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ABSTRACT

Codon evolutionary models are widely used to infer the selection

forces acting on a protein. The non-synonymous to synonymous rate

ratio (denoted by Ka/Ks) is used to infer specific positions that are

under purifying or positive selection. Current evolutionary models

usually assume that only the non-synonymous rates vary among

sites while the synonymous substitution rates are constant. This

assumption ignores the possibility of selection forces acting at the

DNA or mRNA levels. Towards a more realistic description of

sequence evolution, we present a model that accounts for among-

site-variation of both synonymous and non-synonymous substitution

rates. Furthermore, we alleviate the widespread assumption that

positions evolve independently of each other. Thus, possible

sources of bias caused by random fluctuations in either the

synonymous or non-synonymous rate estimations at a single site is

removed. Our model is based on two hidden Markov models that

operate on the spatial dimension: one describes the dependency

between adjacent non-synonymous rates while the other describes

the dependency between adjacent synonymous rates. The pre-

sented model is applied to study the selection pressure across the

HIV-1 genome. The new model better describes the evolution of all

HIV-1 genes, as compared to current codon models. Using both

simulations and real data analyses, we illustrate that accounting for

synonymous rate variability and dependency greatly increases the

accuracy of Ka/Ks estimation and in particular of positively selected

sites. Finally, we discuss the applicability of the developed model to

infer the selection forces in regulatory and overlapping regions of the

HIV-1 genome.

Contact: talp@post.tau.ac.il

1 INTRODUCTION

Likelihood methods combined with probabilistic models of

sequence evolution are considered the state-of-the-art methods
for phylogeny inference and allow robust parameter estimation

and vigorous testing of evolutionary hypotheses (Whelan et al.,

2001; Yang, 2006). While amino-acid evolutionary models are
restricted to computing the degree of purifying selection acting

on each site (e.g. Mayrose et al., 2004), codon evolutionary

models can be used to detect both the purifying and the
positive Darwinian selection forces (reviewed in Yang, 2005).

The selection type and intensity are inferred by contrasting the

ratio of non-synonymous (amino-acid altering; Ka) to synon-

ymous (silent; Ks) substitution rates, !. Sites showing !
significantly lower than 1 are regarded as undergoing purifying

selection and may have a functionally or structurally important

role. Sites with !41 are indicative of positive Darwinian

selection, suggesting adaptive evolution.
The most widely used codon evolutionary models assume

that the purifying selection acting on protein-coding DNA

sequences is the result of selection that operates at the protein

level only (Yang et al., 2000). These models assume that

synonymous substitutions are free from selection
pressure and represent neutral evolution. In such a case, Ks is

constant across codon positions, Ka is heterogeneous and the

inference of site-specific ! values is based solely on Ka

variations. Accumulating lines of evidence, however, suggest

that this assumption is biologically unrealistic and that

synonymous substitutions are regularly subjected to purifying

selection (reviewed in Chamary et al., 2006). This may be

the result of, for example, constraints for maintaining

mRNA secondary structure or cis regulatory motifs (e.g.

exonic splicing enhancers) superimposed on the coding
sequence of the gene.

Recently, Pond and Muse (2005) presented an evolutionary

model that allows for site-to-site variation of both the

synonymous and the non-synonymous substitution rates. This
model was shown to better fit 9 out of 10 datasets analyzed. In

this study it was also illustrated that sites inferred with a

significant support to be positively selected under the synon-

ymous constant model may be inferred as being under purifying

selection when synonymous rate variation is included in the

model (and vice versa). Notwithstanding, a worrying conse-

quence of including site-to-site synonymous rate variation in the

model is that now the inference of ! relies on the ratio of

two inferred parameters. As such, random fluctuations in Ka

and Ks estimates may more easily lead to an erroneous !
inference. Consider for example, a neutrally evolving site with

both Ka and Ks equal to 1. Random fluctuations in the

underlying sequences or in their sampling can easily shift the

inference of Ka and Ks to 1.2 and 0.8, respectively, leading to an

inferred positively selected site with !¼ 1.5. This shortcoming

may be bypassed by including in the model our biological

understanding that rates of evolution are correlated between

adjacent sites.
A few models were previously developed that relaxed the

unrealistic assumption that sites in DNA or protein sequences

evolve independently (Felsenstein and Churchill, 1996; Stern

and Pupko, 2006; Yang, 1995). Hidden Markov models
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(HMM) were used to account for the correlation between the

rates of adjacent positions. These models were shown to better

fit DNA and protein data and to improve the accuracy of

site-specific evolutionary rate inference. When codon models

are considered, dependencies in either Ka, Ks or both may

exist. For example, in a functional region of a protein,

consecutive positions with low non-synonymous rates are

often observed. Similarly, exonic regulatory elements are

characterized by a stretch of sites showing a reduction of

both Ka and Ks rates (Goren et al., 2006).
Here, we present models in which both the synonymous and

non-synonymous rates vary among sites. Models assuming

dependencies between either the Ka, the Ks or both are

developed and studied. We show that the inference of positively

selected sites is greatly influenced by considering synonymous

rate variation, and that a model in which rate dependencies are

accounted for greatly increases the accuracy of positive

selection inference. The models are applied to study human

immunodeficiency virus type 1 (HIV-1), a medically important

test case for positive selection studies (e.g. de Oliveira et al.,

2004; Yang et al., 2003). We demonstrate the usefulness of our

novel models in analyzing overlapping viral genes, in detecting

viral cis-regulatory elements, and in studying patterns of

selection in specific viral genes and sites.

