le denote the total length of the con-
served sequences in the edges of an intron (i.e. the 50 and the
30 splice sites). Of note, that the length of the conserved
sequence on each edge may be different, and le represents
their sum. To simulate this model, for each neutral sequence,
a Bernoulli trial is executed with probability pc to decide if
there is a conserved sequence within the intron sequence
(in M4, we only allow a single internal conserved sequence).
If there is no conserved sequence, then the length of the
intron is the sum of le and the length of a single stochastic
simulation under M3. If a conserved sequence is introduced,
the length of the intron is the sum of le and li, and the lengths
of two stochastic simulations under M3. For simplicity, we
assume that the parameters le, li, and pc are the same for all
the simulated introns. The optimized simulated distribution
is shown in figure 1d. In contrast with the fit in model M3,
now the simulated distribution is bimodal similarly to the
empirical distribution. The fit between the two distributions
slightly improved (the MSE decreased from 0.31 to 0.29),
the value of r decreased to 0.9776, and the mean and the
s.d. of the sequence length both slightly increased, reaching
(2149; 2365) bp. The fitted parameters under M4 are le ¼ 88,
li ¼ 35, and pc ¼ 0:69. The high pc value suggests that most
of the introns have a conserved internal segment. Thus, con-
served segments may explain the low peak in the intron
length distribution, it widened the length distribution and
resulted in a lower value of r.

Here and in previous works [25], the intron length values
are transformed using the log function prior to their visual-
ization as a distribution. This is justified, as the intron
lengths are spread over five orders of magnitude. This results
in a bimodal distribution. Note that when the same empirical
distribution is plotted without log scaling, the bimodality dis-
appears (figure 4a), meaning that this is an artefact of the
contraction made by the log scale. Our analyses suggest
that the inclusion of conserved segments (both within and
in the border of introns) leads to the appearance of bimodal-
ity in the log scale and to longer introns. The bimodality due
to the introduction of an internal conserved segment is more
intuitive, as M4 splits the introns to two groups: introns with
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ments at the edges of the introns. The mean value increased to 2067 bp,
reflecting how internal conserved segments may significantly increase the
intron lengths. In black, running the simulations with conserved segments
both within and at the edges of the intron. The M4 parameters were
le ¼ 88, li ¼ 35, and pc ¼ 0:69. The mean length is 2158 bp. Of note,
this distribution was generated with the same parameters as in figure 1d
and the small differences reflect stochastic variations.
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an internal conserved segment and introns without one. The
edge conserved segments, which are mathematically equival-
ent to adding a constant to the distribution, can also create a
mode in log scale, but not on a linear scale, because of the
contraction of the log scale. Specifically, it is the introduction
of conserved elements in the borders of introns that mostly
explains the bimodality and the presence of internal con-
served elements that lead to the generation of longer
introns (figure 4b).
3. Discussion
In this work, we presented several increasingly complex
models for the length distribution of neutrally evolving
sequences. Critical to our models is the assumption that neu-
trally evolving segments are placed between highly
conserved sequences. We focused on the deletion bias
regime, which was shown in a large number of studies to
be prevalent across all domains of life [6–15]. It was pre-
viously suggested that this deletion bias leads to shrinkage
of genomes over evolutionary times [19]. Here, we showed
that the placement of conserved flanking sequences can
lead to the emergence of long sequences, even in a high-
deletion bias regime. The counterintuitive result that long
neutrally evolving sequences can emerge even under a
strong deletion bias is due to the rejection of deletions
that invade the highly conserved borders of the neutral
sequences. We hence propose the term border-induced
selection for this phenomenon.

To test the fit of our models to empirical genomic data, we
studied the length distribution of human introns, which are
thought to evolve mostly neutrally [23] and are in between
exons, which are generally highly conserved [24]. Using the
M3 model, we reconstructed the main mode of the empirical
distribution. However, M3 does not reproduce a secondary
lower peak of the distribution and does not explain the extre-
mely high variance of the lengths of introns, which in this
case spans over five orders of magnitude. Yet, the M3
model does not account for conserved segments within and
at the edges of introns. Examples for such conserved seg-
ments are the 30 and 50 splice sites, as well as intron
splicing enhancers and silencers [32–34]. We modelled the
presence of conserved segments within introns using M4,
and it resulted in both the emergence of a second peak and
a slight increase in the variance. We note that M4 only
allows a single intermediate conserved segment, and we
expect that a more elaborate model that allows multiple con-
served internal segments will better explain the presence of
very long introns.

