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ABSTRACT

A central task in the study of molecular evolution is the reconstruction of a phylogenetic tree
from sequences of current-day taxa. The most established approach to tree reconstruction
is maximum likelihood (ML) analysis. Unfortunately, searching for the maximum likelihood
phylogenetic tree is computationally prohibitive for large data sets. In this paper, we describe
a new algorithm that uses Structural Expectation Maximization (EM) for learning maximum
likelihood phylogenetic trees. This algorithm is similar to the standard EM method for edge-
length estimation, except that during iterations of the Structural EM algorithm the topology
is improved as well as the edge length. Our algorithm performs iterations of two steps. In
the E-step, we use the current tree topology and edge lengths to compute expected suf� cient
statistics, which summarize the data. In the M-Step, we search for a topology that maximizes
the likelihood with respect to these expected suf� cient statistics. We show that searching for
better topologies inside the M-step can be done ef� ciently, as opposed to standard methods
for topology search. We prove that each iteration of this procedure increases the likelihood
of the topology, and thus the procedure must converge. This convergence point, however,
can be a suboptimal one. To escape from such “local optima,” we further enhance our basic
EM procedure by incorporating moves in the � avor of simulated annealing. We evaluate
these new algorithms on both synthetic and real sequence data and show that for protein
sequences even our basic algorithm � nds more plausible trees than existing methods for
searching maximum likelihood phylogenies. Furthermore, our algorithms are dramatically
faster than such methods, enabling, for the � rst time, phylogenetic analysis of large protein
data sets in the maximum likelihood framework.

Key words: phylogeny, evolutionary tree, inference, Structural EM, expectation maximization,
simulated annealing, maximum likelihood.

1. INTRODUCTION

The understanding that many biological sequences share a single common origin is fundamental
to biology. Such a set of contemporary sequences diverged from their ancestral sequence in a tree-like
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fashion. Inferring this phylogenetic tree has been a major research problem since the dawn of computational
molecular biology, more than 30 years ago (Camin and Sokal, 1965; Sokal and Sneath, 1963). The input
data available is usually a set of sequences, one per species. The goal is to � nd the tree that describes the
true evolutionary history of these sequences.

Many attempts have been made to formalize the distinction of the true tree into a mathematically tractable
criterion, giving rise to a variety of reconstruction algorithms. We mention a few of these (see Felsenstein
[2002] for more details).

One such criterion considers distances between each pair of sequences and supports the tree that best
� ts these observed distances. The prominent method which uses this criterion is Neighbor-Joining (NJ)
(Saitou and Nei, 1987), in which partial trees are iteratively combined to form a larger tree, in a bottom-up
manner. A second important criterion is Maximum Parsimony. It states that substitutions are rare, and thus
calls for � nding the tree topology which implies as few substitutions as possible. Although it is NP-hard
to � nd the most parsimonious tree (Day, 1983; Graham and Foulds, 1982), several effective heuristics
exhibit reasonable performance in affordable time (Hendy and Penny, 1982; Huson et al.., 1999a, 1999b;
Swofford, 1998; Nixon, 1999).

The criterion which we study is probabilistic. It builds on the view of evolution as a stochastic process,
in which characters change over time according to some predetermined probabilities. Along each tree
edge, such probabilities depend on the duration of the period that this edge represents, i.e., the edge
length. These probabilities were estimated in many studies (Adachi, 1995; Dayhoff, 1978; Jones et al.,
1992; Jukes and Cantor, 1969; Kimura, 1980; Yang, 1994). This description of evolution in stochastic
terms allows computing the likelihood of a speci� c phylogeny and gives rise to Maximum Likelihood
(ML) methods (Felsenstein, 1981). Indeed, � nding the ML phylogenetic tree proves superior to other
methods in terms of accuracy (Felsenstein, 1988). However, speed is the major obstacle, as we now
explain.

ML reconstruction consists of two tasks. The � rst task involves edge length estimation: Given a topology,
� nd edge lengths to maximize the likelihood. This task is accomplished by iterative methods such as
Expectation Maximization (EM) (Dempster et al., 1977; Felsenstein, 1981), or using Newton–Raphson
optimization (Olsen et al., 1994). Each iteration of these methods requires computations that take on
the order of the number of taxa times the number of sequence positions. While these methods are only
guaranteed to � nd local maxima, in practice they often recover the global maximum (Rogers and Swofford,
1999).

The second, more challenging, ML reconstruction task is to � nd a tree topology that maximizes the
likelihood. Naive, exhaustive search of the tree space is infeasible, and also the effectiveness of exploring
this space by heuristic paradigms, like simulated annealing (Dress and Kruger, 1987), genetic algorithms
(Lewis, 1998), or other local search methods (Swofford, 1998), is hampered by the costly procedure of
reestimating edge lengths afresh for different trees. Currently, this task is usually tackled by iterative
procedures that greedily construct the desired tree. For protein sequences, the leading ML application is
the MOLPHY software package (Adachi and Hasegawa, 1996). One of its versions has been incorporated
into the PHYLIP library as the ProtML application. MOLPHY uses the Star Decomposition top-down
heuristic, in which an initial, star-like tree with a single internal node is iteratively re� ned (Adachi and
Hasegawa, 1996). In this method, the scoring of each intermediate topology considered requires � nding
its best edge lengths. The main cost of the algorithm is due to these repeated invocations of edge length
optimization. For DNA sequences, we compared performance against a leading application that is included
in the PHYLIP package, FastDNAML (Olsen et al., 1994). This program iteratively adds sequences to the
tree, while locally rearranging it at each addition step.

Our approach builds on Structural EM, the extension of the EM algorithm for learning combinatorial
constructs (Friedman, 1997). As with all EM-type algorithms, we use an expected value of the likelihood,
computed using suf� cient statistics, which are collected from the data. The basic EM theorem states that
improving this expected log likelihood implies an increase in the likelihood itself (Dempster et al., 1977).
In contrast to standard EM or Structural EM algorithms, we do not just iterate this improvement procedure
over and over. After each iteration, which improves the expected log likelihood, we employ a modi� cation
step. This novel step, which is necessary due to the nature of our problem, is guaranteed not to change the
likelihood.
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2. MAXIMUM LIKELIHOOD PHYLOGENETIC INFERENCE

We are concerned with evolution of biological sequences. Formally, our problem is probabilistic in nature;
that is, we assume these sequences are the result of some stochastic process, which we explain in this
section. We � rst describe the evolution of a single character along a single evolutionary lineage. We then
introduce the multilineage process and its formulae, eventually presenting the problem of multicharacter
sequence evolution.

2.1. Evolution of a single character

We view evolution as a process involving the change (substitution) of character from one state into
another. These character states are assumed to be elements of a � xed, � nite, alphabet 6, which is usually
the set of 4 DNA nucleotides, 20 amino acids, or 64 codon triplets.

A model of evolution is the distribution of substitutions along time. Such a model de� nes the probability
pa!b.t / of a character to transform from state a into state b in the duration t . Such models have been
devised, for instance, by Jukes and Cantor (1969), Kimura (1980), and Yang (1994) for nucleotides, Adachi
(1995), Dayhoff (1978), and Jones et al. (1992) for amino acids, and Goldman and Yang (1994) for codons.
Different models imply different biological assumptions. However, there are some properties shared by all
standard models (Dayhoff, 1978):

1. Lack of Memory:

pa!b.t C t 0/ D
X

c26

pa!c.t/pc!b.t 0/: (1)

This assumption implies that the model can be fully described by a single, j6j £ j6j matrix. The .a; b/

entry in this matrix is pa!b.1/. To obtain pa!b.t / for t 6D 1, this matrix is raised to the power of t ,
taking the .a; b/ entry of the resulting matrix.

2. Reversibility: we assume that there is a prior distribution over character states fpag such that

papa!b.t/ D pbpb!a.t/ (2)

for all a; b 2 6 and t ¸ 0. This assumption essentially states that the events “a evolved into b” and
“b evolved into a” are equiprobable. Note, however, that the transition matrix entries are conditional
probabilities, hence, this matrix needs not be symmetric.

