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Abstract

In this study, we present a novel methodology to infer indel parameters from multiple sequence alignments (MSAs) based on

simulations. Our algorithm searches for the set of evolutionary parameters describing indel dynamics which best fits a given input

MSA. In each step of the search, we use parametric bootstraps and the Mahalanobis distance to estimate how well a proposed set of

parameters fits input data. Using simulations, we demonstrate that our methodology can accurately infer the indel parameters for a

largevarietyofplausible settings.Moreover,usingourmethodology,weshowthat indelparameters substantially varybetween three

genomic data sets: Mammals, bacteria, and retroviruses. Finally, we demonstrate how our methodology can be used to simulate

MSAs based on indel parameters inferred from real data sets.
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Introduction

A large body of research is dedicated to understanding how

the evolutionary process varies within groups of orthologs,

among sites within a gene, between populations, and

among diverged species. Evolutionary models aiming to de-

scribe these dynamics must account for base pair substitutions

as well as insertion and deletion (indel) events.

Great progress has been made in developing rich and ac-

curate substitution models that account for many features of

the evolutionary process. Such features include accounting for

differences between rates of transitions and transversions as

implemented, for example, in the HKY85 model (Hasegawa

et al. 1985), accounting for among-site rate variation by using

a Gamma distribution (reviewed in Yang 1996; Pupko and

Mayrose 2010), considering heterotachy (Whelan et al.

2011), lifting the assumption of stationarity (Barry and

Hartigan 1987; Lockhart et al. 1994), and accounting for de-

pendencies among sites (Yang 1995; Robinson et al. 2003;

Siepel and Haussler 2004; Rodrigue et al. 2005; Stern and

Pupko 2006; Suzuki et al. 2009; Berard and Gueguen 2012).

Following the pioneering TKF (Thorne, Kishino, and

Felsenstein) models (Thorne et al. 1991, 1992), several

models to describe indel dynamics have been proposed:

From statistical alignment algorithms (Lunter et al. 2003),

through the development of the long indel model (Miklos

et al. 2004), to the use of the Poisson distribution to describe

a fixed instantaneous rate of indels (Cartwright 2005). The

length distribution of indels has been studied in various bio-

logical data sets and was proposed to follow a Zipf (power

law) distribution (Benner et al. 1993; Gu and Li 1995; Zhang

and Gerstein 2003; Chang and Benner 2004; Zhang et al.

2010). This distribution describes an inverse relation

between the length of an indel (k) and its probability:

Pr kð Þ ¼ k�a

z að Þ, where a>1 is the slope parameter of the distri-

bution, and z að Þ ¼
X1

n¼1
n�a is the Riemann zeta function.

When utilizing substitution models, free parameters are

usually inferred from data. For example, many applications

rely on the inference of the parameter of the gamma distri-

bution used to model among-site rate variation (Buckley et al.

2001; Susko et al. 2003; Pond and Frost 2005; Abhiman et al.

GBE
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2006; Rubinstein et al. 2011). Another example is the evalu-

ation of the parameter which indicates the type and intensity

of the selection regime acting on a protein-coding gene

(Goldman and Yang 1994; Yang et al. 2000; Bielawski 2013).

In contrast to the common practice of inferring substitu-

tion-related model parameters, not much work has been de-

voted to inferring parameters describing indel dynamics, such

as the ratio between indel rates and substitution rates and the

distribution of indel size. Two notable efforts to infer indel

parameters include the lambda.pl script implemented as

part of the Dawg package (Cartwright 2005) and an expec-

tation maximization algorithm to infer those parameters from

HMMs (Hidden Markov Models) of a pair of sequences

(Cartwright 2009). A possible reason for the paucity of anal-

yses for which indel parameters are inferred is that indel dy-

namics parameters are substantially more challenging to

estimate compared with substitution parameters (Cartwright

2005; Fletcher and Yang 2009). Factors contributing to this

challenge include the dependency among sites introduced by

indel events and the existence of overlapping indels.