2 METHODS

2.1 The basic evolutionary model (KaC–KsC)

Our codon models are represented as a continuous time Markov

process, defined by the instantaneous rate matrix Q. In the simplest

model, the rate of changing from codon i to codon j (Qij) is defined as

follows:

Qij ¼

�s � � � �j i and j differ by one synonymous transition

�s � �j i and j differ by one synonymous transversion

�a � � � �j i and j differ by one nonsynonymous transition

�a � �j i and j differ by one nonsynonymous transversion

0 otherwise

8>>>>>><
>>>>>>:

where �s denotes the synonymous substitution rate, �a denotes the non-

synonymous substitution rate, � denotes the transition versus transver-

sion bias, and �j is the target codon frequency calculated using the

product of the observed nucleotide frequencies at the three codon

positions (the F3� 4 model of Yang et al., 2000).

Because of the confounding effects between evolutionary rates and

divergence times (Felsenstein, 1981), we can arbitrarily set �s¼ 1. The

ratio of non-synonymous to synonymous rates, !¼ �a/�s, provides an

indication of the magnitude of selective pressure. This model is similar

to the codon models suggested by Nielsen and Yang (1998) and Muse

and Gaut (1994). We refer to this model as KaC–KsC as both the Ka

and Ks rates are constant across the gene (i.e. do not vary).

2.2 Variable Ka with constant Ks (KaV–KsC)

The KaV–KsC model expands the basic model above by allowing Ka to

vary across sites. Thus, �s is shared by all sites and equals 1, while �a is

treated as a random variable drawn independently for each site

according to a pre-defined distribution (e.g. Gamma). This is the most

commonly used model for detecting positive selection (Nielsen and

Yang, 1998; Yang et al., 2000).

2.3 Variable Ka and variable Ks (KaV–KsV)

In this model, both the synonymous and non-synonymous

substitution rates are allowed to vary across sites. Thus, both the �a
and �s parameters are treated as random variables sampled indepen-

dently for each site from two given rate distributions, with the

distribution of �s restricted to have mean 1. Here, we use the Gamma

distribution �(�a, �a) to model the non-synonymous rate variation.

The synonymous rate variation is modeled by the unit mean Gamma

distribution �(�s, �s). The Gamma distributions are approximated by

Ca and Cs equally probable discrete categories (Yang, 1994),

representing the non-synonymous and synonymous distributions,

respectively. This model was previously suggested by Pond and

Muse (2005).

2.4 Modeling site-dependencies (KaD–KsD)

In this model, rate dependencies between codon sites are assumed.

The non-synonymous substitution rate �ia at site i is dependent on the

non-synonymous substitution rate �i�1
a at site i�1. Similarly, we also

assume that the synonymous substitution rate �is and �i�1
s are

dependent. Once the sites are assigned to their rates, each position

evolves independently. In each site there are Ca possible non-

synonymous rate categories and Cs synonymous rate categories. The

dependency between rates at adjacent positions is modeled using two

Markov chains that operate on the spatial dimension: one describes the

dependency between non-synonymous rates while the other describes

the dependency between synonymous rates. The two Markov chains are

assumed to be independent of each other. Site dependency within each

chain is modeled using the parameters �a, �s2 (0, 1) for the non-

synonymous and synonymous chains, respectively. Larger � values

indicate higher correlation between adjacent sites.

Practically, instead of modeling two independent chains with Ca and

Cs states we can use a combined Markov chain with Ca�Cs states.

The state Sjk denotes a site with a non-synonymous rate category j

and synonymous rate category k.

The data are then analyzed using an HMM, in which the rates at each

position are the hidden states (Durbin et al., 1998). The HMM is

characterized by the transition probabilities between the states of the

combined Markov chain, by the initial probabilities of the hidden states

and by the emission probabilities, which represent the probability of the

observations given assignments to the hidden states.

Let T represent the transition matrix between any two states. The

transition probability between the states Sjk and Slp is

ðTjk!lpj�a, �a, �s, �a, �sÞ ¼ ðTj!lj�a,�a, �aÞ � ðTk!pj�s, �sÞ ð1Þ

where (Tj!l |�a, �a, �a) is the transition probability between the non-

synonymous states j and l. (Tk!p |�s, �s) is computed similarly for the

synonymous transition. These probabilities are calculated using

the correlated bivariate gamma distribution (Stern and Pupko, 2006;

Yang, 1995).