2.2. Phylogenetic trees

So far, we have described the evolution of a single character along a single lineage. However, phylogeny
deals with a plurality of species. Consider a set of N current-day species. They are assumed to be the
descendants of a single ancestral species, their lineages having diverged during history. The pattern, or
topology of this divergence process is usually unknown, and its inference is the main goal of this study.
A hypothetical topology is represented by an undirected tree T with N leaves, corresponding to the
contemporary species. Internal nodes correspond to events of divergence. Edges represent periods in the
history of some past-time species between those divergence events. We label leaves by the indices 1; : : : ; N

and internal nodes by N C 1; : : : ; NT . Formally, the topology T is described by the set of its edges. We
use the notation .i; j / 2 T to indicate T having an edge between nodes i and j . We reserve the term
edge for pairs of nodes in T , while using the term link for arbitrary pairs of nodes, not necessarily
in T .

In this paper, we pay special attention to bifurcating topologies, in which each internal node is adjacent
to exactly three other nodes. These are the undirected analogues of binary trees. Thus, in a bifurcating
topology, there are N ¡ 2 internal nodes, indexed N C 1; : : : ; 2N ¡ 2.

We would like to introduce the model of evolution to our phylogenetic hypothesis, T . To this end, we
also consider the duration of time that separates adjacent nodes. A parameterization of a topology T is a
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vector t, comprised of a nonnegative duration or edge length ti;j for each edge .i; j / 2 T . The pair .T ; t/
constitutes a phylogenetic tree.

2.3. Joint and marginal probabilitie s

Based on the model of evolution, we can assign probabilistic semantics to the phylogenetic tree. Formally,
we associate with each node i in T a random variable Xi that describes the character state at this node. The
distribution of such a variable Xi , i.e., the set fP .Xi D a/ga26 of probabilities, is denoted by P .Xi/, for
short. We now describe how the evolutionary process assigns random values to all the Xi -s, thus de� ning
the joint distribution P .X[1:::NT ]/:1

² Some node r is picked as a root.
² Xr is assigned a random value xr , according to the prior distribution: P .Xr D a/ D pa .
² For each node i 6D r , de� ne its parent, ¼.i/, to be i’s neighbor which is closest to the root. (Since T is

a tree, this neighbor is uniquely de� ned.)
² The nodes of T are visited in a preorder traversal. Upon visiting a node j 6D r , a random value xj

is assigned to Xj . This value depends solely upon the value assigned to X¼.j /: P .Xj D b j X¼.j / D
a; tj;¼.j // D pa!b.tj;¼.j //.

By applying the chain rule, the joint distribution P .X[1:::NT ]/ is:

P .X[1:::NT ] j T ; t/ D P .Xr /
Y

j 6Dr

P .Xj j X¼.j /; tj;¼.j //: (3)

Recall, that by Equation 2, P .Xi jXj ;ti;j /

P .Xi /
D P .Xj jXi ;ti;j /

P .Xj /
. Therefore, manipulating Equation 3 shows that the

joint distribution P .X[1:::NT ]/ is invariant to the choice of r :

P .X[1:::NT ] j T ; t/ D
³

Y

i

P .Xi/

! 0

@
Y

.i;j /2T

P .Xi j Xj ; ti;j /

P .Xi/

1

A : (4)

Usually, we observe only the character states in the leaf nodes 1; : : : ; N . The likelihood of a single
observation x[1:::N ], given the phylogenetic hypothesis, is therefore the marginal distribution over these
variables:

P .x[1:::N ] j T ; t/ D
X

xNC1

: : :
X

xNT

P .x[1:::NT ] j T ; t/: (5)

The naive approach to computing the marginal probability would require summing over the j6jNT ¡N

possible assignments to X[NC1:::NT ]. Instead, we can exploit the structure of the distribution, as speci� ed
by Equation 3, for ef� cient computation. This is done by dynamic programming over the set of nodes
(Felsenstein, 1981). We now review this procedure, as we use it in our developments.

Consider a single observed assignment, fX1 D x1; : : : ; XN D xN g, to the leaves of a bifurcating tree
.T ; t/. Each edge, e D .i; j / 2 T , partitions the tree into two subtrees. De� ne the set S.i; j / to include
the leaves of the subtree which includes i. We seek to compute the probability of the observed character
states in S.i; j / conditioned on possible assignments to Xi or Xj . More formally, for each character state
a 2 6, we de� ne upward messages as follows.

Ui!j .a/ ´ P .fXk D xkgk2S.i;j / j Xi D a; T ; t/

ui!j .a/ ´ P .fXk D xkgk2S.i;j / j Xj D a; T ; t/

1We use the notation X[1:::k ] as a shorthand for X1; : : : ; Xk .
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We can recursively compute upward messages according to the following formulae.

Ui!j .a/ D
(

1fxi D ag i is a leaf
Q

k 6Dj :.k;i/2T uk!i.a/ i is an internal node

ui!j .a/ D
X

b

pa!b.ti;j /Ui!j .b/

The computation of these messages across the whole tree can be completed in O .j6jN/ time for a single
observed assignment to X1; : : : ; XN .

The upward messages allow us to compute the marginal probability from the messages that reached an
arbitrary edge .i; j/:

P .x[1:::N ] j T ; t/ D
X

a

paUi!j .a/uj!i.a/:

Another task of interest is computing conditional probabilities of the form P .Xi j x[1:::N ]; T ; t/ and
P .Xi ; Xj j x[1:::N ]; T ; t/ for an edge .i; j / 2 T . Fortunately, the upward messages allow computing these
as well:

P .Xi D a j x[1:::N ]; T ; t/ D
P .a/Ui!j .a/uj!i.a/

P .x[1:::N ] j T ; t/
(6)

and

P .Xi D a; Xj D b j x1; : : : ; xN ; T ; t/ D
P .a/Ui!j .a/pa!b.ti;j /Uj!i.b/

P .x[1:::N ] j T ; t/
: (7)

2.4. Recovering the maximum likelihood phylogeny

Our main task is recovering the phylogeny from observed data. As discussed above, there are many
approaches for addressing this problem. We now describe the simplest variant of the Maximum Likelihood
method and the assumptions that justify it.

The input for the process is an input data set D that consists of M observations. These are assumed
to be drawn from the (unknown) marginal distribution. That is, we have a sequence xi [1]; : : : ; xi [M] of
character states for each leaf Xi , and these sequences are assumed to be aligned in the following sense:
For each m, the character states in the m-th position across all species evolved from a single ancestral
character and thus comprise a single observation drawn from the marginal distribution. We further assume
the model of evolution (i.e., pa and pa!b.¢/) to be known.

We assume that different positions are identically distributed and evolve independently. This allows
computing the likelihood of the whole data set D given the phylogeny .T ; t/, as follows:

L.T; t/ D P .D j T ; t/ D
MY

mD1

P .x[1:::N ][m] j T ; t/: (8)

The maximum likelihood reconstruction task is to � nd a topology T and associated parameters t that
maximize this likelihood. The phylogenetic tree .T ; t/ is, in some sense, the most plausible candidate for
having generated the data.

3. OVERVIEW OF OUR APPROACH

In the following sections, we develop the components needed for the Structural EM procedure. We start,
however, with a high-level overview of the procedure and how the following developments � t.
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As explained above, the general problem in maximum likelihood reconstruction is due to the properties
of the likelihood function. This function is complex and unwieldy for optimization. For example, local
changes in the topology of the tree can have an impact on edge lengths throughout the tree. Thus, the
standard approaches for maximum likelihood reconstruction require branch-length optimization after each
attempt to modify the tree.

The strategy of Structural EM is to avoid some of these problems by using an alternative scoring
function. For ef� ciency, we want this scoring function to be decomposable—the score of a tree is the sum
of independent scores for edges of the tree. Optimization of such a scoring function is a combinatorial
optimization problem that can be addressed by optimizing of each edge separately and then combining
appropriate edges by simple algorithms (such as maximum spanning tree). The main dif� culty is how to
� nd such an alternative scoring function and to understand the relation between maxima of this alternative
scoring function and our actual objective, the likelihood function.