Because the indel dynamics parameters are an essential

precursor to many phylogenetic procedures, we were moti-

vated to find a way to infer these parameters from input data

sets. In this study, we present a novel algorithm to infer the

indel to substitution rate ratio, the parameter controlling the

distribution of indel length and the root length from an input

multiple sequence alignment (MSA) and tree. Our proposed

method is general and could be applied to a wide variety of

theoretical models. We demonstrate our method by analyz-

ing the indel dynamics in three data sets—from mammals,

from the COG (Cluster of Orthologous Groups) database,

and from an HIV-1 (Human Immunodeficiency Virus 1)

data set—demonstrating the variability of indel dynamics

among protein MSAs. We further demonstrate how com-

bining our algorithm with sequence simulators leads to sim-

ulated sequences that mimic real sequence data sets in terms

of indel prevalence and length. We provide the SPARTA

(Searching indel PARameters Trained from Alignment) soft-

ware implementing our algorithm.

Materials and Methods

Indel Dynamics Parameters

In this study, we demonstrate our methodology for the infer-

ence of three indel parameters. These parameters are used by

the sequence simulation program to generate the evolution-

ary process along the tree. The first parameter is the indel-to-

substitution rate ratio (IR), which controls the proportion of

events in the simulation in which an indel is created. The

second parameter is the “a” parameter of the power law

distribution, which controls the distribution of indel length.

This distribution describes an inverse relation between the

length of an indel and its probability. The third parameter is

the length of the sequence at the root of the tree (RL). The

simulation is of an evolutionary process along a tree, and this

sets the length of the ancestral sequence which is mutated

along the branches of the tree (Fletcher and Yang 2009).

Attributes and Attribute Computation

1. MSA length: The number of columns in the alignment.
2. Total number of gap blocks in the MSA: Gap blocks are

one or more consecutive gap characters. This is an esti-
mate of the number of indels per sequence, over the
whole MSA.

3. Average gap block length: The total number of gap char-
acters divided by the total number of gap blocks. This is a
proxy of average indel length.

4. Minimal length of sequence in the input MSA.
5. Maximal length of sequence in the input MSA.

Confidence Measure for SPARTA’s Inferred Parameters

The SPARTA methodology can be used to examine the fit

between summary statistics (attributes) of the input MSA

and those statistics computed from the simulated MSAs

under the inferred indel parameters. This is achieved by first

computing the Mahalanobis distance between the vector of

summary statistics computed from the real data to the multi-

variate distribution of summary statistics computed from the

simulated MSAs. Next, this distance is translated to a P value

according to the following formula (Clark et al. 1993):

p ¼ 1� CDF:CHISQðD2; v � 1Þ

where D is the Mahalanobis distance, v is the number of sum-

mary statistics, and CDF.CHISQ is the chi-squared cumulative

distribution function with v�1 degree of freedoms.

A significant P value (e.g., smaller than 0.05) means that

the vector of summary statistics computed from the real MSA

is unlikely to originate from the same multivariate distribution

yielding the set of simulated MSAs, suggesting the assumed

indel model does not capture some indel aspects reflecting the

evolution of the real data analyzed.

Parameter Configurations

In this study, we examined the inference of the slope of the

power law distribution of indel lengths (a), the indel-to-sub-

stitution rate ratio (IR), and the ancestral sequence length (RL).

The following parameter configurations were used in this

study:

1. “Basic configuration”: a = 1.3, IR = 0.02, RL = 350.
2. Alternative configuration 1: a = 1.3, IR = 0.02, RL = 100.
3. Alternative configuration 2: a = 1.3, IR = 0.02, RL = 500.
4. Alternative configuration 3: a = 1.1, IR = 0.02, RL = 350.
5. Alternative configuration 4: a = 1.7, IR = 0.02, RL = 350.
6. Alternative configuration 5: a = 1.3, IR = 0.01, RL = 350.
7. Alternative configuration 6: a = 1.3, IR = 0.1, RL = 350.
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These configurations were simulated using INDELible

(Fletcher and Yang 2009). All other INDELible parameters

were set to the following: “NUCLEOTIDE 2” model, substitu-

tion model: “HKY 2.5,” and maximum indel length: 50. For all

simulations, the Azurin tree described below was used.