The initial probabilities of the hidden states (the rates) in the

combined chain are computed using the probabilities obtained by the

discrete gamma approximation. Thus, the initial probability of being at

the non-synonymous states j and the synonymous state k is

�jk ¼ PðSjj�a, �aÞ � PðSkj�sÞ ð2Þ

where P(Sj | �a, �a) and P(Sk | �s) are the initial probabilities of the non-

synonymous category j and the synonymous category k, respectively.

Since each rate category is given equal probability (Yang, 1994) the

initial probabilities are simply 1/(Ca�Cs).

The emission probabilities are the likelihoods of the data at each

position. Specifically, P(di|Sjk) is the probability of observing the data

at position i, given a certain rate assignment Sjk. This probability is

computed using standard approaches (Felsenstein, 1981). Note that all
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computations are done assuming the phylogenetic tree topology and its

branch lengths are given, but for simplicity, we omit them from the

equations.

To summarize, the parameters of the KaD–KsD model are

�¼ {�a, �a, �s, �a, �s}. Two variants of this model exist: the

KaV–KsD model which assumes dependencies between synonymous

rates only, and the KaD–KsV model which assumes dependencies

between non-synonymous rates only. These two models can be obtained

from the KaD–KsD model by constraining �a¼ 0, or �s¼ 0,

respectively. The parameters of the model are estimated by maximizing

the likelihood function, P(d | �). The likelihood can be calculated

using the backward dynamic programming algorithm (Durbin et al.,

1998). Let bjkðiÞ ¼ Pðdiþ1, . . . , dnjS
i
jkÞ be the probability of observing the

partial data from sites iþ 1 through n, given that the combined non-

synonymous and synonymous state at site i is Sjk. where n is the

sequence length. Then

bjkðiÞ ¼
XCa

l¼1

XCs

p¼1

Tjk!lpblpðiþ 1ÞPðdiþ1jS
iþ1
lp Þ ð3Þ

with bjk(n)¼ 1. The likelihood is thus

L ¼ Pðd1, . . . , dnj�Þ ¼
XCa

j¼1

XCs

k¼1

�jkbjkð1ÞPðd1jS
1
jkÞ ð4Þ

2.5 Estimating site-specific synonymous and

non-synonymous rates

Selective pressure at individual sites can be inferred by calculating the

Ka/Ks ratio at each site and the posterior probability of a site to evolve

under positive selection pressure. The posterior probability of site i

belonging to state Sjk is

Pi
jk ¼

bjkðiÞfjkðiÞ

PðdÞ
ð5Þ

where fjk(i)¼P(d1, . . ., di|S
i
jk) is the joint probability of observing

sites 1 through i given that the combined state at site i is Sjk. fjk(i)

can be calculated using the forward dynamic algorithm (Durbin et al.,

1998)

fjkðiÞ ¼ PðdijSjkÞ
XCa

l¼1

XCs

p¼1

Tlp!jkflpði� 1Þ ð6Þ

with fjk (1)¼P(d1, Sjk)¼�jkP(d1 | Sjk)

Point estimates of k̂ia and k̂is can then be obtained by calculating

the expectation over the empirical posterior distribution. k̂ia is obtained

by

k̂ia ¼ Eð�iajdÞ ¼
XCa

j¼1

XCs

k¼1

�aðSjkÞ � P
i
jk ð7Þ

where �a(Sjk) is the non-synonymous rate assignment in state Sjk. k̂
i
s is

similarly obtained.

The posterior probability of site i to evolve under positive selection

pressure is then the sum of posterior probabilities of states, in which the

non-synonymous rate is higher than the synonymous rate

PSðiÞ ¼
XCa

j¼1

XCs

k¼1

Pi
jk � 1f�aðSjkÞ4�sðSjkÞg ð8Þ

2.6 Model comparison

The likelihood ratio test (LRT) can be used in order to determine

which model best fits the data. The LRT is applicable since the models

are nested (except for KaD–KsV and KaV–KsD): when �a, �s¼ 0,

KaD–KsD collapses to KaV–KsV. KaV–KsV collapses to KaV–KsC

when �s approaches infinity. The differences in log-likelihood between

the models are compared to a �2 distribution to obtain a P-value

(Yang, 2006). Hence, the additional parameters are statistically justified

if the log-likelihood improvement between KaD–KsD and KaV–KsV is

at least 4.6 or 3.32 between KaV–KsV and KaV–KsC; P-value50.01

according to the �2
2 and �2

1 asymptotic distributions, respectively.

Model comparisons using the 2nd order Akaike Information Criterion

(AICc) (Burnham and Anderson, 2002) were also performed and gave

essentially identical results (not shown).

