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Abstract

The most common evolutionary events at the molecular level are single-base substitutions, as well as insertions and deletions (indels)

of short DNA segments. A large body of research has been devoted to develop probabilistic substitution models and to infer

their parameters using likelihood and Bayesian approaches. In contrast, relatively little has been done to model indel dynamics,

probably due to the difficulty in writing explicit likelihood functions. Here, we contribute to the effort of modeling indel

dynamics by presenting SpartaABC, an approximate Bayesian computation (ABC) approach to infer indel parameters from

sequence data (either aligned or unaligned). SpartaABC circumvents the need to use an explicit likelihood function by extract-

ing summary statistics from simulated sequences. First, summary statistics are extracted from the input sequence data. Second,

SpartaABC samples indel parameters from a prior distribution and uses them to simulate sequences. Third, it computes

summary statistics from the simulated sets of sequences. By computing a distance between the summary statistics extracted

from the input and each simulation, SpartaABC can provide an approximation to the posterior distribution of indel parameters

as well as point estimates. We study the performance of our methodology and show that it provides accurate estimates of indel

parameters in simulations. We next demonstrate the utility of SpartaABC by studying the impact of alignment errors on the

inference of positive selection. A Cþþ program implementing SpartaABC is freely available in http://spartaabc.tau.ac.il.
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Introduction

Comparative-genomic studies rely on a detailed description

and understanding of the evolutionary forces that drive se-

quence variation among genes and genomes. Probabilistic

evolutionary models are currently the main work-horse to

study such sequence variation, and as such, they must ac-

count for base-pair substitutions as well as insertion and de-

letion (indel) events.

Inferring indel parameters within a likelihood framework is

substantially more challenging compared with substitution

parameters (Cartwright 2005; Fletcher and Yang 2009).

Factors contributing to this challenge include the dependency

among sites introduced by indel events and the existence of

overlapping indels. Due to this challenge, indel data are often

ignored or treated as missing data in downstream analyses.

These include the reconstruction of phylogenetic trees

(McTavish et al. 2015; Kalaghatgi et al. 2016), the inference

of divergence dates (Lartillot et al. 2009) and the elucidation

of selection regimes (Will et al. 2010). The difficulty of han-

dling indel dynamics is also reflected in common programs to

compute multiple-sequence alignments (MSAs), such as

MAFFT (Katoh and Standley 2013) and PRANK (Löytynoja

and Goldman 2005; Löytynoja and Goldman 2008). To

date, such programs offer parameters to control gap dynam-

ics (e.g., gap open and extension penalties); however, there is

no rigorous methodology to learn what values these param-

eters should take from any specific set of unaligned se-

quences. Finally, studies that aimed to elucidate how indel

dynamics vary among genes and taxa rely on ad hoc meth-

odologies for indel rate inference (e.g., Chang and Benner
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2004). Of note, Navarro Leija et al. (2016) recently explored

variation in indel rate independent of the substitution rate

across a given MSA. They account for this variation by pre-

senting a stochastic model, where the gap character “-“ is

added to the DNA alphabet as a fifth character. However, by

doing so their model implicitly assumes complete site inde-

pendence for indels. This is in contrast to the more realistic

modeling of indel length distribution discussed below and

studied in this work.

For sequence-evolution analyses, integrating indel data

into the computation may involve three steps: 1) describing

an adequate combined model for indel and substitution

events; 2) inferring the indel and substitution model parame-

ters; and 3) inferring all other model parameters (tree, MSA,

divergence dates, etc.) accounting for the indel-substitution

dynamics. For the first step, probabilistic models of sequence

evolution along a tree that include both substitution and indel

events were previously developed in the context of sequence

simulators, which allow generating MSAs with various levels

of indels (Rambaut and Grassly 1997; Stoye et al. 1998;

Cartwright 2005; Gesell and von Haeseler 2006; Hall 2008;

Shavit Grievink et al. 2008; Fletcher and Yang 2009; Sipos

et al. 2011; Koestler et al. 2012). Although simulating with

these models is relatively straightforward, those methodolo-

gies generally do not provide a means to reliably estimate the

parameters of these models from a specific data set. In this

work, we focus on addressing the second step, namely, de-

veloping ways to accurately infer indel parameters for such

models. We hope that making progress in the second step will

also accelerate the third step, that is, that these models will be

progressively integrated into various downstream analyses.