Data sets

Azurin Data Set

The Azurin protein MSA was downloaded from the

HOMESTRAD database (Mizuguchi et al. 1998). This set in-

cludes 29 sequences; the MSA length is 215 amino acids. The

maximum likelihood phylogenetic tree for this data set was

reconstructed using PhyML (Guindon et al. 2010; Criscuolo

2011) with the following parameters: Model of amino acids

substitution = WAG (Whelan And Goldman), discrete gamma

model, number of categories = 4, tree topology search = best

of NNI (Nearest Neighbor Interchange) and SPR (Subtree

Pruning Regrafting), and optimizing over all other parameters

(“tlr,” proportion of invariant sites estimated from the data).

The tree is given in the supplementary information,

Supplementary Material online.

OrthoMam Data Set

A mammalian collection of orthologous genes was down-

loaded from the OrthoMam database (Douzery et al. 2014).

This collection includeds 498 MSAs which had orthologs

across all 40 mammalian sequences. The gene trees provided

by OrthoMam were used in all our analyses.

COG Data Set

A collection of orthologous genes was downloaded from the

COG database (Tatusov et al. 2003). This collection included

100 MSAs. Each of these MSAs contained 40–50 sequences

of genes. The maximum likelihood gene tree for each set of

orthologs was reconstructed using PhyML with the following

parameters: Model of amino acids substitution = WAG, dis-

crete gamma model, number of categories = 4, tree topology

search = NNIs, and optimizing over all other parameters (tlr,

proportion of invariant sites estimated from the data).

HIV-1 Data Set

Sequences of the HIV-1 data set were sampled from the data

set used by Penn et al. (2008). Specifically, for this study the

amino acids sequences of the genes env, gag, nef, pol, rev, tat,

vif, vpr, and vpu from seven subtypes (A, B, C, D, F, G, J) of

HIV-1 group M were used. For each of these genes, a data set

of 50 sequences was composed by collecting all the sequences

of the J, G, F, and D substrains (32 sequences in total) and

randomly sampling 6 sequences from each of the A, B, and C

substrains. All data sets were aligned with PRANK using the +F

argument. Phylogenetic trees were inferred using PhyML with

the following parameters: Model of amino acids

substitution = WAG, discrete gamma model, number of cate-

gories = 4, tree topology search = best of NNI and SPR, and

optimizing over all other parameters.

Inference of Indel Parameters using SPARTA

The SPARTA algorithm was run on all biological protein data

sets using the following INDELible (Fletcher and Yang 2009)

configuration: “AMINOACID2” model, WAG substitution

model and “POW” indel size model, maximum indel length:

50.

Algorithm Implementation

The algorithm procedure is described in detail in the Results

section. The algorithm was implemented in C++ and is freely

available at http://www.tau.ac.il/~talp/supplementary/sparta/

sparta.html (last accessed November 19, 2015).

For the simulations that are part of the SPARTA algorithm,

we have integrated parts of the INDELible source code.

Parameters were optimized using an iterative golden search

procedure (Press et al. 2002), starting from the root length. To

avoid local maxima, three different root length starting points

were used: The length of the shortest sequence, the length of

the longest sequence, or the number of columns in the MSA.

The two other parameters were always searched starting from

IR = 0.075 and a parameter = 1.55. For the data analyzed

in this work, searches were conducted in the following

intervals: IR from 0 to 0.16, a from 1 to 2, and RL from 50

to 1,800.

Results

The Algorithm

Our algorithm takes a given MSA as input and infers three

relevant parameters regarding indel dynamics: 1) IR, the indel-

to-substitution rate ratio; 2) the slope parameter a of the

power law distribution, which controls the distribution of

the lengths of indels; and 3) RL, the length of the sequence

at the root of the phylogeny (for more details, see Materials

and Methods). Our proposed methodology uses a simulation-

based approach to search over the space of parameters for

the ones that best fit the input MSA. In each search step, a

specific set of input parameters is estimated. This set is refined

(using standard hill-climbing heuristics) until an optimal set of

parameters is inferred. The fit of each set of parameters to the

input MSA is computed as a measure of the distance between

the input MSA and a set of MSAs produced by simulating

sequences under this set of parameters. In order to calculate

this distance, we compute a vector of attributes for the input

MSA as well as for each of the simulated MSAs produced

under the set of parameters of the current step. These

attributes are summary statistics computed from each MSA

(e.g., the average gap block length and the number of gap

blocks, see Materials and Methods). We next compute the

Levy Karin and Rabin et al. GBE
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Mahalanobis distance (Mahalanobis 1936) between the

attribute vector of the input MSA and the distribution of at-

tribute vectors computed for each of the N simulated MSAs in

the current step:

D x
� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � m
� �T

S�1 x � m
� �r

where x is the vector of attributes computed for the input

MSA, m is the vector of attribute means for the set of simu-

lated MSAs, and S is the covariance matrix for the set of sim-

ulated MSAs. Our working hypothesis is that this distance is a

good estimate of the difference between the current search

step parameters and the parameters underlying the input

MSA, that is, a large D x
� �

value indicates that the current

set of parameters is unlikely to generate MSAs with the

same characteristics as the input MSA. Our parameter

search procedure, SPARTA, is described schematically in

figure 1. An example of the dependency of the

Mahalanobis distance surface for a grid of parameter combi-

nation is presented in supplementary figure S1,

Supplementary Material online, which shows that indeed

the Mahalanobis distance increases as the parameter values

are further away from the true set of parameters.

Tuning the Methodology and Run-Time Analysis

We first set out to fine tune our methodology, which depends

on the number N of simulated MSAs. To this end, we simu-

lated a set of MSAs with known parameters under a specific

tree topology and branch lengths and tested the ability of our

methodology to accurately infer parameters. Specifically, the

tree topology and branch lengths were chosen to reflect a

biological data set (see Materials and Methods—the Azurin

data set), and different configuration sets were used to model

indel dynamics. Using the basic configuration set (see

Materials and Methods), we simulated 50 MSAs using

INDELible (Fletcher and Yang 2009). As we show below, this

parameter configuration is well within the range of biologi-

cally plausible parameters. SPARTA then estimated the indel

parameters of these 50 simulations. Figure 2A summarizes the

dependence of the Mahalanobis distance on N (and provides

information regarding run times), while figure 2B shows the

distance between each “true” parameter and the inferred

one, as a function of N. As expected, the accuracy of the

parameter search procedure increases with N. We chose

N = 100 for further analyses as this value offers a good com-

promise between accuracy and computation time. For

N = 100, the average inferred parameters and one

FIG. 1.—SPARTA methodology uses Mahalanobis distance to measure the fit of proposed parameters to input data. Presented is a single search step, in

which the distance between a proposed set of parameters, YðiÞ, and the true unknown parameters Y is computed. Standard hill-climbing heuristics are used

to search for a set of parameters that minimizes the distance between simulated data and input data.

Inferring Indel Parameters GBE
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standard error were indel rate = 0.023� 0.006, a parame-

ter = 1.324�0.116, and root length = 341.94�24. 764.

These values well fit the real parameters: 0.02, 1.3, and 350.

Accuracy Evaluation

We next evaluated the performance of our methodology as a

function of the parameters used to simulate the true MSA. We

aimed to determine the accuracy as a function of the above

presented three parameters: Low versus high number of indel

events, shorter versus longer indels, and different root lengths.

To this end, we tested the basic parameter configuration as

well as six alternative parameter configurations, each of which

differs from the basic parameter set by the value of one pa-

rameter (see Materials and Methods). These configurations

were chosen to represent a wide range of evolutionary sce-

narios. The results of these analyses are presented in table 1.

As can be seen, in all parameter configurations, the real pa-

rameter values fall within one standard error from the inferred

parameter value. Thus, the algorithm is able to reconstruct a

broad spectrum of parameter values. The results suggest an

increased accuracy for high values of indel rate which may be

explained by the presence of more indel events from which

reliable estimates may be obtained.