2.7 HIV-1 datasets

To test the utility of the proposed model we analyzed the nine coding

genes of HIV-1. Aligned nucleotide sequences for each gene were

retrieved from the Los Alamos HIV sequence database (http://

www.hiv.lanl.gov/). The multiple sequence alignment (MSA) of each

gene was then modified according to the following steps: (i) A reference

sequence for the gene, taken from the HIV-1 complete genome

(accession number AF033819) was added to the alignment using the

profile to profile alignment option of CLUSTALW (Thompson et al.,

1994); (ii) Sequences containing missing data and stop codons inside the

reading frame, or sequences not starting with ATG, were removed from

the analysis. This last criterion was not applied to the pol dataset since it

naturally does not start with the ATG codon; (iii) In order to eliminate

the number of gaps in the alignment, sequences that opened insertion

positions that are shared by less than 25% of the sequences were

removed and (iv) In order to save computational time only the 80 most

divergent sequences of the remaining alignment were used. The most

divergent sequences were chosen using the following procedure: first, all

pairwise distances were calculated. Next, the sequence with the maximal

distance to one of the sequences already selected was iteratively added.

The phylogenetic tree for each gene was reconstructed using the

neighbor-joining algorithm (Saitou and Nei, 1987) with pairwise

distances estimated using the Jukes and Cantor distance for codons.

The parameters of each model were then optimized using the maximum

likelihood (ML) paradigm. The gamma distribution was approximated

using three categories. In models that include both Ka and Ks

variation, three categories are assumed for Ka and three for Ks,

resulting in nine possible rate states. The approximation of 3 categories

was used to determine the ML estimates of the model parameters.

In order to increase accuracy when computing site-specific k̂a and k̂s,

the number of discrete rate categories was increased from three to eight

using the same ML parameter estimates.

2.8 Simulation study

Simulations were conducted in order to examine the accuracy of site-

specific k̂a and k̂s under the different models. We simulated each site

with a specific ‘true’ rate. An MSA was thus generated based on a

vector of true rates. Subsequently, k̂a and k̂s rates for each column were

inferred using the different models. For the simulations, one must

provide a true rate for each site. In order to obtain true rates that are

biologically relevant, characteristic rates were computed based on the

empirically inferred rates of the gag and vif datasets (Table 1). For each

dataset, 30 and 15 sequences were simulated. The model tree for each

dataset was obtained using the 30 (15) most divergent sequences of the

original dataset. For each dataset, three vectors of true Ka and Ks rates

were obtained: those inferred with KaV–KsC, KaV–KsV or KaD–KsD.

Simulating with true rates inferred with a specific model may bias

the results towards this model. Thus, for each simulated dataset,

we conducted three separate analyses, corresponding to the three

vectors of true rates. In total, 12 simulation scenarios were performed

(gag and vif genes, 15 and 30 sequences, each with three vectors of true
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rates). For each simulated scenario 10 independent and identical runs

were conducted. The accuracy of inference was measured by the mean

absolute deviation (MAD) distance between the simulated and inferred

Ka/Ks values

MAD ¼
1

n

Xn
i¼1

jestimated !i � true !ij ð9Þ

where the estimated !i is k̂ia=k̂
i
s.

3 RESULTS

3.1 HIV-1 dataset analysis

To test the utility of the proposed model the nine coding genes
of HIV-1 were analyzed. For all genes, models that account for

the synonymous rate variation were significantly superior to the

commonly used KaV–KsC model, which assumes that all
positions evolve with the same Ks rate (Table 1). The minimal

log-likelihood difference between the KaV–KsC model and the

models accounting for Ks rate variation was 130, and the
maximal difference was more than 1500. The hypothesis of

constant synonymous rate was thus rejected at P� 0.0001 for

all HIV-1 genes. The coefficient of variation (CV), measured by
the SD divided by the mean, was used to compare the

dispersion of the estimated Ka and Ks distributions. The CV

of the non-synonymous rate distribution was found to be in the
same order of magnitude as that of the synonymous rate

distribution (Table 2), further supporting the essentiality of

correctly modelling Ks variation.
A strong pattern of rate dependency among adjacent

positions was found for all HIV-1 genes. This was true for
both the Ka and the Ks rates. When comparing a model that

accounts for dependencies of both Ka and Ks rates (the KaD–

KsD model) with a model that does not (KaV–KsV), a
significant increase in log-likelihood was found for all genes

analyzed (P50.001 for all genes). As expected, the difference in

log-likelihood is correlated with the sequence length (Table 1).
For example, for pol, the longest gene, the difference was in

the order of hundreds. We next tested what factor contributed

most to the superiority of KaD–KsD over KaV–KsV: the

dependency among synonymous rates or the dependency

among non-synonymous rates. Dependency of Ka rates

corresponds to regional selection pressure at the protein level,

while Ks dependency reflects regional selection on the coding

DNA or mRNA. Taking into account Ka dependency only

(the KaD–KsV model) significantly increased the log-likelihood

as compared to the independent model (KaV–KsV) in six out of

nine HIV-1 genes (Table 1). This result is in agreement with

previously published works emphasizing the importance of

taking into account dependencies at the protein level (e.g. Stern

and Pupko, 2006). Taking into account dependency among Ks

rates only (comparing the KaV–KsV and the KaV–KsD

models), resulted in a significant increase in log-likelihood in

all datasets. Interestingly, the contribution of Ks rate depen-

dency was higher than the contribution of Ka rate dependency

for all but the rev dataset. The higher Ks rate dependency was

also evident in the comparison of the models’ correlation

parameters: the inferred correlation between Ks rates

was higher than the Ka rate correlation in all genes aside

from rev (Table 2). Thus, our results strongly indicate that

Ks rates vary in a spatial manner along the genes.