Recently we developed SPARTA, a simulation-based algo-

rithm to learn indel parameters from input MSAs (Levy Karin

et al. 2015). SPARTA first extracts a vector of summary statis-

tics from an input MSA. It then searches the indel parameter

space and uses a sequence simulator to generate a set of N

MSAs under each examined parameter combination. Next, a

vector of summary statistics is computed for each of the N

MSAs in the simulated set. Finally, the Mahalanobis distance

between the vector of summary statistics of the input MSA

and the collection of N vectors of summary statistics com-

puted for each of the N MSAs is calculated. The indel param-

eter combination under which the Mahalanobis distance

receives a minimal value is returned as the parameter combi-

nation that best fits the data.

In this study, we further develop a simulation-based ap-

proach to learn indel parameters by utilizing an Approximate

Bayesian Computation (ABC) inference framework (Rubin

1984; Tavaré et al. 1997). An ABC methodology for param-

eter inference is especially useful in cases where the likelihood

function cannot be termed or easily solved. Briefly, ABC relies

on 1) sampling possible parameter values from a prior param-

eter distribution, 2) simulating data based on the sampled

parameter values, and 3) comparing the simulated data to

the input data for which parameters should be inferred.

Repeating this procedure numerous times and keeping only

parameter values under which the simulated data had a sat-

isfactory level of resemblance to the input data allows for the

approximation of the posterior parameter distribution (Tavaré

et al. 1997; Pritchard et al. 1999; Beaumont et al. 2002;

Beaumont 2010). Harnessing the ABC framework to infer

parameters has proven to be a useful and efficient method,

especially in cases where the stochastic models describing the

process at hand are complex and parameter-rich (e.g.,

Cornuet et al. 2008; Nakagome et al. 2013; Buzbas and

Rosenberg 2015).

Our new algorithm, SpartaABC, is an ABC rejection algo-

rithm for inferring indel parameters. As such, it extracts a

vector of summary statistics from its input; it then performs

repeated simulations using an integrated sequence simulator

(Fletcher and Yang 2009) under various indel parameters.

From each such simulated data set it extracts a vector of sum-

mary statistics and computes its distance from the vector ex-

tracted for the input using a weighted Euclidean distance.

SpartaABC retains a subset of the simulations for which the

distance from the input was small enough. According to the

type of input it can process, we develop SpartaABC to offer

three modes of inference: one MSA-mode where the input to

the algorithm is a multiple sequence alignment (MSA) and

two variants of Pairwise-mode where the input is a set of

unaligned sequences in which computations rely solely on

pairwise alignments. These two latter modes of inference

are motivated by the need to overcome alignment uncer-

tainty. A similar approach was recently utilized by Bogusz

and Whelan (2016) in the context of phylogeny inference.

Next, we study the performance of each of these modes of

inference in simulations.

Searching for sites within coding genes which are subject

to positive Darwinian selection has been the goal of many

studies (Enard et al. 2002; McCauley et al. 2007; Stern

et al. 2007; Proux et al. 2009; Roux et al. 2014; Daub et al.

2017). Given an MSA, the detection of such sites often in-

volves fitting models to estimate the rate of nonsynonymous

to synonymous substitutions at each codon site (e.g., Yang

et al. 2000; Swanson et al. 2003). Because MSAs are com-

puted by alignment programs rather than observed, various

studies focused on describing the effect of errors in the MSA

on the detection of positive selection (e.g., Fletcher and Yang

2010; Jordan and Goldman 2012; Spielman et al. 2014).