Comparison with Dawg Parameter Inference

A previous effort to infer indel parameters is implemented

as a Perl script lambda.pl which is part of the Dawg pack-

age (Cartwright 2005). We compared the performance of

parameter estimation by SPARTA with that by the Dawg

package using simulations. The accuracy performance on

the basic parameter configuration is shown in figure 3. As

can be seen, for this set of parameters, lambda.pl

FIG. 2.—Inference accuracy is positively correlated with the number of simulated MSAs (N) used in each search step. Fifty “real” MSAs were simulated

using the basic parameter configuration (see Materials and Methods). The parameters of each of these MSAs were then searched for, with different values of

N. Panel A depicts the Mahalanobis distance and the computation time as a function of N and panel B shows how each of the inferred parameters depends

on N. The real parameter values are marked as bold points.
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overestimates the a parameter (i.e., shorter indels) and is

thus less accurate than SPARTA. The difference in accu-

racy between the method for this parameter is statistically

significant (comparing the squared errors between the

true parameter values and the inferred ones using

Wilcoxon paired test; P<8.44�10�8). No statistically

significant difference between the two methods was

found for the estimation of the indel rate parameter.

SPARTA was slightly less accurate for the inference of

the root length parameter (P<2.7�10�3). We repeated

this comparison for all six alternative parameter sets (see

Materials and Methods). The results (supplementary fig.

S2, Supplementary Material online) suggest that lamb-

da.pl tends to overestimate the a parameter for many of

the examined parameter sets. Furthermore, we counted

the cases in which the real parameter values fell within a

single standard error from the average inferred parame-

ters. While for SPARTA this was the case for all sets of

parameters examined, Dawg managed to correctly infer

only a single complete set. These results suggest that

SPARTA is a valuable alternative to Dawg for accurate

inference of indel parameters.

FIG. 3.—SPARTA’s inference is better than lambda.pl’s. Fifty “real” MSAs simulated using the basic parameter configuration were given as input to

SPARTA as well as to Dawg’s lambda.pl script. The real parameter values are marked as bold points.

Table 1

Method Accuracy for Different Parameter Combinations

Various indel rates

RL = 350

a = 1.3

IR = 0.01 IR = 0.02 IR = 0.1

Inferred IR 0.016� 0.017 0.023� 0.006 0.102�0.013

Inferred a 1.379� 0.157 1.324� 0.116 1.297�0.061

Inferred RL 337.1�37.69 341.94�24.76 344.74� 23.18

Various slope parameter values

IR = 0.02

RL = 350

a = 1.1 a = 1.3 a = 1.7

Inferred IR 0.029� 0.018 0.023� 0.006 0.021�0.003

Inferred a 1.261� 0.151 1.324� 0.116 1.686�0.16

Inferred RL 319.58� 40.19 341.94�24.76 350.36� 5.34

Various root lengths

IR = 0.02

a = 1.3

RL = 100 RL = 350 RL = 500

Inferred IR 0.021� 0.006 0.023� 0.006 0.023�0.011

Inferred a 1.273� 0.157 1.324� 0.116 1.379�0.093

Inferred RL 99.14� 7.84 341.94�24.76 489.72� 25.42

NOTE.—Data sets were simulated according to seven alternative parameter
configurations. Fifty MSAs were simulated by each configuration and were
given as input to SPARTA in order to evaluate its ability to accurately infer the
parameter values. Each value is the average inferred parameter and one standard
error.
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Inference under Different Alignment Programs

In all the above described analyses, the attributes used for the

inference of indel dynamics parameters were extracted from

the true MSA. In practice, however, the true MSA is not avail-

able and an MSA has to be reconstructed from the sequence

data by an alignment program. Our next goal was to study the

impact of commonly used alignment programs on the perfor-

mance of SPARTA. To this end, we examined ClustalW V1.8

(Thompson et al. 1994; Higgins et al. 1996), MAFFT V7 (Katoh

and Standley 2013), and PRANK V140603 (Loytynoja and

Goldman 2008; Loytynoja 2014). We simulated sequence

data sets using INDELible under the basic parameter configu-

ration. The simulated unaligned sequences were given to each

of the alignment programs to compute MSAs. Those MSAs

were next used as input MSAs for the algorithm and the ac-

curacy of the algorithm was evaluated. As can be seen in

Figure 4, for all three alignment programs considered, the

inference of the a parameter and the root length were rela-

tively accurate despite the fact that the MSA is inferred rather

than known. Regarding the estimation of the indel rate, both

MAFFT and PRANK allow for accurate estimation of this pa-

rameter. However, this parameter is substantially underesti-

mated when the MSA is reconstructed using ClustalW. This is

in accordance with previous reports suggesting that ClustalW

tends to overalign sequences (Loytynoja and Goldman 2008;

Privman et al. 2012). We repeated this analysis for all six

alternative parameter configurations (see Materials and

Methods). The results (supplementary fig. S3,

FIG. 4.—SPARTA’s inference is robust to biases introduced by MSA programs. Fifty sequence data sets obtained using the basic parameter configuration

were aligned by either ClustalW, MAFFT, or PRANK. The MSAs computed by each alignment program were given as input to SPARTA. The real parameter

values are marked as bold points. As reference, we also present the inferred values using the “true” MSAs generated by INDELible.