In Section 4, we develop the foundation for the expected log likelihood score and how to evaluate it. We
start by noting that, had we observed not only the leaves, but also the ancestral sequences, the likelihood
computations would have been much simpler. In fact, it would have been conveniently presented in terms
of certain frequency counts that summarize the input data. In such a case, the likelihood would have been
decomposable and, hence, easily optimized. However, ancestral sequences are unobserved. Fortunately
enough, assuming a given guess of the tree, we are able to induce probabilities on these sequences and
obtain information on their expected content. We can use this information to evaluate the expected log
likelihood of other trees.

Thus, by using the expected log likelihood score, we can make use of the current guess of the tree
topology in order to ef� ciently evaluate other trees. In Section 5, we show how we use this score to
iteratively progress in our search for the maximum likelihood tree. In each iteration, we use the tree found
by the previous one to de� ne the expected log likelihood score. We then � nd the tree that optimizes this
score. As we show, each iteration � nds a tree with higher likelihood, until the process converges.

4. EXPECTED LOG LIKELIHOOD AND COUNTS

4.1. Complete data

We � rst deal with a somewhat unreasonable situation, where we get to observe the ancestral sequences.
The study of this case constitutes the basis of later analysis.

In the complete-data scenario, our input is not only the set D D fxi [m] : 1 · i · N; 1 · m · Mg of
contemporary sequences, but also the set H D fxi[m] : N C 1 · i · 2N ¡ 2; 1 · m · Mg of ancestral
sequences. When we observe the values of all 2N ¡2 nodes of T for each position, the likelihood function is

Lcomplete.T ; t/ D P .D;H j T ; t/ D
Y

m

P .x[1:::2N¡2][m] j T ; t/: (9)

Note that since in this case we do not marginalize over unobserved nodes, each one of the P .x[1:::2N¡2][m] j
T ; t/ terms is a product of conditional probabilities. We rearrange the order of multiplications in Equation 4
into a more manageable form, as follows.

log Lcomplete.T ; t/ D
MX

mD1

log P .x[1:::2N¡2][m] j T 0; t0/ (10)

D
MX

mD1

2

4
³

2N¡2X

iD1

log P .xi[m]/

!
C

0

@
X

.i;j /2T

log
P .xi [m] j xj [m]; ti;j /

P .xi [m]/

1

A

3

5

D

0

@
2N¡2X

iD1

X

mjxi [m]Da

log pa

1

A C

0

@
X

.i;j /2T

X

.a;b/262

X

mj.xi [m];xj [m]/D.a;b/

log
pa!b.t /

pb

1

A
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We therefore need to count how many times each conditional probability pa!b .t /
pb

appears in this expression.
A frequency count of an event is the number of times it was observed. In this paper, we focus on frequency
counts, which register occurrences and co-occurrences of letters and are collected from the complete data
D; H . Formally, for an event Y , denote by 1fY g its corresponding indicator variable. Let S i;j .a; b/ DP

m 1fXi[m] D a; Xj [m] D bg and Si.a/ D
P

m 1fXi [m] D ag.

Proposition 4.1. The likelihood can be rewritten as

log Lcomplete.T ; t/ D
X

.i;j /2T

Llocal.Si;j ; ti;j / C
X

i

X

a

Si.a/ log pa (11)

where

Llocal.Si;j ; t/ D
X

a;b

Si;j .a; b/
£
log pa!b.t/ ¡ log pb

¤
:

This formulation is motivated by the approach of Chow and Liu (1968) for learning tree models. It is
important for several reasons. First, only the term which involves the weight function Llocal depends on the
topology and edge lengths. Thus, when maximizing the likelihood, we can ignore the right-hand term of
Eq. 11. Second, the log likelihood is a linear function of the counts. Finally, the term Llocal.Si;j ; ti;j / can be
optimized independently of other such terms. We de� ne a matrix W , with entries wi;j D maxt Llocal.Si;j ; t/.
Then the (log-likelihood) score of a tree is simply

max
t

log Lcomplete.T ; t/ D W.T / C constant (12)

where

W.T / ´
X

.i;j /2T

wi;j

and the constant depends neither on the topology, nor on the edge lengths. This reduces the problem of
� nding the highest-scoring tree, in the case of complete data, to a combinatorial optimization problem in
terms of the link weights. This problem is addressed in Section 5.

4.2. Expected log likelihood

We now return to the case where we observe only the values of the N leaves. In this case, our objective
function is the likelihood according to Equation 8. We use the notion of complete data to help us devise
an alternative likelihood function that will guide us in � nding high-likelihood trees. Improvement of this
alternative function guarantees stepping uphill with respect to the true likelihood.

Assume that we are given a data set D D fxi [m] : 1 · i · N; 1 · m · Mg. Suppose we have
some candidate phylogeny .T 0; t0/. We aim at computing a function on arbitrary trees .T ; t/, which is the
expected value of the log probability of the complete data. We can use expected counts based on .T 0; t0/

to compute this expected log likelihood of .T ; t/:

Q.T ; t : T 0; t0/ ´ E[log Lcomplete.T ; t/ j D; T 0; t0]

D
X

m

X

x[NC1:::2N¡2][m]

P .x[NC1:::2N¡2] j x[1:::N ]; T 0; t0/ log P .x[1:::2N¡2] j T ; t/:

This term is a sum over an exponential number of assignments of values to the ancestors in each position.
Before we analyze Q.T ; t : T 0; t0/ further, we examine its theoretical properties.

Theorem 4.2 (based on Friedman, 1997). For any T ; t

Q.T; t : T 0; t0/ ¡ Q.T 0; t0 : T 0; t0/ · log L.T; t/ ¡ log L.T 0; t0/:
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Proof. By de� nition,

Q.T ; t : T 0; t0/ D
X

H

P .H j D; T 0; t0/ log P .H; D j T ; t/:

Therefore,

Q.T; t : T 0; t0/ ¡ Q.T 0; t0 : T 0; t0/ D
X

H

P .H j D; T 0; t0/ log
P .H; D j T ; t/

P .H; D j T 0; t0/

· log
X

H

P .H j D; T 0; t0/
P .H; D j T ; t/

P .H; D j T 0; t0/

D log

P
H P .H; D j T ; t/
P .D j T 0; t0/

D log L.T; t/ ¡ log L.T 0; t0/

where we apply Jensen’s inequality in the second step.

Theorem 4.2 implies that improving the Q score forces an improvement of the objective likelihood.
Fortunately, maximizing Q.T; t : T 0; t0/ is feasible. Recall that Llocal is a linear function of the counts
Si;j . Thus, by linearity of expectation, we have that

Q.T; t : T 0; t0/ D
X

.i;j /

Llocal.E[Si;j j D; T 0; t0]; ti;j / C constant:

Thus, once we compute the expected counts E[Si;j j D; T 0; t0], we can optimize each Llocal.E[Si;j j
D; T 0; t0]; ti;j / term separately, by choosing an appropriate ti;j . As in Section 4.1, we can de� ne the link
weights wi;j to be these optimized local terms, thus allowing ef� cient evaluation of the expected score
for different topologies. These weights de� ne a combinatorial optimization problem, equivalent to � nding
the tree with highest (expected log-likelihood) score. In Section 5, we solve this problem, by � nding a
maximum spanning tree according to these weights.

4.3. Computing expected counts

Before we consider how to use the expected score in our algorithm, we address the issue of computing
expected counts. At each iteration, we compute these counts for all links, not just for edges of the current
topology T 0. Recall that

E[Si;j .a; b/ j D; T 0; t0] D E

"
X

m

1fXi[m] D a; Xj [m] D bg j D; T 0; t0

#
(13)

D
X

m

P .Xi [m] D a; Xj [m] D b j x[1:::N ][m]; T 0; t0/: (14)

Thus, the problem of computing expected counts reduces to the problem of computing conditional
probabilities over links. We solve that using the following observation.