These studies relied on similar concepts; in each study, se-

quence sets were simulated either with positive selection or

without it. Next, MSAs were computed from these sets and

finally the presence of positive selection was determined,

measuring the false positive rate and power of the detection

of positive selection from computed MSAs. However, up until

now, the indel parameters used for such simulations could not

be inferred from biological data sets. Thus, previous studies

resorted to scanning a wide range of parameter values
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(Jordan and Goldman 2012) or focusing on specific indel pa-

rameter values (Fletcher and Yang 2010; Spielman et al.

2014). Here, we use SpartaABC to first study the indel param-

eters from a biological data set of 189 mammalian coding

genes. We then use these indel parameters to simulate se-

quence sets with and without positive selection, align each

such set using PRANK (Löytynoja and Goldman 2005, 2008;

Löytynoja 2014) and measure the false positive rate and

power of the detection of positive selection.

Materials and Methods

Indel Parameters and Their Use in the Simulation Study

The indel parameters learned by the SpartaABC algorithm are

the indel-to-substitution rate ratio (IR), which controls the pro-

portion of events in the simulation in which an indel is created,

the “a” parameter of the power law distribution, which con-

trols the distribution of indel length, and the length of the

sequence at the root of the tree (RL).

The following parameter configurations were used as part

of the simulation study:

1. Basic configuration: “a” ¼ 1.3, IR ¼ 0.02, RL ¼ 350

2. Alternative configuration 1: “a”¼ 1.3, IR¼ 0.02, RL¼ 100

3. Alternative configuration 2: “a”¼ 1.3, IR¼ 0.02, RL¼ 500

4. Alternative configuration 3: “a”¼ 1.1, IR¼ 0.02, RL¼ 350

5. Alternative configuration 4: “a”¼ 1.7, IR¼ 0.02, RL¼ 350

6. Alternative configuration 5: “a”¼ 1.3, IR¼ 0.01, RL¼ 350

7. Alternative configuration 6: “a”¼ 1.3, IR¼ 0.1, RL¼ 350

Each of the alternative configurations differs by one parame-

ter from the basic one, allowing testing the effect of individual

parameters on the accuracy of SpartaABC. The values were

chosen to reflect the range of plausible parameters (See also

Levy Karin et al. 2015). These parameters in each configura-

tion were given as input to the sequence simulation program

INDELible (Fletcher and Yang 2009). All other INDELible pa-

rameters were set to: “NUCLEOTIDE 1” model, substitution

model: “JC,” maximum indel length: 50. For all simulations,

the Azurin tree with 29 species was used (Levy Karin et al.

2015). The tree is provided as supplementary information,

Supplementary Material online.

SpartaABC Algorithm

Prior Parameter Distributions and Search Space

SpartaABC proposes indel parameter combinations by sam-

pling values from the joint prior distribution. In this work, we

assumed that all parameters are mutually independent and

that the marginal prior of each parameter is uniformly distrib-

uted. Specifically, the “a”parameter value is sampled from a

wide range: (1,2], the IR parameter value is sampled from a

wide range: [0,0.15], and the RL parameter range was deter-

mined empirically according to the input by measuring a

characteristic l. In the SpartaABC MSA-mode, l denotes the

length of the input MSA, whereas in SpartaABC Pairwise-

mode, l denotes the length of the longest sequence in the

input set of unaligned sequences. The range of the RL was set

to [50,1.25*l].

Computed Summary Statistics

The following summary statistics are computed as part of the

SpartaABC algorithm:

1. Total number of gap blocks in the alignment: gap

blocks are one or more consecutive gap characters. Each

alignment row is analyzed independently and the sum-

mary statistics is the sum of all alignment rows.

2. Total number of unique gap blocks in the alignment:
cases in which two or more rows have a gap block that

starts and ends at the same positions are coded as a

single unique gap.

3. Average gap block length: the total number of gap

characters divided by the total number of gap blocks.

4. Average unique gap block length: the total number of

gap characters divided by the total number of unique gap

blocks.

5. Number of gap blocks of length one.
6. Number of gap blocks of length two.
7. Number of gap blocks of length three.
8. Number of gap blocks of length four or more.
9. Alignment length: the number of columns in the

alignment.