Levy Karin and Rabin et al. GBE

3232 Genome Biol. Evol. 7(12):3226–3238. doi:10.1093/gbe/evv212 Advance Access publication November 3, 2015

 at T
he D

avid J. L
ight L

aw
 L

ibrary, T
el A

viv U
niversity on A

pril 20, 2016
http://gbe.oxfordjournals.org/

D
ow

nloaded from
 

http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evv212/-/DC1
http://gbe.oxfordjournals.org/


Supplementary Material online) further support our observa-

tion for the basic parameter set, that is, the indel rate param-

eter in ClustalW MSAs tends to be underestimated. Moreover,

following alignment by all MSA programs, the indel rate

parameter was underestimated under the high indel rate

configuration, with alignments by PRANK and MAFFT yield-

ing closer estimates to the true value compared with

ClustalW.

Simulating Data with SPARTA Parameter Estimates

Sequence simulators are used for a wide variety of phyloge-

netic analyses (Fletcher and Yang 2010; Bay and Bielawski

2011, 2013; Gaston et al. 2011; Izquierdo-Carrasco et al.

2011; Wu and Susko 2011; Blackburne and Whelan 2012;

Jordan and Goldman 2012; Kuck et al. 2012; Loytynoja et al.

2012; Privman et al. 2012; Thi Nguyen et al. 2012; Wang et al.

2013; Redelings 2014; Spielman et al. 2014). For each se-

quence simulation, specific models are assumed, and

investigators must provide the model parameters. Given a

specific indel model used by the simulator, the task of select-

ing its parameters so that the simulator could produce MSAs

similar in their indel characteristics to the studied MSA is not a

trivial one. Notably, the selection of indel parameters for a

given MSA motivated the inclusion of lambda.pl as part of

the Dawg simulation package. To demonstrate the utility of

SPARTA to infer such parameters, we aimed to simulate MSAs

that resemble the indel characteristics of the Azurin protein

MSA (see Materials and Methods, Azurin data set,) shown in

figure 5A. A typical MSA simulated based on the parameters

inferred by our methodology is presented in figure 5B. As can

be seen, the real MSA and the simulated MSA are similar with

respect to their total length and the number and size of indels.

In contrast, a typical MSA simulated with the default INDELible

parameters (fig. 5C) is characterized by shorter indels and a

much longer alignment length compared with the true MSA.

In both simulations, the Azurin tree topology and branch

FIG. 5.—SPARTA can be used to simulate MSAs similar to a target MSA. The plot depicts three MSAs. The real Azurin MSA (panel A), a simulated MSA

using the parameters the algorithm inferred for the Azurin MSA (IR = 0.0135, a = 1.325, RL =119; panel B) and a simulated MSA using INDELible’s default

parameters (as described in the Materials and Methods section) (panel C). As the MSA simulated based on the default parameters is 4,242 amino acids long,

only the first 200 columns are presented in the plot.
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lengths were used and the same substitution model was

assumed.

Indel Dynamics in Biological Data Sets

Having established that our method can accurately infer indel

dynamics parameters, we next applied our method to study

real biological data sets. We examined 498 mammalian MSAs

obtained from the OrthoMam V8 database (Douzery et al.

2014) and 100 MSAs obtained from the COG database

(Tatusov et al. 2003). We ran the search algorithm on each

such MSA to infer its parameters (fig. 6). Our results show that

indel dynamics differ between mammals and the COG MSAs

that include a relatively diverse set of (mostly microbial) organ-

isms. COG MSAs are characterized by a narrow distribution of

short root lengths. Furthermore, the indel rate is higher in

COG MSAs compared with mammalian MSAs, indicating

that indel dynamics vary among different clades. Notably,

when analyzing such real biological data sets, additional

sources of bias regarding MSA inaccuracies exist, for example,

the inclusion of paralogs instead of orthologs, the inclusion of

only partial sequences, or biases due to filtering of specific

sequences and positions. Nevertheless, the above results dem-

onstrate the utility of our method to estimate indel parameter

distributions for various phylogenetic groups.