Proposition 4.3. Let .T 0; t0/ be a phylogenetic tree. Assume that internal nodes i; j; and k are such
that j is on the path from i to k in T 0 . Then

P .xi; xk j x[1:::N ]; T 0; t0/ D
X

xj

P .xi ; xj j x[1:::N ]; T 0; t0/P .xj ; xk j x[1:::N ]; T 0; t0/

P .xj j x[1:::N ]; T 0; t0/
: (15)
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Based on this corollary, we design a simple procedure of dynamic programming. We traverse the tree
T 0 depth � rst, starting at the root. Upon visiting node i , we � rst compute P .xi; ¼.i/ j x[1:::N ]; T 0; t0/

using the upward-message method described in Section 2.3. We then consider each node j visited before i

and compute P .xi ; xj j x[1:::N ]; T 0; t0/ from P .xi ; ¼.i/ j x[1:::N ]; T 0; t0/ and P .¼.i/;xj j x[1:::N ]; T 0; t0/,
by applying Equation 15. This procedure assures that after each such visit all conditional probabilities
for edges that connect already-visited nodes are computed. Thus, the term P .¼.i/; xj j x[1:::N ]; T 0; t0/

above is always known prior to the � rst time is it needed. We proceed in this manner and compute all the
conditional probabilities of interest in a quadratic number of steps.

4.4. Approximated expected counts

Computation of these expected counts takes O
¡
M ¢ N2j6j3

¢
time, which constitutes a major bottleneck

in running time. Furthermore, storing these counts requires O
¡
j6j2N 2

¢
space, while storing the upward

messages require only O .j6jMN/ space. For practical problem size, e.g., a single protein of length
100–300 amino acids over 50–100 taxa, the � rst term is the limiting factor. We now detail a method to
avoid these complexity problems.

The main idea is to use approximate counts instead of exact ones. We suggest approximating the counts
E[Si;j .a; b/] D

P
m Pr.Xi[m] D a; Xj [m] D bjX1:::N [m]/, by

eSi;j .a; b/ D
X

m

P .Xi D a j X[1:::N ][m]/P .Xj D b j X[1:::N ][m]/: (16)

The reader is referred to Boyen et al. (1999) for justi� cation and further details of this approximation.
This latter computation is faster by O .j6j/ since we do not have to perform the j6j summation operations
of Equation 15. Note that although this approximation treats Xi and Xj as independent at each position,
the overall estimate of the count can capture dependencies between the two positions, because of the
summation over positions. We note that for actual tree edges .i; j/ 2 T , the exact expected count is
already known, by Equation 7, and therefore we do not approximate counts for these edges.

Observe that the sole purpose of the expected frequency counts is the computation of link weights.
Furthermore, the count eSi;j .¢; ¢/ is required only for computing a single weight: wij . Hence, we can com-
pute these weights one by one, each time constructing only a single count, reusing space. The space
complexity is thus O

¡
j6j2N

¢
.

5. STRUCTURAL EM PHYLOGENETIC INFERENCE

We now have all the components to describe the main steps of the Structural EM algorithm for phy-
logenetic inference. It is based on the development of the Structural EM method in learning Bayesian
networks (Friedman, 1997). The general outline is similar to the standard EM procedure (Felsenstein,
1981), with the important exception that we optimize not only edge lengths, but also the topology during
each EM iteration.

Our algorithm proceeds in iterations. We start by choosing a tree .T 1; t1/ using, say, Neighbor-Joining.
Then we improve the tree in successive iterations. In the l-th iteration, we start with the bifurcating tree
.T l; tl/ and construct a new bifurcating tree .T lC1; tlC1/. The high-level idea is to use .T l; tl/ to de� ne
the measure Q.T ; t : T l ; tl/ of expected log likelihood of trees and then to � nd a bifurcating tree that
maximizes this expected log likelihood.

5.1. Structural EM iterations

A Structural EM iteration consists of two steps, the E-step and the M-step. We now describe these in
detail.

To de� ne the expected log likelihood we need to compute expected counts:

E-Step: Compute E[Si;j .a; b/ j D; T l; tl] for all links .i; j/ and for all character states a; b 2 6, as
discussed in Section 4.3.



340 FRIEDMAN ET AL.

We then maximize the expected log likelihood in two phases as follows:

M-Step I: Optimize link lengths by computing, for each link .i; j /, its best length t lC1
i;j D arg maxt

Llocal.E[Si;j .a; b/ j D; T l; tl]; t/, as discussed in Sections 4.1 and 4.2.

Now we have the link lengths that maximize the expected log likelihood for each tree. This is similar
to standard EM for computing edge lengths, except that we compute link lengths also for pairs .i; j / that
are not adjacent in T l .

Once we have tlC1, we can de� ne W lC1 to be the 2N ¡ 2 by 2N ¡ 2 matrix fwlC1
i;j g, where wlC1

i;j D
Llocal.E[Si;j .a; b/ j D; T l; tl]; t lC1

i;j /. At this stage, by Theorem 4.2, we have that for any tree T

if W lC1.T / ¸ W lC1.T l/ then L.T; tlC1/ ¸ L.T l; tl/: (17)

Since we are learning bifurcating topologies, the appropriate maximization step is to construct a bifur-
cating topology T lC1 with leaves 1; : : : ; N such that W lC1.T lC1/ is maximized. Unfortunately, � nding
such a topology is an intractable problem.

Theorem 5.1. Let W D
¡
wi;j

¢
be a 2N ¡ 2 by 2N ¡ 2 matrix of link weights. Finding a bifurcating

topology T , such that W.T / is maximized, is an NP-hard problem.

Proof. Reduction from s-t-Hamiltonian path.

Fortunately, we can bypass this problem. Instead of � nding the maximum weight bifurcating topology,
we can ef� ciently � nd the maximum weighted topology employing maximum spanning tree algorithms.
This topology is not necessarily bifurcating; however, (17) still applies to it and, thus, it improves the
likelihood. In fact, this topology provides the best lower bound on the improvement in the likelihood,
according to (17). Once we have such a topology we can transform it into a bifurcating topology T lC1

without changing the likelihood of the tree.

Proposition 5.2. Let .T ; t/ be a phylogenetic tree. Then there is a tree .T 0; t0/ such that T is a
bifurcation with nodes 1; : : : ; N as leaves, and L.T; t/ D L.T 0; t0/.

We prove this proposition in Section 5.2.
Using this result, we can use the following maximization step.

M-Step II:
(a) Construct a topology T lC1

¤ that maximizes W lC1.T /, by � nding a maximum spanning tree.
(b) Construct a bifurcating topology T lC1 such that L.T lC1

¤ ; tlC1/ D L.T lC1; tlC1/.

Note that we do not restrict the topology T lC1
¤ we construct in step (a). The nodes in 1; : : : ; N may

be of degree greater than 1 and nodes in N C 1; : : : ; 2N ¡ 2 may be of degree different than 3. Thus,
we are searching for a maximum spanning tree, and we accomplish this stage using a standard algorithm
(Kruskal, 1956). Step (b) is less trivial, and we discuss it in the next section.

To summarize, we describe one Structural EM iteration. We started with a tree .T l; tl/ and constructed
a tree .T lC1; tlC1/ such that L.T lC1; tlC1/ ¸ L.T l; tl/. We repeat such iterations until convergence to a
local maximum.

5.2. Transforming a tree to an equivalent bifurcating tree

We now prove Proposition 5.2 by describing a procedure that takes an arbitrary tree and returns an
equivalently scoring bifurcation.
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Suppose we have a phylogenetic tree .T ; t/ with 2N ¡ 2 nodes, in which every node i has degree d.i/.
Our goal is to construct a bifurcating tree .T 0; t0/ that has the same likelihood. In such a tree, every node i

would have degree D.i/ where

D.i/ D
(

1 1 · i · N

3 N C 1 · i · 2N ¡ 2:

We apply a series of modi� cations to the maximum spanning tree. We take advantage of the lack of
memory in our model of evolution to show that these modi� cations preserve the likelihood of the tree. We
introduce these transformations in the following propositions.