As is often the case with models, many assumptions are
clear oversimplifications of biological reality. First, the
output of the stochastic model depends on the length
distribution of indels. As in previous work, we assumed
that this distribution follows a truncated Zipfian distribution
[10] with a cutoff of 150 characters. In our work, we did not
study if this is the best-fitting distribution, and it is possible
that other distributions may provide better fit to the data.
Our model also assumes perfect neutrality of the sequence
of interest, which is likely to be an oversimplified assumption
for species with a large effective population size. The model
also assumes a perfect conservation of the bordering con-
served elements. This is also true for the conserved regions
within introns. The effect of relaxing these assumptions
needs to be further studied. Of note, M4 is not a genuine sto-
chastic model with specified parameters controlling the
probability of emergence and loss of conserved regions.
However, we expect that a more complex model, which
addresses these limitations, will not change the main result
of our model, namely, that neutral sequences are not
purged under a deletion bias regime. Moreover, mobile gen-
etic elements, microsatellites, and genome rearrangement
events are all ignored in our study. Clearly, these factors
should be integrated when moving towards complex
models that aim to capture the main forces dictating
genome dynamics evolution. Finally, throughout this work,
we assumed that the empirical length distributions are in
equilibrium, and we thus compare them to the stationary dis-
tributions of our models. It may be the case that this
assumption too is an oversimplification of reality. While in
this work we focused on presenting the theory behind our
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models, and demonstrated them only on the evolution of
human intron lengths, our models provide a framework to
study length distribution of introns of other organisms, as
well as other neutrally evolving sequences such as prokaryo-
tic spacers [35]. For verification of these models in other
organisms, further studies regarding indel rates, length distri-
butions, and distribution of internal conserved segments
are required.

Our analyses show that as we move to increasingly more
complex models, the insertion-to-deletion rate ratio, r, gets
further away from the value of one. Equation (2.13) indicates
that as r gets closer to one, small perturbations of r lead to
sharp changes in intron length distribution. Since in our
models r is closer to one, the mode is unstable. For example,
changing the value of r between values such as, say, 0.9995
and 0.9998, would generate distributions with very different
means: from 2000 to 5000 bp in M1, respectively. Indeed,
the decrease in r as we move to more advanced models,
reaching an r of 0.98 in M4 lends an additional level of justi-
fication for these advanced models. We anticipate that
incorporating multiple conserved elements will further lead
to more stable models.

Previous studies provide indirect support for our pro-
posed models. First, Pozzoli et al. [28] compared mouse and
human introns, and showed that the deletion rate is higher
for long introns, in line with our models, because deletions
in short introns are often rejected, while in long introns,
there is little to none border-induced selection. Pozzoli et al.
also examined introns of similar length and found that the
number of conserved sequences is negatively correlated to
deletion rate, again in line with the existence of border-
induced selection. Moreover, the authors also showed that
almost all introns longer than 10 000 bp harbour conserved
sequences, emphasizing the important role conserved seg-
ments play in generating the heavy tail of the intron length
distribution. Second, Yang et al. [36] have recently shown
that within a genome, the intron size is correlated to the
alternative splicing level and prevalence. Sironi et al. [37]
showed a correlation between the logarithm of intron
length and the number of conserved sequences within the
intron. These observations can fit a general model, in which
tight regulation of splicing is associated with conserved intro-
nic regulatory elements, which, as we showed, lead to long
introns. Third, it was shown that first introns are much
longer, typically about double, than other introns, which
may be partially explained by the observation that functional
motifs are more frequent in first introns [38]. This observation
further supports the M4 model, in which the presence of con-
served segments leads to longer introns. Thus, both the
conserved edges of the neutral sequence and the conserved
elements within it contribute to the prevalence of long neutral
sequences. We note that in M4, the introns are no longer truly
neutral, as they are embedded with conserved segments
within them.