Table 1. Log-likelihood (LL) values for nine HIV-1 coding genes under the five models analyzed

Gene SLa LL scores LL differencesb

KaV�KsC KaV�KsV KaV�KsD KaD�KsV KaD�KsD

env 883 �64 826.8 914.9 1044.3 (129.4) 947.1 (32.2) 1079.9 (165)

gag 500 �25 669.6 362.4 395.8 (33.4) 375.2 (12.8) 408.6 (46.2)

nef 210 �19 421.5 339.3 377.5 (38.2) 341.8 (2.5) 380.1 (40.8)

pol 1004 �56 194.1 1346 1507 (160.4) 1394.6 (48) 1565.1 (218.5)

rev 123 �12 265.5 227.8 232 (4.2) 243.5 (15.7) 247.5 (19.7)

tat 101 �9 252 213.8 222.8 (8) 219.3 (5.5) 228.2 (14.3)

vif 192 �15 138.5 239.4 273.8 (34.4) 244.1 (4.7) 278.8 (39.4)

vpr 98 �8004.3 130.4 153.5 (23.2) 130.1 (0) 154.2 (23.7)

vpu 82 �9194 187.7 194.3 (6.6) 190.7 (3) 197.1 (9.3)

aSequence length.
bLog-likelihood difference compared to the KaV–KsC model.

The log-likelihood differences compared to the KaV–KsV model are given in parentheses.

Table 2. The correlation between adjacent Ka rates (�a) and adjacent

Ks rates (�s) and the coefficient variation (CV) of the Ka and Ks

distributions inferred by the KaD–KsD model for the nine HIV-1 genes

Gene �a �s CV(Ka) CV(Ks)

env 0.4 0.88 1.24 0.64

gag 0.35 0.76 1.47 0.57

nef 0.2 0.8 1.11 0.59

pol 0.54 0.84 1.64 0.65

rev 0.64 0.42 0.9 0.82

tat 0.4 0.55 1 0.9

vif 0.29 0.81 1.02 0.64

vpr 0 0.84 1.21 0.52

vpu 0.37 0.59 0.92 0.75
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3.2 Accuracy of rate estimation: a simulation study

Simulations were used to compare the inference accuracy of
site-specific ! values under the various models. This compar-

ison tested the accuracy of inference across the whole ! range
(i.e. both positive and purifying selection) and did not
concentrate only on inferring positive selection. As shown in

Table 3, the inference obtained using the KaD–KsD model was
constantly more accurate compared to the inference obtained

using either the KaV–KsV or KaV–KsC models. These
results were significant for 11 out of 12 simulated scenarios
(P50.01; paired t-test). The comparison between KaD–KsD

and KaV–KsD was inconclusive as none of the two was
consistently more accurate than the other across the

12 simulated scenarios tested.
We next concentrated on the success of various models to

specifically infer sites that are under positive selection. The

receiver operating characteristic (ROC) curve was used in order
to compare the precision and sensitivity of inference under the
different models. The closer the curve to the upper left corner,

the more successful the prediction is. An example of two ROC
curves for simulation scenarios 1 and 2 (Table 3) is shown in

Figure 1. These results demonstrate that ! values inferred with
the KaV–KsC model are consistently the least accurate. The
accuracy of the KaD–KsD was greater than that inferred with

KaV–KsV when the simulated rates were taken from an
empirical rate vector inferred with KaD–KsD (see methods for
simulation procedures), while the two models achieved

comparable accuracy when simulating with KaV–KsV.
In both simulated scenarios, however, the highest precision

and accuracy was achieved with the KaV–KsD model.
The superiority of the KaV–KsD model over KaD–KsD seen
in Figure 1 can be attributed to the small number of sequences

(15) simulated. The parameter-rich KaD–KsD model may

Table 3. Simulation results: accuracy of site-specific ! inference based on the different models under different simulation scenarios