In addition, we inferred the indel dynamics parameters for

nine HIV-1 coding genes. As can be seen in table 2, there is at

least an order of magnitude variation in the inferred indel rate

parameter, ranging between 0.0003 and 0.0195 indels to

substitutions. These values are lower than those inferred for

the OrthoMam and COG data sets, suggesting that indels are

less common compared with substitutions for HIV-1 than for

mammals and bacteria. Furthermore, experimental data sug-

gest that indel mutations comprise 3–6% of the total cases of

mutations (Abram et al. 2010), which is approximately the

values inferred for seven out of the nine HIV-1 genes we an-

alyzed. For two HIV-1 genes, vif and vpr, a much lower indel

rate parameter value was inferred (table 2). This result is in line

with the low number of indels compared with substitutions

observed in the MSAs of these genes (the alignment of vif is

shown in fig. 7). The low indel rate ratio of these genes

FIG. 6.—Distribution of parameter values in real data sets. The algorithm was run on 498 mammalian MSAs obtained from the OrthoMam database as

well as 100 COG MSAs. The panels depict the distribution of the inferred parameter values in cases where the P value was not significant (P>0.05; 104

OrthoMam genes and 28 COG genes).
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compared with the other HIV-1 protein-coding genes sug-

gests these two genes are either subject to a different muta-

tion regime or to a stronger purifying selection against the

introduction of indels.

Discussion

In this study, we presented a novel method to infer indel

dynamics parameters from an input MSA by extracting sum-

mary statistics. Specifically, we demonstrated the ability of the

algorithm to recover three parameters. However, our method

is general and is not limited to a specific theoretical model of

indels and could be, with minor adjustments, applied to study

the parameters of other theoretical models describing indel

dynamics. As a case in point, it can be used to study other

indel size distributions, such as the Negative Binomial distri-

bution (Popescu 2003; Fletcher and Yang 2009).

The last years have seen a steady progress toward ad-

vanced Bayesian approaches aimed at reconstructing trees

and MSAs simultaneously (Thorne et al. 1992; Lunter et al.

2005; Redelings and Suchard 2005; Bouchard-Cote and

Jordan 2013; Herman et al. 2014). One of the strengths of

these approaches is that they integrate over uncertainty in

model parameters, including those relevant to indel dynamics.

Thus, such methodologies can, in principle, provide posterior

estimates for indel dynamics parameters. Unfortunately, such

methods are generally computationally intensive and hence

these approaches cannot be easily applied to data sets con-

taining hundreds or thousands of taxa.

Similar to these Bayesian methodologies, the SMUVE ap-

proach (Cartwright 2009; software available at https://github.

com/reedacartwright/emdel) presents a likelihood-based

model to infer indel dynamics parameters, using pairwise

HMMs. Although this approach is clearly more powerful

than previously developed methods (discussed in Cartwright

2009), it is limited to the inference from pairwise alignments

only.

In this study, we compared our approach with a method-

ology for the inference of indel parameters implemented in

lambda.pl, part of the Dawg package. Lambda.pl first esti-

mates the number of unique gap characters, and from

which, assuming a Poisson distribution, it infers the ratio be-

tween indel and substitution events. Furthermore, from the

estimated size frequencies of the unique gaps, it infers the
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Table 2

Indel Dynamics Parameters Inferred using SPARTA from Nine HIV-1

Protein MSAs

Gene IR a RL P value

env 0.1322 1.55 728 1.00�10�14

gag 0.0195 1.8441 494 0.648083

nef 0.0195 1.1375 181 0.164597

pol 0.0872 1.6744 881 1.00�10�14

rev 0.009 1.6586 118 0.997467

tat 0.0095 1.5756 97 0.997941

vif 0.0035 1.9014 192 0.989768

vpr 0.0004 1.55 96 0.999988

vpu 0.0039 1.2163 451 1.00�10�14

NOTE.—Each MSA was composed of 50 orthologs.
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parameters of the indel size distribution. The inaccuracies we

observed when testing the performance of lambda.pl may

stem from errors in counting unique indels (e.g., due to over-

lapping indel events or parallel indel formation). Notably,

SPARTA as opposed to lambda.pl does not require a rooted

tree, which is often unavailable (e.g., when gene trees are

analyzed).