Our model provides a plausible explanation for the extre-
mely large variance in intron lengths within a species.
However, it does not directly explain differences in distri-
butions among species. One trivial explanation is that the
model parameters themselves evolve. Thus, different species
have different insertion-to-deletion rate ratios and, possibly,
different propensity for the emergence of conserved regions
within introns. These factors may be relevant not only to
the distribution of intron lengths, but rather for the entire
genome size. Indeed, eukaryotes generally have a lower del-
etion bias than prokaryotes [9], which may partially explain
the higher eukaryotes genome sizes and their higher vari-
ation [39]. It was previously shown that the total indel rate
is negatively correlated to the effective population size [29].
It was also shown that the effective population size times
the mutation rate is correlated to the mean length of introns
[40]. A dependence between the insertion-to-deletion ratio
and the effective population size, if exists, may help explain
this relationship: smaller population size leads to an
increased r, which in turn leads to longer introns.
4. Materials and methods
4.1. Intron length distribution
We downloaded the canonical genome of human from the
UCSC Genome Browser database [41]. The canonical
genome introns annotation is based on the longest coding
sequence isoform for each gene. The complete distribution
of intron lengths in the canonical human genome is provided
at https://github.com/elyawy/Luigi (last accessed 29 June
2022).

4.2. Simulations and optimization of model parameters
The simulations of M1, M2, and M3 are based on the Gille-
spie algorithm [42]. We used discrete generations, and thus
waiting times were geometrically distributed. The number
of generations needed to reach stationarity is dictated by
the transient part of equation (2.12), i.e. (1þ (r� 1)pdmd)

n.
We simulated until this factor was below 10�6.

Model parameters for M1–M3were optimized using a grid
search over the r parameter in the range [0.37, 0.9999]. The opti-
mal r parameter had the lowest MSE between the simulated
and empirical length distribution (in logarithmic scale). For
M4, we heuristically searched for the values of r, le, li, and pc
that best fit the empirical distribution according to theMSE cri-
terion. This was done using the module optimize of Python
SciPy package [43] using the ‘trf’ option, which is based on
the trust region algorithm described in Gould et al. [44].

4.3. Source code and implementation details
The source code and documentation of the C++ (models M1–
M3) and Python (model M4) implementations of the stochas-
tic simulations are available at https://github.com/elyawy/
Luigi (last accessed 29 June 2022).

Data accessibility. The data are provided in the electronic supplementary
material [45].
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Table 1. Multiplying the value of pi and pd by a fixed factor has no effect on the stationary distribution. Each row in the table represents a set of 10 000
simulations under M1 with the parameters pi and pd specified in the first two columns. Each set of simulations were run until convergence to the stationary
distribution. In each row, the parameters pi and pd were multiplied by 0.1 compared to the row above, so the r is fixed to 0.99 in all rows. The empirical
means and s.d. of the various sets are similar. We also performed a two-sided Kolmogorov–Smirnov (KS) test between the first simulation set and the other
sets. The null hypothesis, namely that the distributions are the same, cannot be rejected.

pi pd r empirical mean empirical s.d. KS. Stat. KS. p-value

9.90 × 10−07 1.00 × 10−06 0.99 98.50 99.86 — —

9.90 × 10−08 1.00 × 10−07 0.99 99.03 98.84 0.01 0.34

9.90 × 10−09 1.00 × 10−08 0.99 98.23 99.22 0.01 0.63

9.90 × 10−10 1.00 × 10−09 0.99 100.24 102.71 0.01 0.58
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Appendix A
See table 1.
Appendix B
We computed L1 for M3 using simulations with various
values for r, md, and mi. Here, mi and md denote the expec-
tations of the truncated Zipfian distribution for insertions
and deletions, respectively. Our simulations suggest that a
strong linear correlation exists between the simulated value
of L1 and the L1 values calculated based on equation
(2.13). Let kzipf be the slope of the regression line (assuming
an intercept of zero). Thus,

L1 ffi kzipf
rþ md � 1

1� r
: ðB:1Þ

Note that in this case, the value of r depends on both md

and mi. We also note that the truncated Zipfian distribution
depends on two parameters: a and mzip. The values of md

and mi can be computed given these two parameters. In
equation (B.1), kzipf may vary depending on mzip. The corre-
lation coefficient between the estimated L1 based on equation
(2.13) and L1 estimated using simulations was found to be
higher than 0.97 for all tested mzip values (electronic
supplementary material, figure S1).