Proposition 5.3. Let .T ; t/ be a phylogeny, and let N < j · 2N ¡ 2. Consider two cases:

² If d.j/ D 1, i.e., j is a leaf, then let .T 0; t0/ be equal to .T ; t/, except that j is removed.
² If d.j/ D 2, and .i; j/; .j; k/ 2 T , then let .T 0; t0/ be equal to .T ; t/, where .i; k/ replaces .i; j/; .j; k/,

t 0
i;k D ti;j C ti;k , and j is removed.

In either case, L.T; t/ D L.T 0; t0/.

Proof. For the � rst case, let i be the only neighbor of j . Consider the marginal distribution as a sum
of products, as in Equation 5. Reorder the summation indices in that equation so that xj is innermost.
By Equation 3, each product in this sum has only one term pa!b.ti;j / involving xj . Then

P .x[1:::N ] j T ; t/ D
X

fxk jk 6Dj;N<k·2N¡2g
P .fxk jk 6D jgjT 0; t0/

X

xj Db

pa!b.ti;j /I

but
P

xj Db pa!b.ti;j / D 1, and the result follows.
The second case follows from Equation 1, using similar arguments.

Whenever T is not a bifurcating tree, we can use Proposition 5.3 to simplify T by removing a single
node. Let T 0 be the resulting topology. It follows that there must be a node i > N of T 0 whose degree
is larger than 3, or a node i · N which is not a leaf. This exactly means that there exists i such that
d.i/ > D.i/.

Proposition 5.4. Let .T ; t/ be a phylogenetic tree, let i be a node with d.i/ > D.i/, and let i1; : : : ; id.i/

be i’s neighbors in T . Let .T 0; t0/ be a tree with a new node i0 such that .T 0; t0/ is equal to .T ; t/ except
that

² The edges .i; iD.i//; : : : ; .i; id.i// are replaced by the edges .i 0; iD.i//; : : : ; .i0; id.i//, whose lengths are
set as t 0

i0;j D ti;j for j D iD.i/; : : : ; id.i/.
² The edge .i; i0/ is added and its length is � xed to be t 0

i;i 0 D 0.

Then L.T; t/ D L.T 0; t0/.

Proof. For a 6D b, pa!b.ti;i 0/ D 0, and pa!a.ti;i0/ D 1. All remaining terms in Equation 3 remain
unchanged when switching from .T ; t/ to .T 0; t0/. Hence, L.T; t/ D L.T 0; t0/.

We note that in practice we slightly modify the insertion procedure in two respects. First, we use a small
positive duration instead of a zero edge length. This allows later rounds to differentiate the two nodes i; i0.
Second, when D.i/ D 3, we choose the neighbors i1; i2 carefully, rather than arbitrarily. For example, in
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FIG. 1. An illustration of the tree modi� cation steps de� ned in Propositions 5.3 and 5.4. Observed taxa are numbered
1 to 6, and internal nodes are numbered 7 to 10. The transformation from (a) to (b) involves removing two nodes: 9
according to the � rst case in Proposition 5.3, and 10 according to the second case. The transformation from (b) to (c)
involves reinserting these nodes according to Proposition 5.4. Node 9 is inserted since D.2/ D 1 and d.2/ D 2, and
node 10 is inserted since D.7/ D 3 and d.7/ D 4.

the spirit of the Neighbor-Joining heuristic, we choose, among the neighbors of i , to group the nodes i1; i2
which are closest to each other.

As long as our tree is not bifurcating, we can apply the deletion step (Proposition 5.3) and the insertion
step (Proposition 5.4), reusing the indices of the deleted nodes for re-insertion. Note that the order of
deletion/insertion steps may be arbitrary; thus, we can perform all deletions, and then all insertions, or
interleave them. Each such operation increases the fraction of nodes in T for which D.i/ D d.i/, and thus
we eventually end up with a bifurcating tree. Figure 1 illustrates the modi� cations steps of Propositions 5.3
and 5.4.

6. AVOIDING LOCAL OPTIMA

EM is a greedy method. Indeed, the theory presented thus far can only guarantee that the algorithm
described above would � nd a local maximum, rather than a global one. Unfortunately, local optima are a
practical dif� culty. Even when initiating Structural EM iterations from random points in our search space,
the chances of convergence to the global optimum are very small, for practical problem size.

We propose two strategies to overcome this handicap. The � rst strategy is to use an educated initialization
of the search procedure. Instead of starting the � rst Structural EM iteration from a random phylogenetic
tree, we employ a fast heuristic to � nd some phylogeny that makes sense and use that as the initial .T 0; t0/.
In our implementation, we use the Neighbor-Joining heuristic, a renowned standard (Saitou and Nei, 1987).
This strategy combines both the speed of Neighbor-Joining and the re� ned analysis capability of Structural
EM. As we show in Section 7, it produces impressive results.

A second, more systematic strategy to avoid local maxima incorporates randomness into the EM greedy
search. This may enable detection of a global optimum even if it is not in the basin of attraction of
the heuristic initial guess. We devote the remainder of this section to the development of a speci� c, novel
method for random search of optimal phylogenies based on synthesis between Structural EM and Simulated
Annealing.

Simulated Annealing (Kirkpatrick et al., 1983) is an established paradigm for introducing randomness
into greedy optimization procedures, by performing a random tour of the search space. Simulated Annealing
has been previously applied to phylogenetic analysis (Barker, 1997), even in the maximum-likelihood
framework (Dress and Kruger, 1987). Topologies are usually considered neighbors if their edge sets differ
by exactly one edge, i.e., they can be obtained from one another by a step of Subtree Pruning and
Regrafting. Another commonly used, narrower de� nition for neighbors is Nearest Neighbor Interchange,
which considers swapping of node pairs in internal quartets of the topology.

Such applications of Simulated Annealing tour the likelihood landscape in search for the global maxi-
mum. In contrast, we wish to maintain the Structural EM framework and utilize the convenient function
of expected log likelihood. Instead of a random tour that variates the tree topology itself, we perturb the
input to the steps that compute the topology. We do rely on Simulated Annealing theory and intuition for
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incorporating randomness. Each of the next couple of sections presents a speci� c implementation of this
paradigm of Annealed Structural EM.

6.1. Annealed Structural EM by perturbed edge weights

Recall that our Structural EM algorithm iteratively computes a .2N ¡ 2/ £ .2N ¡ 2/ weight matrix
W D

£
wi;j

¤
where wi;j is the contribution of substitutions along a putative edge .i; j / to the expected

log likelihood of the tree. We next construct a spanning tree T whose total weight W [T ] is maximum.
This is the optimal construction, with respect to the expected score. Indeed, this score points to a useful
“direction” for improvement. However, it is biased towards the tree by which we computed the expected
suf� cient statistics. Thus, at later iterations of the procedure, the trees that maximizes this score will tend
to be similar to the tree found in the previous iteration. This self-bias gives rise to stationary points of
Structural EM iterations.

A possible solution to these dif� culties is to choose trees randomly, in a manner that is guided by the
expected score, but not necessarily choose the highest-scoring tree. This will use the expected suf� cient
statistics to point towards improvements, but can escape local maxima. A simple and well-understood
method for such weighted randomization is to sample a tree T according to the Metropolis distribution,
i.e., with probability proportional to eW [T ]=¾ , where ¾ is an annealing temperature parameter. Thus, if ¾

is small, we choose the maximum spanning tree with high probability. When ¾ is large, we select trees
uniformly. The interesting behavior occurs in intermediate ranges of ¾ , where we select among the many
spanning tree topologies whose (expected log) likelihoods are reasonably close to the maximum. (Note
that these topologies are not guaranteed to actually resemble the maximum spanning tree.) Unfortunately,
sampling spanning trees from this exponential distribution is a complex task (Propp and Wilson, 1998).
Instead, we devise an ef� cient sampling procedure that generates a distribution of spanning trees with
similar properties.