10. Minimal length of sequence in the input.
11. Maximal length of sequence in the input.

Summary Statistics Weight Computation

The SpartaABC algorithm computes a weighted

Euclidean distance between the vector of summary sta-

tistics, s, extracted from the input alignment and the

vector of summary statistics computed for each set of

examined indel parameters, s�. The weighted Euclidean

distance between s and s� based on m summary statistics

is defined as: d� ¼ D s; s�
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1 wi si � s�i
� �� �2q

where

si and s�i are the ith summary statistic computed for the input

alignment and for the simulated alignment, respectively, and

wi is the weight assigned to the ith summary statistic. Prior to

using SpartaABC for data analysis, we computed the weight

for each summary statistic i as: wi ¼ 1=r̂i where r̂i is the

empirical standard deviation of the ith summary statistic across

100,000 simulations with indel parameter combinations

drawn at random from the prior. These weight sets were de-

termined separately for each of the SpartaABC run modes

examined in this study: MSA-nucleotide, Pairwise-nucleotide,

MSA-codon. We provide the files with these computed

weights as supplementary material, Supplementary Material

online.
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The Distance Threshold for Rejecting

In this study, we follow the practice suggested by Beaumont

et al. (2002) to set the distance cutoff, e, empirically so that

the percentage of accepted parameter combinations (simula-

tions) is p% of the total simulations. Throughout this study,

unless stated otherwise, we set p to be 0.05% (50/100,000)

of the simulations.

Pairwise Alignment Computation

In its pairwise mode, SpartaABC implements the Gotoh

(1982) algorithm of an affine gap penalty score.

Throughout this study, in its pairwise mode, SpartaABC was

run with the following pairwise alignment parameters: gap-

open¼ 5, gap-extend¼ 1.

Error Estimation

To evaluate the performance of SpartaABC on a given param-

eter configuration with K¼ 50 instances (data sets simulated

from the configuration), we compute the average percent

absolute error for each of the indel parameters as follows:

average percent estimation error ¼ 100 � 1

K

XK

i¼1

l̂ i � lj j
l

where l is the real parameter value and l̂ i is the inferred

parameter value in instance i.

Study of Positive Selection

Mammalian Orthologous Genes Data Set

A Perl script to collect all human gene IDs was used to query

the Ensembl database (Yates et al. 2016) (version 84, accessed

on 21/06/2016). An additional Perl script was then used to

query the Ensembl database and search for 1:1 orthologs for

each of these human genes, across 41 mammalian species

(the full mammalian species list is available as supplementary

material, Supplementary Material online). When querying the

Ensembl database, only genes with transcripts whose status is

“known” and “coding” were retained. In cases for which

more than one transcript was available per human gene,

the longest one was retained. For each of the 41 mammalian

orthologs, if more than one transcript was available, the tran-

script with the highest Needlemen and Wunsch (1970) score

against the retained human transcript was chosen. This pro-

cedure resulted in 961 genes (sequence sets) for which tran-

scripts for 42 mammalian species (humanþ 41 orthologs)

were collected. Of these, 189 sequence sets were randomly

selected for further analyses. We provide these sets online in

http://spartaabc.tau.ac.il. Codon MSAs for each of these sets

were computed using a Perl script, by first aligning the trans-

lated protein sequences using PRANK V140603 (Löytynoja

2014) with the “þF” argument and then back-translating

this MSA to nucleotide-based alignment.

Mammalian Species Topology

A topology reflecting the evolutionary relationships be-

tween the 42 mammalian species in our data set was

based on current literature (Blanga-Kanfi et al. 2009;

Perelman et al. 2011; Nyakatura et al. 2012; Song et al.

2012). This topology is provided as supplementary mate-

rial, Supplementary Material online.