The fact that the slope of the regression line is higher than
one in all cases (electronic supplementary material, figure S1)
suggests that introducing variation to the indel lengths
pushes the distribution of sequence lengths to higher
values, including increasing the average length L1 by a
factor kzipf . 1. We hypothesize that the reason for the shift
in sequence lengths is due to a reduction of the expectation
of the mean length of accepted proposed deletions, which
stems from the variation of indel lengths. Indeed, the expec-
tation of the length of accepted proposed deletions for an
arbitrary deletion length distribution g(d) for a sequence of
length L, E[a:d], is given by E[a:d] ¼ P

i
ig(d)pvalid. This expec-

tation has a compact form when the maximal deletion length
is lower than L: E[a:d] ¼ md � ð1=LÞ(md(md � 1)þ Vd) where
md and Vd are the mean length and variance of g(d), respect-
ively. As expected, when L ! 1, only the first term
contributes so E[a:d] ¼ md, but for a finite L, the negative
second term reduces E[a:d], and thus the reduction is
higher when variation in the allowed deletion length is
introduced.
References
1. Cartwright RA. 2009 Problems and solutions for
estimating indel rates and length distributions. Mol.
Biol. Evol. 26, 473–480. (doi:10.1093/molbev/
msn275)

2. Anzai T et al. 2003 Comparative sequencing of
human and chimpanzee MHC class I regions unveils
insertions/deletions as the major path to genomic
divergence. Proc. Natl Acad. Sci. USA 100,
7708–7713. (doi:10.1073/pnas.1230533100)

3. Britten RJ. 2002 Divergence between samples of
chimpanzee and human DNA sequences is 5%,
counting indels. Proc. Natl Acad. Sci. USA 99,
13633–13635. (doi:10.1073/pnas.172510699)

4. Britten RJ, Rowen L, Williams J, Cameron RA.
2003 Majority of divergence between closely related
DNA samples is due to indels. Proc. Natl Acad.
Sci. USA 100, 4661–4665. (doi:10.1073/pnas.
0330964100)

5. Wetterbom A, Sevov M, Cavelier L, Bergström TF.
2006 Comparative genomic analysis of human and
chimpanzee indicates a key role for indels in
primate evolution. J. Mol. Evol. 63, 682–690.
(doi:10.1007/s00239-006-0045-7)

6. Fitch WM. 1973 Aspects of molecular evolution.
Annu. Rev. Genet. 7, 343–380. (doi:10.1146/
annurev.ge.07.120173.002015)

7. Graur D, Shuali Y, Li WH. 1989 Deletions in
processed pseudogenes accumulate faster in rodents
than in humans. J. Mol. Evol. 28, 279–285. (doi:10.
1007/BF02103423)

8. De Jong WW, Rydén L. 1981 Causes of more
frequent deletions than insertions in mutations and
protein evolution. Nature 290, 157–159. (doi:10.
1038/290157a0)

9. Kuo CH, Ochman H. 2009 Deletional bias across the
three domains of life. Genome Biol. Evol. 1,
145–152. (doi:10.1093/gbe/evp016)

10. Loewenthal G et al. 2021 A Probabilistic model for
indel evolution: differentiating insertions from
deletions. Mol. Biol. Evol. 38, 5769–5781. (doi:10.
1093/molbev/msab266)

11. Mira A, Ochman H, Moran NA. 2001 Deletional bias
and the evolution of bacterial genomes. Trends
Genet. 17, 589–596. (doi:10.1016/S0168-
9525(01)02447-7)