We now modify Structural EM by introduction of random noise to the set that constructs the maximum
spanning tree. Given the weight matrix W , we construct a new matrix eW with perturbed weights, by
adding Gaussian noise to the matrix. Let ewi;j D wi;j C ²i;j , where ²i;j are random variables, each
normally distributed around zero with variance ¾ 2. To preserve symmetry, we � x ²j;i D ²i;j for all i; j .
Apart from this symmetry constraint, f²i;j g are independent. Instead of computing the maximum spanning
tree according to the actual weight matrix W , we use its perturbed version eW .

We interleave this sampling procedure with Structural EM iterations. The standard deviation of the white
noise assumes the role of the annealing temperature. As in standard annealing, we start with an initial
temperature ¾ D ¾0 and gradually reduce it, e.g., by successive multiplications of the current temperature
by a cooling factor ½. We start with an arbitrary tree .T 0; t0/ and set the iteration counter l to zero. We
then iterate as follows:

E-Step: Compute expected counts for all links .i; j/. Same as in Section 5.1.
M-Step I: Optimize link lengths, and compute the weight matrix W lC1, same as in Section 5.1.
Modi� ed M-Step II:
² Perturb W lC1 by adding Gaussian noise with variance ¾ 2

l to each matrix element. Denote the resulting
matrix by eW lC1.

² Construct a topology T lC1
¤ that maximizes eW lC1.T /, by � nding a maximum spanning tree.

² Construct a bifurcating topology T lC1 such that L.T lC1
¤ ; tlC1/ D L.T lC1; tlC1/, same as in Section 5.1.

² Set ¾lC1 Ã ½ ¢ ¾l .

As demonstrated in Section 7, this combination of randomness and Structural EM is very effective. It
detects trees which are more likely than those constructed by other methods, and it is capable of escaping
local optima.

Intuitively, the perturbation of W has an effect similar to the Metropolis distribution—the probability
that T is the maximum spanning tree of eW depends on W [T ] and the annealing parameter. The larger the
annealing parameter, the more this distribution becomes diffused.

To demonstrate this, consider pruning and regrafting of a single subtree of the topology T ¤ which is
the maximum spanning tree with respect to the unperturbed W . Let e¤ D .i¤; j¤/ be an edge of T ¤, and
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let eC D .iC; j C/ be a candidate edge such that T C D T ¤ [ feCg n fe¤g is another spanning tree. The
difference between the perturbed weights of these trees is

eW [T C] ¡ eW [T ¤] D W [T C] ¡ W [T ¤] C ²iC ;jC ¡ ²i¤ ;j¤ :

This quantity is normally distributed with a negative mean W [T C] ¡ W [T ¤] and variance 2¾ 2. It follows
that the nongreedy move from T ¤ to T C is facilitated with probability

Pr. eW [T C] > eW [T ¤]/ D 8

³
W [T C] ¡ W [T ¤]

p
2¾

´

where 8 .x/ D
R x

¡1
1p
2¼

exp
±

¡t2

2

²
dt is the Gaussian cumulative error function. The decay of this proba-

bility is bounded by an exponent in W [T C] ¡ W [T ¤].

Lemma 6.1 (Variation of Chernoff [1952]). 8 .x/ < exp .x/.

Hence, the probability that our perturbed Structural EM iteration would prefer T C to T ¤ is smaller than

exp
±

W [T C]¡W [T ¤]p
2¾

²
. This bound on the probability of choosing a worse tree elucidates two properties

reminiscent of the Metropolis distribution:

² Decay which is exponential in the score difference, W [T C] ¡ W [T ¤].
² The role of ¾ as the annealing parameter that determines the scale in which score differences affect that

probability.

6.2. Annealed Structural EM by perturbed position weights

In this section, we describe another method to randomize local searches. This method is more general and
can actually be adapted to any optimization of a score which is a sum of independent contributions. In fact,
it has already been suggested as a promising heuristic for maximum parsimony phylogenetic reconstruction
(Nixon, 1999), a nonprobabilistic approach. More recently, this paradigm has been demonstrated to perform
well on a general setting in computational learning (Elidan et al., 2002).

Instead of randomizing edge weights, we now randomize the summary of the input data. More specif-
ically, we randomly reweight each of the positions in the training sequences. This perturbs our expected
suf� cient statistics and thereby also leads to perturbed edge weights.

Formally, we replace Equation 13 by the following:

weighted-EÄ[Si;j .a; b/ j D; T ; t] D
X

m

!mP .Xi [m] D a; Xj [m] D b j x[1:::N ]; T 0; t0/ (18)

where Ä D f!mg is the set of random independent positional weights. Below, we discuss the choice of
random distributions for generating !m. However, we note that as in Section 6.1, a parameter ¾ , related
to the randomization procedure, assumes the role of the temperature in the Metropolis process.

We initially � x the temperature ¾0 and tree .T 0; t0/ and set the iteration counter l to 0. We then iterate
as follows.

Modi� ed E-Step:
² Randomly choose weights !1; : : : ; !M , according to the distribution dictated by ¾l .
² Compute weighted EÄ[Si;j .a; b/ j D; T l ; tl ] for all links .i; j/, according to Equation 18.
² Set ¾lC1 Ã ½ ¢ ¾l .
M-Step I: Optimize link lengths, as in Section 5.1, but using weighted-EÄ[¢] instead of E[¢].
M-Step II: Construct a bifurcating topology T lC1 as in Section 5.1.
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We now explain the justi� cation for the above procedure. We focus on a single E-step and discuss a
problem more general than ours: we consider the abstract task of characterizing a probability distribution
based on a data set of M observed samples. The standard approach is to summarize the data by frequency
counts. The rationale is that counts re� ect our best guess of the true probabilities for each possible sample.
This guess, however, is an obvious over� t. It is predisposed towards the samples that were observed, which
may not fairly represent the distribution from which they were drawn. We would like to randomly sample
the space of such possible distributions, rather than deterministically choose the most likely one.

An intuitive way to achieve that is to resample, with replacement, observations from the input set. This
resampling of the input is the principle guiding the bootstrap method, a standard procedure for evaluation
of solution signi� cance (Efron, 1979). This resampling procedure is used here instead to improve the search
for the optimal solution.

A naive resampling policy would repeatedly choose a random observation out of the input set. This is
mimicked by initializing zero weights !1; : : : ; !M corresponding to the input observations and repeatedly
incrementing a random member of Ä D f!mg. In this spirit, we do assign random weights to positions along
our sequence data. However, to avoid discrete weights, we prefer to repeatedly increase each weight !m

by a random number, rather than by a single unit. These random numbers are chosen according to the
gamma distribution with shape parameter K and scale parameter b:

0K;b.x/ D
xK¡1exp

¡ ¡x
b

¢

bK0.K/

The variance of this distribution equals the inverse of shape parameter: ¾ 2 D 1
K

.
This theory suggests using resampled or perturbed weights as a randomization mechanism for Structural

EM, together integrated into a Simulated Annealing-type algorithm. As in Section 6.1, we follow the
guidelines of Simulated Annealing. Again, the standard deviation ¾ assumes the role of the annealing
temperature, and the probability of a weight being 1 away from its mean value decays exponentially
with 1

¾
.

7. EMPIRICAL EVALUATION

We have implemented our algorithms in a program called SEMPHY. The program is written in C++
and runs on several Unix platforms, as well as Microsoft Windows. For details regarding availability of
SEMPHY, see www.cs.huji.ac.il/labs/compbio/SEMPHY. We investigate the performance of our algorithms
on both amino-acid and DNA data sets, for both real and simulated data. We � rst describe the results
on the amino-acid sequences whose large alphabet necessitates a complex methodology for phylogenetic
analysis.

7.1. Protein sequences

In these tests, we used MOLPHY (Adachi and Hasegawa, 1996) as the main reference point against which
we compared SEMPHY. (Other applications, such as PAUP or FastDNAML, offer maximum-likelihood
solutions only for DNA data, rather than protein sequences.)

We � rst consider the basic Structural EM algorithm, using the Neighbor-Joining tree as a starting point,
and apply it to simulated data. We then perform additional simulation studies, to evaluate enhancements
to the basic paradigm. Eventually, we apply our methods to real biological data sets.