Inference of Positive Selection

The mammalian species topology together with each codon

MSA were provided as input to the PAML 4 program (Yang

2007). The program was run in two modes; fitting either the

M8a model that does not allow for positive selection

(Swanson et al. 2003), or the M8 model that allows for

positive selection (Yang et al. 2000). For either model, the

PAML program provides the following output: 1) the log-

likelihood (LL) score, 2) the ML codon tree—optimized

branch lengths for the input topology (in terms of codon

substitutions per site), 3) nine dN/dS (omega) categories

with the proportion of alignment positions predicted to be-

long to each category. For each gene in our data set, selec-

tion between the M8a and M8 models was done according

to a Likelihood Ratio Test (LRT) for comparing nested models.

The LRT test statistic D ¼ 2 LLM8 � LLM8að Þ was compared

with the critical value for 0.95 statistical confidence, with 1

degrees of freedom. A gene was considered positively se-

lected if D >3.84.

Inferring Indel Parameters

The indel parameters for each mammalian MSA were inferred

using SpartaABC (in MSA-mode). To this end, the maximum-

likelihood codon tree from the PAML output for the selected

model for that gene together with the mammalian MSA and

the MSA-codon weights set were provided as input to

SpartaABC. The search range for the IR parameter was

[0,0.15], the search range for the “a” parameter was [1,2],

and the search range for the RL parameter was determined

according to the shortest and longest sequences (measured in

nucleotides) in the MSA; setting the lower bound to be 10%

shorter than the shortest sequence and the upper bound to

be 10% longer than the longest sequence, divided by three to

obtain length boundaries in codons.

Simulated Data Sets

Codon sequence data sets were simulated using INDELible

(Fletcher and Yang 2009) with a codon model either with

or without positive selection. When simulating with (without)

positive selection, the parameters for the INDELible control file
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were determined based on the parameters inferred from

genes for which the M8 (M8a) model was selected. The indel

parameters for the simulation were set by taking the posterior

expectation of each of the indel parameters as inferred by

SpartaABC. The phylogenetic tree, the transition-to-

transversion rate ratio (i.e., the kappa parameter), and the

omega category values and proportions were determined ac-

cording to the PAML M8 (M8a) output for each gene.

Algorithm Implementation

The algorithm was implemented in Cþþ. We provide its

source code, a precompiled version for UNIX systems, a short

manual and a run example at http://spartaabc.tau.ac.il.

Results

The SpartaABC Algorithm

In this study, we propose a statistical framework to infer

the parameters governing indel processes. Our algorithm,

SpartaABC, uses an Approximate Bayesian Computation

(ABC) reject procedure (Tavaré et al. 1997; Beaumont

et al. 2002; Beaumont 2010). As input, SpartaABC takes

T, a phylogenetic tree with branch lengths, and a set of

sequences of the extant species in T. SpartaABC has

three modes of computation; in the first, the input set

of sequences is given as an MSA and in the other two

modes, it is a set of unaligned sequences. We first pre-

sent the MSA-mode of computation and in a later section

the Pairwise-mode and the Pairwise-exhaustive-mode.

Given the input MSA, SpartaABC computes a vector of

summary statistics; these are numerical attributes that

depict prominent features of the MSA. It then performs

numerous iterations, considering various indel parameter

combinations. In each such iteration, SpartaABC uses an

integrated sequence simulator (Fletcher and Yang 2009)

to simulate an MSA by T and the sampled indel param-

eter combination. It then computes a vector of summary

statistics for the simulated data set. Next, it computes a

weighted Euclidean distance, a commonly used metric in

ABC algorithms (Beaumont et al. 2002; Prangle 2016),

between the vectors of summary statistics obtained for

the input MSA and the simulated MSA. The parameter

sets from simulations with a small distance are used to

infer the parameter values behind the input MSA. In this

study we focus on three indel parameters: IR—the indel-

to-substitution rate ratio, “a”—the shape parameter for

the power law distribution controlling the indel length,

and RL—the root length parameter (although the root

length is not a pure indel parameter, it was included

here as it strongly affects the resulting MSA). The

SpartaABC procedure is presented schematically in figure

1 and its full details are provided in the Material and

Methods section.