12. Ogata H, Fujibuchi W, Kanehisa M. 1996
The size differences among mammalian introns are
due to the accumulation of small deletions. FEBS

http://dx.doi.org/10.1093/molbev/msn275
http://dx.doi.org/10.1093/molbev/msn275
http://dx.doi.org/10.1073/pnas.1230533100
http://dx.doi.org/10.1073/pnas.172510699
http://dx.doi.org/10.1073/pnas.0330964100
http://dx.doi.org/10.1073/pnas.0330964100
http://dx.doi.org/10.1007/s00239-006-0045-7
http://dx.doi.org/10.1146/annurev.ge.07.120173.002015
http://dx.doi.org/10.1146/annurev.ge.07.120173.002015
http://dx.doi.org/10.1007/BF02103423
http://dx.doi.org/10.1007/BF02103423
http://dx.doi.org/10.1038/290157a0
http://dx.doi.org/10.1038/290157a0
http://dx.doi.org/10.1093/gbe/evp016
http://dx.doi.org/10.1093/molbev/msab266
http://dx.doi.org/10.1093/molbev/msab266
http://dx.doi.org/10.1016/S0168-9525(01)02447-7
http://dx.doi.org/10.1016/S0168-9525(01)02447-7


royalsocietypublishing.org/journal/rsob
Open

Biol.12:220223

9

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

27
 J

an
ua

ry
 2

02
3 
Lett. 390, 99–103. (doi:10.1016/0014-
5793(96)00636-9)

13. Van Passel MWJ, Smillie CS, Ochman H. 2007 Gene
decay in archaea. Archaea 2, 137–143. (doi:10.
1155/2007/165723)

14. Fan Y, Wang W, Ma G, Liang L, Shi Q, Tao S. 2008
Patterns of insertion and deletion in mammalian
genomes. Curr. Genomics 8, 370–378. (doi:10.2174/
138920207783406479)

15. Zhang Z, Gerstein M. 2003 Patterns of nucleotide
substitution, insertion and deletion in the human
genome inferred from pseudogenes. Nucleic Acids
Res. 31, 5338–5348. (doi:10.1093/nar/gkg745)

16. Cavalier-Smith T. 1982 Skeletal DNA and the
evolution of genome size. Annu. Rev. Biophys.
Bioeng. 11, 273–302. (doi:10.1146/annurev.bb.11.
060182.001421)

17. Brocchieri L, Karlin S. 2005 Protein length in
eukaryotic and prokaryotic proteomes. Nucleic Acids
Res. 33, 3390–3400. (doi:10.1093/nar/gki615)

18. Ahnert SE, Fink TMA, Zinovyev A. 2008 How much
non-coding DNA do eukaryotes require?
J. Theor. Biol. 252, 587–592. (doi:10.1016/j.jtbi.
2008.02.005)

19. Petrov DA. 2002 Mutational equilibrium model of
genome size evolution. Theor. Popul. Biol. 61,
531–544. (doi:10.1006/tpbi.2002.1605)

20. He Y, Tian S, Tian P. 2019 Fundamental asymmetry
of insertions and deletions in genomes size
evolution. J. Theor. Biol. 482, 109983. (doi:10.1016/
j.jtbi.2019.08.014)

21. Thorne JL, Kishino H, Felsenstein J. 1991 An
evolutionary model for maximum likelihood
alignment of DNA sequences. J. Mol. Evol. 33,
114–124. (doi:10.1007/BF02193625)

22. Moriyama EN, Petrov DA, Hartl DL. 1998 Genome
size and intron size in Drosophila. Mol. Biol. Evol.
15, 770–773. (doi:10.1093/oxfordjournals.molbev.
a025980)

23. Resch AM, Carmel L, Mariño-Ramírez L, Ogurtsov
AY, Shabalina SA, Rogozin IB, Koonin EV. 2007
Widespread positive selection in synonymous sites
of mammalian genes. Mol. Biol. Evol. 24,
1821–1831. (doi:10.1093/molbev/msm100)
24. Siepel A, Haussler D. 2004 Computational
identification of evolutionarily conserved exons. In
Proc. of the Annu. Int. Conf. on Computational
Molecular Biology, RECOMB, pp. 177–186. New
York, NY: Association for Computing Machinery.