Simulation

scenario

Gene True ratesb NSc Mean MADa

KaV–KsCd KaV–KsVe KaV–KsD KaD–KsD

1 vif KaV–KsV 15 0.86 (P510�5) 0.84 (P510�3) 0.75 0.78

2 vif KaD–KsD 15 0.70 (P510�5) 0.70 (P510�4) 0.62 0.63

3 vif KaV–KsC 15 0.48 (P510�5) 0.50 (P510�5) 0.45 0.35

4 gag KaV–KsV 15 0.50 (P510�3) 0.49 (P50.01) 0.51 0.43

5 gag KaV–KsC 15 0.55 (P510�6) 0.55 (P510�4) 0.53 0.38

6 gag KaD–KsD 15 0.41 (P50.001) 0.41 (P50.01) 0.42 0.36

7 vif KaV–KsV 30 0.80 (P¼ 0.08) 0.80 (P¼ 0.13) 0.76 0.77

8 vif KaV–KsC 30 0.43 (P50.01) 0.44 (P50.01) 0.43 0.37

9 vif KaD–KsD 30 0.65 (P510�4) 0.64 (P50.01) 0.54 0.58

10 gag KaV–KsV 30 0.45 (P50.01) 0.45 (P50.01) 0.44 0.42

11 gag KaV–KsC 30 0.44 (P50.01) 0.44 (P50.01) 0.42 0.37

12 gag KaD–KsD 30 0.36 (P510�4) 0.37 (P510�5) 0.33 0.34

aMAD values are the average over 10 identical and independent runs. Values are shown in bold type for the model that achieved the best accuracy in each simulated

scenario.
bTrue rates were inferred with the given model using the gag or vif datasets in Table 1.
cNumber of sequences.
dP-values between KaV–KsC and KaD–KsD.
eP-values between KaV–KsV and KaD–KsD.
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Fig. 1. ROC curves for predicting positively selected sites. (A) ROC

curve under simulation scenario 1 and (B) ROC curve under simulation

scenario 2. Positively selected sites are regarded as those that were

simulated with !41.5 and purifying selected sites (true negatives) are

those that were simulated with !50.9. Sites simulated with 0.95!51.5

are on the boundary between positive, purifying and neutral evolution

and were excluded from the analysis. Other cutoff values gave similar

results.
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overfit such a small dataset. Indeed, when the number of

sequences is large (the 80 HIV-1 sequences, see below) no

significant differences in the inferences of the two models are

observed.

3.3 Inferring positive selection across the HIV-1 genome

The number of positively selected sites for each HIV-1 gene

analyzed is given in Table 4. In agreement with previous studies

(de Oliveira et al., 2004; Yang et al., 2003) positively selected

sites were abundantly found in all nine coding genes under all

models. However, the number of positively selected sites was

found to be highly sensitive to the model applied. Accounting

for heterogeneous synonymous rates substantially reduced the

number of inferred positively selected sites (Table 4).

Accounting for dependency among Ks rates further reduced

the number of positively selected sites inferred (Table 4). Taken

together, more than twice as many positive sites are inferred by

KaV–KsC compared to that by KaD–KsD.
It is expected that the positively selected sites inferred using

the KaD–KsD model would be a subset of the sites inferred

under the KaV–KsC model. This, however, was not generally

the case. The three models together inferred 623 distinct

positively selected sites. Only 135 sites (22% of the total) were

shared among all three models (Figure 2). The KaD–KsD

model exhibited the lowest proportion of uniquely inferred sites

and the highest proportion of sites that are shared by all three

models. Furthermore, the agreement between KaV–KsC and

the other two models was the lowest. Hence, sites inferred

under the KaD–KsD model seem to be the most consistent with

sites inferred using the other two models. Of course, this

consistency does not ensure correct results, but its absence in

the other models is alarming. The high sensitivity of the KaV–

KsC and KaV–KsV models questions the validity of their

assumptions for the data at hand.

Across all HIV-1 genes, the results obtained with KaV–KsD

were highly similar to those obtained with KaD–KsD.

The results obtained with KaD–KsV highly overlapped those

obtained with KaV–KsV (Table 4). This further indicated that

accounting for the dependence among Ks rates is more

significant than the dependence among Ka rates.

3.4 Positive selection in overlapping regions

The existence of overlapping genes is a widespread phenom-

enon in the genomes of small viruses (Pavesi, 2006).

In overlapping regions, we expect constraints over synonymous

and non-synonymous substitutions that are different from

those in non-overlapping regions. In fact, overlapping regions

are expected to display low and correlated Ks and Ka rates.

Our KaD–KsD is especially useful for analyzing a gene that

overlaps with another gene, as both Ks variability and spatial

dependence is expected.
Here we illustrate that the KaD–KsD model accounts for the

selection forces acting on the overlapping region between the vif

and pol genes. The overlapping region spans 18 codons (sites

1–18 of vif with sites 986–1004 of pol). Figure 3 shows that this

region (the 50 of vif and the 30 of pol) exhibits a substantial

reduction of Ks rates as compared to the rest of the gene. Site

12 of the vif gene shows a peculiar selection pattern. Although

part of the overlapping region, it exhibits a very high Ks rate

and low Ka rate (Figure 3A). What can explain such a high Ks

variation in this site? The explanation is provided in Figure 3B.

Site 12 of vif corresponds to site 999 in the pol gene. Focusing

on this site in pol, the high Ka/Ks ratio (!¼ 11.4) suggests

intensive positive selection acting on this site. Thus, the positive

selection in pol drives the high Ks variability of the corres-

ponding site in vif. The purifying selection at the protein level,

extracted on this position in vif does not permit any non-

synonymous changes, thus increasing the Ks rate only. Position

number 8, which overlaps position 994 in pol that has the

second highest ! value does not exhibit a very large peak in its

Ks rate. Alternatively, both its Ka and Ks rates are elevated.