Furthermore, our proposed methodology opens the way to

account for indels in simulation studies by obtaining indel dy-

namics parameters which were inferred from biological data

sets and subsequently generating sequences that evolved

under these parameters. Our methodology can further be

used in tests based on parametric bootstrap. Although previ-

ously developed parametric bootstrap methodologies have

simulated sequences without indels (Bull et al. 1993;

Swofford et al. 1996), it is now possible to simulate alignments

with indel parameters that have been estimated from the real

MSA. Parametric bootstrapping with indels may be very im-

portant in cases where alignment uncertainty may affect

downstream analyses, for example, when inferring positive

selection (Jordan and Goldman 2012; Privman et al. 2012;

Blackburne and Whelan 2013; Redelings 2014; Spielman

et al. 2014) and testing if two or more trees are equally sup-

ported by the data (Levy Karin et al. 2014). Because in many

cases it is unknown if indels in the alignment affect down-

stream analyses, we suggest that whenever a parametric

bootstrap approach is utilized, indels should be accounted

for by simulating with indel parameters that are estimated

from real data sets.

In addition to utilizing SPARTA together with a sequence

simulator for simulating data sets that resemble an input MSA

(as shown in fig. 5), our method can also be utilized to detect

indel dynamics parameters for specific genes or lineages. We

have demonstrated these possible uses by comparing indel

rates among mammalian, bacterial, and viral sequences (fig.

6) and among HIV-1 genes (fig. 7). Differences in indel dy-

namics may reflect changes in either the mutation process or

in the selection regime. For example, a higher indel rate in a

given gene may stem from relaxation in purifying selection or,

in rare cases, from positive selection.

We applied SPARTA to a large number of biological data

sets and tested whether the real summary statistics were con-

sistent with the distribution of summary statistics generated by

simulations using the inferred indel parameters. A large frac-

tion of data sets were significantly different (a= 5%) than

their associated simulations (394 of 498 Orthomam data

sets, 72 of 100 COG data sets, and 3 of 9 HIV-1 MSAs).

This suggests that further improvements in indel modeling

are needed. For example, currently it is assumed that the

indel parameters are shared across all positions, while it is

plausible that indels are more likely in some regions than

others. Similarly, indel dynamics may vary across tree lineages.

These aspects await further research.

It should be noted that the methodology presented here

infers indel dynamics from input MSAs that were themselves

generated by MSA programs that assume specific indel pa-

rameters and are subjected to various biases (Lunter et al.

2008). One could claim that such an approach may be

biased toward inferring the parameters used to reconstruct

the input MSAs. Furthermore, it is well established that the

“optimal” MSA obtained by each alignment program reflects

only one possible path out of many equally likely paths and

many more suboptimal solutions (Landan and Graur 2007).

One possible improvement of the SPARTA methodology

would be to account for MSA uncertainty by averaging the

parameter estimations over a large sample of plausible MSAs.

Such alternative MSAs can be obtained using the GUIDANCE

methodology (Penn et al. 2010; Sela et al. 2015) or statistical

MSA methodologies (Hein et al. 2000; Herman et al. 2015).

Although it would be computationally expensive, biases intro-

duced by MSA programs can be incorporated into SPARTA by

realigning simulated MSAs using the same aligner as the orig-

inal data set and comparing the results with the input MSA.

Our methodology currently estimates the best set of indel

dynamics parameters that match a specific input MSA. In the

future, the method can be extended to compute not only

optimal parameters, but rather a distribution of plausible pa-

rameters for each input alignment. This can be achieved using

methodologies such as approximate Bayesian computation

(Marjoram et al. 2003), which are already extensively used

in population genetics studies (Blum and Jakobsson 2011;

Shafer et al. 2015).

Supplementary Material

Supplementary information and figures S1–S3 are available at

Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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