Algorithm Calibration

Determining the Acceptance Cutoff

As a first step of calibrating the SpartaABC method, we de-

termined the acceptance cutoff for keeping parameter com-

binations (simulations). As detailed above, indel parameter

combinations are proposed by SpartaABC according to their

prior distributions. An MSA is next simulated using this set,

and a distance between the summary statistics of this MSA

and the input MSA is computed. According to these dis-

tances, an acceptance cutoff should be determined. Setting

a fixed value for the distance cutoff, e, often poses problems

in terms of 1) the specificity of distance values to individual

inputs, that is, its tendency to vary from input to input in a

noninformative way and 2) running times issues; a too small

cutoff could mean a prolonged-to-infinite simulation process

(Beaumont et al. 2002). Therefore, in this study we follow the

practice suggested by Beaumont et al. (2002) to set the dis-

tance cutoff, e, empirically so that the percentage of accepted

parameter combinations is p% of the total simulations. Here,

we implemented SpartaABC to propose a total of

N¼ 100,000 indel parameter combinations, a number that

offers a good sampling of the parameter space while assuring

reasonable running times. Given N¼ 100,000, we set to de-

termine the number of simulations to retain. To this end, we

simulated 50 instances under known indel parameters of

IR¼ 0.02, “a”¼ 1.3 and RL¼ 350 (“basic parameter config-

uration”, see Materials and Methods). We then provided each

of these MSAs to SpartaABC as input and retained various

numbers of simulations (ranging between 5 and 2,000) to

approximate the posterior distribution. Next, we estimated

the indel parameter values by computing the posterior expec-

tation based on each of the different sized posterior sets. We

found that retaining 50–100 parameter combinations offers

the most accurate indel parameter estimations. Keeping

fewer combinations seems to be too noisy whereas keeping

many combinations risks distorting the posterior distribution

towards the prior (fig. 2). We thus continued with keeping 50

parameter combinations throughout this study.

Choice of Summary Statistics

Next, we set to examine the impact of each individual sum-

mary statistic on the inference accuracy of SpartaABC. Eleven

summary statistics are computed from the input and simu-

lated data sets (for full details, see Materials and Methods). In

order to determine which of these to include in the standard

SpartaABC inference procedure, we performed a leave-one-

out analysis. In this analysis, we provided SpartaABC with fifty

simulated instances from the “basic parameter configura-

tion” (see Materials and Methods) and compared the average

percent estimation error obtained when all 11 summary sta-

tistics were included to that obtained when each summary

statistic was excluded from the computation. This comparison
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was done with respect to each of the three indel parameters

(IR, “a,” and RL). Generally, we found that exclusion of each

summary statistic resulted in minor changes to the accuracy of

parameter estimation (reducing or increasing the average per-

cent estimation error by up to 2.5%, fig. 3). These differences

were not found to be statistically significant (Mann–Whitney

Test, see supplementary table 1, Supplementary Material on-

line). When examined by their type, summary statistics relat-

ing to sequence length (alignment length, minimal length of

sequence in the input alignment, maximal length of sequence

in the input alignment) were generally found to contribute to

the inference of all indel parameters, and mostly to the IR

parameter. Summary statistics relating to the abundance of

gap character blocks (total number of gap blocks in the align-

ment, total number of unique gap blocks in the alignment,

number of gap block of length 1, length 2, length 3, or length

4 or higher) did not display a specific pattern in increasing or

reducing inference accuracy (fig. 3). As all summary statistics

were found to have minor individual effects and as each sum-

mary statistic was found to contribute to the accuracy of at

least one indel parameter we decided to include all summary

statistics in all inference procedures reported below.