We � rst evaluated the performance of the basic Structural EM algorithm. We start with a comprehensive
evaluation of synthetic data sets. These data sets were generated by constructing an original phylogeny
and then sampling from its marginal distribution. Each synthetic data set is comprised of two sets of
sequences: a training set and a test set. Both sets were simulated assuming the same phylogeny. That is,
both consisted of observations drawn from the same marginal distribution, which we wish to characterize.
Only the training set has been used for inferring a phylogeny.

We graded the inferred phylogenetic tree by two � gures of merit, which are the log-likelihood values of
each such set (training/test). While the likelihood of the training set is exactly the target of ML optimization,

http://www.cs.huji.ac.il/labs/compbio/SEMPHY
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the second � gure of merit aims at detecting undesired effects of over� tting the inferred phylogeny to the
data. Log likelihoods were normalized as follows: A baseline, which is the log likelihood of the original
phylogeny, was subtracted from the log likelihood of the inferred tree. The result was divided by the
number of positions.

In these tests, we examined the effect of the number of training positions and the number of taxa on the
quality of the learned phylogenies. For this purpose, we examined two sets of phylogenies:

² The � rst consisted of 48 taxa and different lengths of the training sequence (from 25 to 1,000 positions).
² The second consisted of different numbers of taxa (12–96) with training sequences of length 100 posi-

tions.

The size of the test set was 1,000 positions for all benchmarks. To assess whether our results were
reproducible, we repeated these experiments 10 times. That is, we generated 10 “original” trees and from
each we sampled training and test data. These phylogenies had uniform topology (whose directed analogue
is a fully binary tree) and edge lengths that are sampled from the Gamma distribution to simulate a mix
of short and potentially very long edges. The distribution parameters were chosen to � t the data of Pupko
(2000). Sequences for these trees were simulated using the JTT amino-acid replacement model of Jones
et al. (1992).

This gives us a sense of the amount of information that the training data contains about the original
model. Since the training data are not perfect, we expect that edge length optimization with the original
topology will learn parameters that are somewhat different than these original parameters. By de� nition,
these learned parameters perform better on the training data (since we optimize the training data likelihood).
However, they usually perform worse on the test data. (In fact, for test data comprised of suf� ciently long
sequences, no model can perform better than the original model.) This phenomenon is often referred to
as over� tting. The performance of the original tree with parameters estimated from the training data is an
upper bound on the performance we can expect from any training method on the particular training data.
This performance is therefore a milestone for errors of different methods.

Figure 2 summarizes the results for these tests. These results show several trends.
First, as one can expect, the quality of the learned trees deteriorates when the number of taxa increases

and when the number of training positions decreases. In these situations, all methods performed worse
on the test data. This deterioration includes the original topology with reestimated edge lengths, which
indicates that in some sense in these situations we have less information in the training sequences.

Second, we see that in terms of training data likelihood, the performance of SEMPHY closely tracks
the performance of the original topology with reestimated edge lengths. This indicates that SEMPHY � nds
topologies that, based on the training data, are almost as good as the original ones. (In some situations,
they score better than the original topology.) The difference between performances of SEMPHY and the
original topology on the test data indicates that the additional knowledge of the original topology helps in
� nding better approximations of the true phylogeny, which should be expected. As we see, however, for
large number of training positions, this difference vanishes.

Finally, we see that SEMPHY clearly outperforms MOLPHY in terms of quality of solutions (on both
the training set and test set likelihoods). While SEMPHY is close to the performance of the original
topology on the training set, we see that MOLPHY is worse, even when the number of training positions
grow. We see also that for large number of taxa, MOLPHY’s performance deteriorates, even according
to the training set likelihood. In addition, Fig. 3 shows the running time as a function of the number of
taxa. We see that MOLPHY’s running time grows much faster than SEMPHY’s running time, which is
only quadratic in the number of taxa. (Note that the running time of both programs grows roughly linearly
in the number of training positions.) These results show that SEMPHY’s speed allows, for the � rst time,
ML phylogenetic inference on a large scale.

Next, we turned to evaluate enhancements and modi� cations to the basic approach. Figure 4 demonstrates
the validity of approximate counts, discussed in Section 4.4. Observe that performance is not noticeably
degraded by the use of this approximation. Recall that for protein sequences, approximate counts are 20-
times faster than exact ones. Therefore, counts are no longer the limiting factor in iteration running time,
which shows a close to � ve-fold improvement. This ef� ciency makes it possible to perform signi� cantly
more Structural EM iterations and thus enables the enhancements discussed in Section 6.
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FIG. 2. Summary of results from synthetic data. Top row shows the likelihood of reconstructed tree as a function
of training sequence length. Bottom row shows the likelihood of reconstructed tree as a function of the number of
taxa. The left column shows likelihood of trees on the sequences from which they were learned (training data), and
the right column shows likelihood on independent sequences sampled from the original tree (test data). Each graph
presents three curves: a solid curve for SEMPHY, a dotted curve for MOLPHY, and a dashed curve for the likelihood
obtained by optimizing edge lengths for the original topology, according to the training data. The y-axis unit is average
log-likelihood per position. The y-axis baseline is the score of the original tree from which the data was sampled. The
curves represent 10 independent runs from different trees. The graphs plot the average performance of each method,
and the vertical error-bars represent the interval containing 60% of the runs.
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FIG. 3. Average running times (on a 600 MHZ Pentium III machine) for SEMPHY runs in the bottom chart of
Fig. 2.
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FIG. 4. Results of basic Structural EM using approximated counts vs. exact counts. The data sets used were simulated
as in the bottom chart of Fig. 2. The x-axis represents the number of taxa. The y-axis represents the likelihood of the
output tree, measured in units of average log-likelihood per position. The y-axis baseline is the score of the original
tree with optimized edge lengths.

We now analyze the performance of Annealed Structural EM algorithms. Since these are randomized
algorithms, we investigate this performance by their repeated applications. We characterize the distribution
of both test and train scores of trees that these algorithms � nd. Figure 5 presents this cumulative distribution
for Annealed Structural EM by perturbed weights and by positional weights.

The most obvious conclusion from Fig. 5 is the ability of Annealed Structural EM to � nd remarkably
high-scoring trees.

On both train and test data, MOLPHY and basic Structural EM are no match for the annealed algorithms.
On the train data, more than 50% of the runs � nd trees that are more likely than the original tree. This
means that by taking the best solution out of few independent runs, it will learn such a high-scoring tree
with very high probability. On the test data, our score approaches that of the edge-length-optimized original
tree. Lastly, there is no clear winner between the two variants considered. This promotes the claim that
randomization helps Structural EM more than the method by which it is incorporated into the Structural
EM iterations.

While the basic Structural EM algorithm usually converges in a few iterations (often as few as 3), its
annealed versions perform around 60 iterations. Still, the complexity is only quadratic. Annealed Structural
EM thus enjoys reasonable running times even for large data sets. For example, analysis of 60 protein
sequences of length 100 would take an hour, three-fold faster than MOLPHY.

We also applied both SEMPHY and MOLPHY to real data sets, one of nuclear lysozyme proteins
(Pupko, 2000) and another of concatenated mitochondrial proteins (Reyes et al., 2000). Both data sets
focused on mammalian genes, with the exception of several outgroup species. The proteins in each data
set were aligned using CLUSTALW (Thompson et al., 1994), and columns with deleted amino acids were
excluded from the analysis. Naturally, we did not have any test set in these cases.

The lysozyme data set consists of 43 protein sequences of length 122. SEMPHY has found a tree for this
data set whose overall likelihood is ¡2,892.11. Compared to the tree found by MOLPHY with likelihood
¡2,916.67, we get an improvement of 0.57 per position on average.