The purifying selection extracted on position number 8 is

probably less significant than that extracted on position

number 12, thus allowing for both substitution types. Finally,

it is important to note that these observations cannot be

obtained when analyzing the data with the commonly used

KaV–KsC model. Under this model, the Ks peak at site 12 of

vif cannot be detected. Furthermore, the assumption of a

310

41 66
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135

KaD_KsD 206

KaV_KsV 295
KaV_KsC 491

Fig. 2. The total number of positively inferred sites (Posterior

probability40.9) across the nine genes of HIV-1 for the KaV–KsC,

KaV–KsV and KaD–KsD models.

Table 4. The number of inferred positively selected sites for each HIV-1

gene under the different modelsa

Gene KaV–KsC KaV–KsV KaV–KsD KaD–KsV KaD–KsD

env 149 (17%) 108 (12%) 54 (6%) 108 (12%) 52 (6%)

gag 65 (13%) 33 (7%) 27 (5%) 33 (7%) 25 (5%)

nef 37 (18%) 19 (9%) 17 (8%) 20 (10%) 16 (8%)

pol 89 (9%) 38 (4%) 18 (2%) 33 (3%) 23 (2%)

rev 52 (43%) 30 (24%) 30 (24%) 30 (24%) 28 (23%)

tat 41 (41%) 28 (27%) 27 (27%) 29 (29%) 27 (27%)

vif 24 (13%) 23 (11%) 19 (10%) 24 (12%) 19 (10%)

vpr 16 (16%) 4 (4%) 4 (4%) 4 (4%) 5 (5%)

vpu 18 (22%) 12 (15%) 11 (13%) 12 (15%) 11 (13%)

aPosterior probability40.9. The percentage of positively selected sites out of the

whole gene are given in parentheses.
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constant Ks rate across the entire pol coding region would have
obscured the signal for positive selection in site 999 (!¼ 1.06,

posterior probability¼ 0.81 in KaV–KsC versus !¼ 11.4 and
posterior probability40.99 in KaD–KsD).

3.5 Identifying regulatory elements in coding regions

The KaD–KsD model allows the identification of coding

regions, in which a spatial purifying selection operates at the
nucleic acid level. Using this model, we searched for stretches
with low synonymous rates across the pol sequence. In addition

to the overlapping region described above, a second region with
a low synonymous rate was revealed (codon positions 900–947,

Figure 4A). Part of this sequence (positions 900–907,
Figure 4B) exhibits exceptional low rate of Ks (as well as a
low Ka rate), suggesting that the primary sequence of the

DNA, or the RNA, has a functional role. This segment is
enriched with purines. Indeed, HIV and other lentiviruses have

two polypurine tracts (PPTs) with a known functional role:
both PPTs serve as RNA primers for the reverse transcriptase
in the synthesis of the plus-strand DNA. One is located at the 30

untranslated region of the viral genome. The second is located
at the center of the genome, hence called the central PPT

(cPPT) (Charneau and Clavel, 1991). This cPPT locus is
mapped exactly to the ultraconserved Ks region in positions
902–906 of pol. A short stretch of T-rich motif (TTTT)

immediately upstream of the cPPT is correlated with the

ultraconservation found in positions 900–901. These codon

positions were experimentally shown to be important for

reverse transcription (Ilyinskii and Desrosiers, 1998).
Among the 48 conserved codons, a second region (positions

934–947) exhibits exceptionally high level of Ks conservation

(Figure 4B). This region nicely overlaps a cis-acting signal

named the central termination sequence (CTS), located at

positions 930–939. During reverse transcription, a DNA

structure, called DNA flap, is formed adjacent to this site

(Charneau et al., 1994). This structure has been shown to be

involved in the nuclear import of theHIV genome (Zennou et al.,

2000). Altogether, our results demonstrate that functionally

important cis-acting signals can be identified using our model.

4 DISCUSSIONS

Estimating the selection pattern at the codon level is at the

heart of evolutionary research. Various methods and techni-

ques were developed to increase the accuracy of Ka/Ks

inference. Earlier methods were based on counting (e.g. Nei

and Gojobori, 1986). In these methods, the number of

synonymous and non-synonymous substitutions in each

codon is inferred and normalized by the number of synon-

ymous and non-synonymous site. While usually very fast, these

counting techniques are statistically problematic as no less than

four parameters are estimated for each site (the numbers of

synonymous and non-synonymous substitutions and the

numbers of synonymous and non-synonymous sites).
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Muse (1996) further demonstrated that in these methods the
estimation of non-synonymous and synonymous rates is not
independent of each other. The alternative to these counting

methods is to use an explicit model of codon substitution.
The inference of Ka/Ks ratio is a by-product of these models.
These models tend to be computationally intensive as they

involved exponentiating a large (61 by 61) rate matrix.
Consequently, current models use oversimplified assumptions
such as fixed Ks variation and that each site evolves