25. Gotoh O. 2018 Modeling one thousand intron
length distributions with fitild. Bioinformatics 34,
3258–3264. (doi:10.1093/bioinformatics/bty353)

26. Piovesan A, Caracausi M, Ricci M, Strippoli P, Vitale
L, Pelleri MC. 2015 Identification of minimal
eukaryotic introns through GeneBase, a user-friendly
tool for parsing the NCBI Gene databank. DNA Res.
22, 495–503. (doi:10.1093/dnares/dsv028)

27. Mount SM, Burks C, Herts G, Stormo GD, White O, Fields
C. 1992 Splicing signals in Drosophila: intron size,
information content, and consensus sequences. Nucleic
Acids Res. 20, 4255–4262. (doi:10.1093/nar/20.16.4255)

28. Pozzoli U, Menozzi G, Comi GP, Cagliani R, Bresolin
N, Sironi M. 2007 Intron size in mammals:
complexity comes to terms with economy. Trends
Genet. 23, 20–24. (doi:10.1016/j.tig.2006.10.003)

29. Sung W, Ackerman MS, Dillon MM, Platt TG, Fuqua
C, Cooper VS, Lynch M. 2016 Evolution of the
insertion-deletion mutation rate across the tree of
life. G3 6, 2583–2591.

30. Ptak SE, Petrov DA. 2002 How intron splicing affects
the deletion and insertion profile in Drosophila
melanogaster. Genetics 162, 1233–1244. (doi:10.
1093/genetics/162.3.1233)

31. Matthee CA, Eick G, Willows-Munro S, Montgelard
C, Pardini AT, Robinson TJ. 2007 Indel evolution of
mammalian introns and the utility of non-coding
nuclear markers in eutherian phylogenetics. Mol.
Phylogenet. Evol. 42, 827–837. (doi:10.1016/j.
ympev.2006.10.002)

32. Barash Y, Calarco JA, Gao W, Pan Q, Wang X, Shai O,
Blencowe BJ, Frey BJ. 2010 Deciphering the splicing
code. Nature 465, 53–59. (doi:10.1038/nature09000)

33. Cooper DN. 2010 Functional intronic polymorphisms:
buried treasure awaiting discovery within our genes.
Hum. Genomics 4, 284–288. (doi:10.1186/1479-
7364-4-5-284)

34. Lin CL, Taggart AJ, Fairbrother WG. 2016 RNA
structure in splicing: an evolutionary perspective.
RNA Biol. 13, 766–771. (doi:10.1080/15476286.
2016.1208893)

35. Rédei GP. 2008 Encyclopedia of genetics, genomics,
proteomics and informatics. New York City, NY:
Springer.

36. Yang P, Wang D, Kang L. 2021 Alternative splicing
level related to intron size and organism
complexity. BMC Genomics 22, 853. (doi:10.1186/
s12864-021-08172-2)

37. Sironi M, Menozzi G, Comi GP, Bresolin N, Cagliani
R, Pozzoli U. 2005 Fixation of conserved sequences
shapes human intron size and influences
transposon-insertion dynamics. Trends Genet. 21,
484–488. (doi:10.1016/j.tig.2005.06.009)

38. Bradnam KR, Korf I. 2008 Longer first introns are a
general property of eukaryotic gene structure. PLoS
ONE 3, e3093. (doi:10.1371/journal.pone.0003093)

39. Bohlin J, Pettersson JHO. 2019 Evolution of genomic
base composition: from single cell microbes to
multicellular animals. Comput. Struct. Biotechnol. J.
17, 362–370. (doi:10.1016/j.csbj.2019.03.001)

40. Lynch M, Conery JS. 2003 The origins of genome
complexity. Science 302, 1401–1404. (doi:10.1126/
science.1089370)

41. Rosenbloom KR et al. 2015 The UCSC genome
browser database: 2015 update. Nucleic Acids Res.
43, D670–D681. (doi:10.1093/nar/gku1177)

42. Gillespie DT. 1977 Exact stochastic simulation of
coupled chemical reactions. J. Phys. Chem. 81,
2340–2361. (doi:10.1021/j100540a008)