The mitochondrial data set consists of 34 sequences, each being a concatenation of the 13 proteins coded
by mammalian mitochondria. The total length of each sequence is 3,578. The log-likelihood of the tree
we obtain using SEMPHY is ¡70,533.5, which corresponds to the best result in the biological literature
(Reyes et al., 2000). Compared to the tree likelihood of ¡74,227.9 attained by MOLPHY, the improvement
is of 1.03 on average, per position.
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FIG. 5. Performance of Annealed Structural EM on train data (left) and test data (right). Two data sets (trainCtest),
each of 24 sequences of length 400, were simulated. Each of our two variants of Annealed Structural EM was rerun
80 times against the train data set, plotting the cumulative curves of the obtained solution score for each data set.
The x-axis denotes the log likelihood per sequence position. The y-axis denotes the fraction of algorithm reruns that
produced solutions of this likelihood or better. Several vertical baselines were drawn for comparison to other methods
(basic Structural EM and MOLPHY) and to the original tree. Annealing initial temperature was set to ¾0 D 0:1, with
the cooling factor ½ D 0:95. The stopping criterion is the � nal temperature ¾l D 0:005, requiring 60 iterations of the
algorithm.

7.2. DNA sequences

We also evaluated the performance of our method on DNA data. Here the performance was compared
to the FastDNAML program (Olsen et al., 1994). We followed the experimental design of Ranwez and
Gascuel (2001). We thus modeled evolution by Kimura’s two-parameter model (1980), with a ratio of two
between transitions and transversions. Six model trees, each of 12 sequences were evaluated. For each tree,
four combinations of branch length were used, as by Ranwez and Gascuel (2001). Two sequence lengths
(300bp and 600bp) were examined, with 1,000 such data sets simulated for each. SEMPHY was run once
for each such dataset. FastDNAML was run for comparison.

The results are summarized in Table 1. For evaluation of success, this table uses the criterion of Ranwez
and Gascuel (2001): identical reconstruction of the topology of the original model tree. This criterion has a
serious � aw, since the program often � nds topologies which are more likely than the original tree. We thus
further consider the likelihood of the reconstructed tree, compared to the original tree likelihood. Results
are summarized in Table 2.

We also compared the performance of both programs on trees which are not arti� cial. To construct such
trees, we used a cytochrome-b DNA dataset. This dataset was constructed as follows. One cytochrome-b
sequence was chosen for each rodent genus available in GenBank. The aligned dataset contained 133
sequences and 1,138 nucleotide positions. Trees were constructed (by SEMPHY) for subsets of these
sequences. For each such tree, and for each prescribed number of positions, we simulated a series of
10 random datasets. We compared average performance of SEMPHY versus FastDNAML on each such
series, by considering the difference in the log likelihood of the trees these applications reconstruct. This
difference is normalized per sequence position.

Results are summarized in Table 3. It appears that the taxa in this dataset are rather close together,
and from our evaluation FastDNAML performed very well on this task, almost always exceeding the
performance of SEMPHY. We note that FastDNAML employs a very different, incremental approach for
searching the ML tree, locally rearranging the tree upon addition of sequences (Olsen et al., 1994). In
principle, it is possible to replace the local rearrangement step by a Structural EM step. We believe that
such a combination of ideas from both FastDNAML and SEMPHY may be superior to both applications.
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Table 1. Comparison of SEMPHY and FastDNAML on Simulated DNA Dataa

Model treeMax
Number of pairwise
positions distance A B AB C D CD

300 0.1 19 (23) 18 (20) 21 (21) 19 (16) 19 (18) 19 (18)
300 0.3 40 (58) 36 (53) 45 (54) 65 (70) 64 (68) 69 (69)
300 1 14 (44) 11 (36) 13 (37) 57 (82) 56 (83) 69 (81)
300 2 0.2 (8) 0.4 (4) 0.6 (5) 20 (59) 21 (62) 18 (59)

600 0.1 69 (69) 55 (63) 58 (65) 66 (66) 60 (61) 61 (62)
600 0.3 80 (93) 74 (87) 76 (91) 95 (94) 93 (97) 91 (96)
600 1 47 (85) 47 (77) 49 (82) 86 (99) 85 (99) 83 (98)
600 2 6 (35) 3 (26) 4 (28) 38 (93) 44 (91) 43 (94)

aEach table column corresponds to a model tree topology, used to simulate the sequences . Each row corresponds to a simulation
setup, i.e., the number of positions and combination of branch lengths. Each entry is the percent chance, measured across 1,000
simulated data sets, that the original model topology would be identically reconstructed by SEMPHY (FastDNAML).

Table 2. Performance of SEMPHY on Simulated DNA Dataa

Model treeMax
Number of pairwise
positions distance A B AB C D CD

300 0.1 93 89 91 99 99 99
300 0.3 68 69 65 93 92 91
300 1 45 46 47 70 68 69
300 2 44 47 48 44 39 39

600 0.1 87 86 86 97 98 97
600 0.3 80 82 81 93 96 94
600 1 58 64 63 84 86 85
600 2 38 37 39 42 49 47

aTable rows and columns are as in Table 1. Each entry is the percent chance, measured across 1,000
simulated data sets, that the likelihood of the SEMPHY reconstructed tree is higher than, or equivalent
to, the likelihood of the original model topology.

Table 3. Comparison of SEMPHY and FastDNAML on
DNA Data Synthesized Using Natural Treesa

Number of
sequences 100bp 300bp 1000bp 2000bp

10 ¡0.0028 0.0008 0.0000 ¡0.0000
15 0.0014 0.0000 0.0000 ¡0.0000
20 ¡0.0065 0.0018 ¡0.0000 ¡0.0000
30 0.0125 0.0041 0.0010 0.0000
40 0.0136 0.0047 0.0000 ¡0.0000
80 0.0693 0.0101 0.0033 0.0020

100 0.1255 0.0223 0.0014 0.0004

aEach table entry registers the difference per position between the log-likelihood
of the tree found by FastDNAML and the one found by SEMPHY. These � gures are
averaged over 10 subsets of the available data.
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8. DISCUSSION

This paper presents a new approach for maximum likelihood phylogenetic reconstruction. On the the-
oretic aspect, we build on existing theory of learning and inference, to further develop such ideas in
phylogenetic context. On the applicative aspect, we show good results, both on real and synthetic data.
For amino-acid sequences, we � nd signi� cantly better trees than possible so far. Moreover, our algorithm
is computationally ef� cient. We therefore enable, for the � rst time, maximum likelihood phylogenetic in-
ference on a large scale for protein sequences. On DNA data sets, SEMPHY’s performance is not as good
as FastDNAML. Further improvements to the algorithm presented here, such as incorporating step-wise
addition of sequences when building the tree, � anked by SEMPHY rearrangements, might prove to be
even more effective.

Being a � rst attempt at applying a completely new strategy for phylogenetic reconstruction, our success
compares well with state-of-the-art standard applications, and systematically outperforms them in many
cases, thus proving the potential of our approach and encouraging further study.

This work raises many research questions, both theoretical and practical. Our algorithm assumes a
uniform rate of evolution. It was shown that the assumption of rate heterogeneity across sites is statistically
superior to the constant-rate assumption (Yang, 1993). An important extension to this work would be to
incorporate this model of variable rates into our development. This can be posed as a missing data problem
where the rate of each position is an additional unobserved variable. Our decomposition of expected log
likelihood extends in a natural manner to this case, and thus the general procedure we described can be
applied to the more expressive model.

This paper still does not explore the power of our method in depth. A more thorough examination
of its performance and comparison to several existing methods are needed. Validating Structural EM for
more models for DNA evolution (e.g., codon models) is an obvious such examination. One other obvious
extension would be to try replacing the local optimization step in FastDNAML with a Structural EM step.
Furthermore, inferring phylogeny for dozens of species should not be the � nal goal. Rather, the challenge
of analyzing hundreds of sequences, in a maximum likelihood framework, seems almost practical.

Finally, it still remains to exploit the new method for extensive biological research. Recent data sets in
molecular evolution are becoming bigger and bigger, holding the promise to resolve classical questions
about the divergence of life. Although these sets contain lots of potential information, the lack of a fast
and accurate inference tool stands in the way of their utilization. We hope our maximum-likelihood-based
solution will support this analytic endeavor and promote new insights.
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