independently of each other. Thus, when the goal is to estimate
Ks variability, one has to resort to counting techniques. In this
study, we showed how Ks variability and dependency can be

incorporated into probabilistic evolutionary models. We have
demonstrated that these models better fit biological data and
can significantly increase the accuracy of Ka/Ks estimates.
Yang (2006) and Hurst (2002) have discussed the difficulty of

a reliable inference of ! per site. This difficulty, which results in
a high number of false positive predictions, is due to the large
number of inferences being made at a single analysis, and to the

inference of ! as a ratio of two estimated parameters
(Anisimova et al., 2002). An extensive research was aimed at
reducing the number of false positive predictions. Specifically,

effort was concentrated on model comparisons, on accurate
estimation of model parameters, and on finding the best prior
distribution of the non-synonymous rates (Anisimova et al.,

2001, 2002; Swanson et al., 2003; Wong et al., 2004; Yang et al.,
2000, 2005). For example, Anisimova et al. (2001, 2002)
recommended to search for positively selected sites using

several alternative models and choose those sites that are
common to all, thus ensuring the robustness of the results.
Noteworthy, all these competing models differ only in the

assumed distribution of the ! parameter. Recently, the Bayes–
Empirical–Bayes approach was developed (Yang et al., 2005),
taking into account the sampling errors of the ML estimates of

model parameters. This approach was shown to reduce the
number of falsely inferred positively selected sites, particularly
when small datasets are analyzed. Here we show that the

number of falsely inferred positive sites can also be sharply
decreased by incorporating the dependence between adjacent
synonymous and non-synonymous rates. Using such models

as KaD–KsD has the effect of eliminating random noise in site-
specific Ka and Ks estimates.
Characterizing the selection forces acting on viral genomes at

the DNA level is of great interest. For example, there are well-
known RNA secondary structures along the HIV-1 genome,
such as the Rev responsive element, that play important

functional roles during the virus life cycle (Malim et al., 1990).
Another obvious example is the existence of overlapping genes,
in which a strong selection on both synonymous and non-

synonymous substitutions is expected. However, since the
commonly used codon models fail to account for Ks variation,
such regions are usually excluded from the analysis, despite

their being of high medical interest. For example, in order to
avoid overlapping regions, Yang et al. (2003) excluded the
whole tat, rev and vpu genes when analyzing selection forces

in HIV-1. These three genes, however, are the ones exhibiting
the largest fraction of sites that are positively selected (Table 4).
Furthermore, assuming a constant synonymous rate for the

whole gene is likely to overestimate the actual synonymous rate

at the overlapping region and to underestimate the rate at the

non-overlapping region. Consequently, the number of posi-

tively selected sites is expected to be too low for the overlapping

region and too high for the non-overlapping region. The

models suggested in this study provide a statistically robust

approach to study selection at such overlapping and regulatory

elements.

Our analysis revealed a 50-codon-long sequence in the pol

open reading frame with exceptionally low synonymous and

non-synonymous rates. This sequence roughly starts and ends

with sequences known to be functionally important, namely

the TTTT-rich box, the cPPT and the CTS signals, all act in

cis during the process of HIV-1 reverse transcription (Charneau

and Clavel, 1991; Charneau et al., 1994; Ilyinskii and

Desrosiers, 1998). This further indicates that our model has

the ability to identify important regulatory sequences

embedded in open reading frames. Not all conserved segments

in this region have a known function. Yet, one can speculate

that such segments serve as specific binding sites for cellular

and/or viral factors. Support for this hypothesis comes from the

fact that these sequences form a DNA flap structure that was

suggested to mediate the transport of the HIV-1 genome into

the nucleus (Zennou et al., 2000).
Positively selected positions are classically defined as those in

which the Ka/Ks ratio is significantly larger than 1. This

definition, fundamental to evolutionary research, is based on

the assumption that the synonymous rates reflect neutral rate of

evolution. However, others and we have shown that synon-

ymous rates vary considerably over sites. This indicates that

purifying or maybe even positive, rather than neutral evolution,

characterizes the synonymous substitutions to a certain extent.

If, for example, synonymous sites are under purifying selection,

average Ks values are an underestimate to the neutral rate of

evolution, and hence, the Ka/Ks41 criterion is too liberal.

If, however, positive selection is acting on synonymous sites,

then Ks is an overestimate of the neutral rate, and the Ka/Ks

criterion might be too conservative. Furthermore, when

selection operates at the DNA or mRNA level, the Ka and

Ks values are expected to be correlated. Altogether, the

variability of Ks questions the validity of the standard Ka/Ks

tests for detecting positively selected sites. This Ks variability

might vary among different proteins and organisms. In non-

viral sequences, an alternative approach is to compare the non-

synonymous rate with the evolutionary rate of intronic regions

or with the evolutionary rates of pseudogenes. In viral

sequences that lack such neutral sequences, how to correct

the test for positive selection in a way that accounts for the

synonymous variability is an open question that calls for

additional research.
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