43. Virtanen P et al. 2020 SciPy 1.0: fundamental
algorithms for scientific computing in Python. Nat.
Methods 17, 261–272. (doi:10.1038/s41592-019-
0686-2)

44. Gould NIM, Lucidi S, Roma M, Toint PL. 1999
Solving the trust-region subproblem using the
Lanczos method. SIAM J. Optim. 9, 504–525.
(doi:10.1137/S1052623497322735)

45. Loewenthal G, Wygoda E, Nagar N, Glick L, Mayrose
I, Pupko T. 2022 The evolutionary dynamics that
retain long neutral genomic sequences in face of
indel deletion bias: a model and its application to
human introns. Figshare. (doi:10.6084/m9.figshare.
c.6328016)

http://dx.doi.org/10.1016/0014-5793(96)00636-9
http://dx.doi.org/10.1016/0014-5793(96)00636-9
http://dx.doi.org/10.1155/2007/165723
http://dx.doi.org/10.1155/2007/165723
https://doi.org/10.2174/138920207783406479
https://doi.org/10.2174/138920207783406479
http://dx.doi.org/10.1093/nar/gkg745
http://dx.doi.org/10.1146/annurev.bb.11.060182.001421
http://dx.doi.org/10.1146/annurev.bb.11.060182.001421
http://dx.doi.org/10.1093/nar/gki615
http://dx.doi.org/10.1016/j.jtbi.2008.02.005
http://dx.doi.org/10.1016/j.jtbi.2008.02.005
http://dx.doi.org/10.1006/tpbi.2002.1605
http://dx.doi.org/10.1016/j.jtbi.2019.08.014
http://dx.doi.org/10.1016/j.jtbi.2019.08.014
http://dx.doi.org/10.1007/BF02193625
https://doi.org/10.1093/oxfordjournals.molbev.a025980
https://doi.org/10.1093/oxfordjournals.molbev.a025980
http://dx.doi.org/10.1093/molbev/msm100
http://dx.doi.org/10.1093/bioinformatics/bty353
http://dx.doi.org/10.1093/dnares/dsv028
https://doi.org/10.1093/nar/20.16.4255
http://dx.doi.org/10.1016/j.tig.2006.10.003
http://dx.doi.org/10.1093/genetics/162.3.1233
http://dx.doi.org/10.1093/genetics/162.3.1233
http://dx.doi.org/10.1016/j.ympev.2006.10.002
http://dx.doi.org/10.1016/j.ympev.2006.10.002
http://dx.doi.org/10.1038/nature09000
http://dx.doi.org/10.1186/1479-7364-4-5-284
http://dx.doi.org/10.1186/1479-7364-4-5-284
http://dx.doi.org/10.1080/15476286.2016.1208893
http://dx.doi.org/10.1080/15476286.2016.1208893
http://dx.doi.org/10.1186/s12864-021-08172-2
http://dx.doi.org/10.1186/s12864-021-08172-2
http://dx.doi.org/10.1016/j.tig.2005.06.009
http://dx.doi.org/10.1371/journal.pone.0003093
http://dx.doi.org/10.1016/j.csbj.2019.03.001
http://dx.doi.org/10.1126/science.1089370
http://dx.doi.org/10.1126/science.1089370
http://dx.doi.org/10.1093/nar/gku1177
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1137/S1052623497322735
http://dx.doi.org/10.6084/m9.figshare.c.6328016
http://dx.doi.org/10.6084/m9.figshare.c.6328016

	The evolutionary dynamics that retain long neutral genomic sequences in face of indel deletion bias: a model and its application to human introns
	Introduction
	Results
	General model of length evolution
	Human intron length distribution—empirical dataset for model validation
	Model with indels of size one
	Model with indels of fixed arbitrary size
	Model with indels of varying sizes
	Conserved segments

	Discussion
	Materials and methods
	Intron length distribution
	Simulations and optimization of model parameters
	Source code and implementation details
	Data accessibility
	Authors' contributions
	Conflict of interest declaration
	Funding

	Acknowledgements
	Appendix A
	Appendix B
	References