Accuracy Evaluation

We set out to examine the ability of SpartaABC to reconstruct

known indel parameters. To this end, we conducted a simu-

lation study in which we produced data sets under seven indel

parameter configurations. We used INDELible (Fletcher and

Yang 2009) to simulate fifty instances from each such con-

figuration (for full details concerning these configurations, see

Materials and Methods). INDELible provides as output the real

MSA as well as the simulated unaligned sequences. We next

gave each real MSA to SpartaABC to infer its indel parame-

ters. For each of these MSAs, SpartaABC outputs the indel

parameter combinations of retained simulations; these ap-

proximate the posterior distribution of indel parameters. As

part of its inference procedure, SpartaABC uses uniform priors

to sample each of the indel parameters; it is thus interesting to

compare the approximated posterior distribution with the

Input MSA Tree

=

Substitution
model

= , , ,…

∗ = ∗ , ∗ , ∗ , …

Sample indel dynamics 
parameters from prior 

distribution

Sequence simulation program – simulate under 

= ? , ? , ? , …

MSA*

∗ = ∗ , ∗ , ∗ , …

∗

If ∗ < keep ∗

Extract    summary    statistics    – S(MSA)

Repeat until N
∗are collected

Compute distance  ∗, = ∗

1. Compute a vector of summary statistics, , for an input MSA =

2. Sample an indel parameter combination from the prior distribution ∗~

3. Simulate an MSA* by the sampled parameter combination ∗~ | ∗

4. Compute a vector of summary statistics for the simulated MSA ∗ = ∗

5. Compute the distance between ∗ and the vector of summary statistics computed for 
the input MSA ∗ = ∗,

6. If ∗ < , keep ∗, otherwise – reject this parameter combination

7. Repeat steps 2-6 until N parameter combinations are kept

FIG. 1.— SpartaABC algorithm scheme (MSA-mode).

ABC Approach for Indel Inference GBE

Genome Biol. Evol. 1280–1294 doi:10.1093/gbe/evx084 Advance Access publication April 26, 2017 1285

Deleted Text: `
Deleted Text: <italic>'</italic>
Deleted Text: -
Deleted Text: e


uniform prior distribution. As can be seen in the visual exam-

ples for a few simulation instances performed on the basic

parameter configuration (see Materials and Methods), the

approximated posterior distribution of each of the indel pa-

rameters is not uniform but rather concentrated around the

value of the real parameter behind the simulation (fig. 4). This

serves as first indication that SpartaABC has inference ability.

From the obtained approximate posterior distribution one

could derive point estimates for each of the parameters. In this

study, we focused on using the inferred posterior expectation

FIG. 2.— Retaining the closest 0.05% of simulations minimizes the estimation error of indel parameters. Posterior distributions are approximated by

retaining simulations with the smallest distances. Points represent average percent absolute estimation errors based on 50 simulations from the basic

parameter configuration. In each instance a total of N¼100,000 parameter combinations were proposed according to the prior distributions.

FIG. 3.— Excluding single summary statistics results in insignificant changes to the accuracy of parameter estimation. The figure depicts the accuracy of

parameter estimation as a function of the summary statistic excluded from the analysis (a leave-one-out analysis). Points represent average percent absolute

estimation errors based on 50 simulations from the basic parameter configuration when a specific summary statistic was excluded. The dashed horizontal

lines indicate the average percent error obtained when all summary statistics were included.
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of each of the parameters (hereafter, when we refer to “in-

ferred parameter” we mean “inferred posterior expectation

of the parameter”). Using the posterior expectation as a point

estimate, we next examined the performance of SpartaABC

over all indel parameter configurations. Overall, SpartaABC

showed a good ability to reconstruct the indel parameters

with <15% average estimation error for all parameters in

six out of the seven parameter-configurations. Not surpris-

ingly, when the RL parameter was set to 100, data are limiting

and the performance of SpartaABC was less accurate, with an

increased estimation error (table 1). When examining the abil-

ity of SpartaABC to reconstruct each of the parameter values

across all configurations, we found that the RL and “a” pa-

rameter had a relatively small average percent estimation er-

ror (3–10%, table 1) whereas the average percent estimation

error for the IR parameter was higher (7–25%, table 1).

Finally, we compared the performance of SpartaABC to that

of SPARTA (Levy Karin et al. 2015). We found that on aver-

age, with the same order of magnitude in run times, the two

algorithms provided similar accuracy in parameter estimation,

as measured by the percent estimation error. However, in

most configurations, parameter estimations by SpartaABC

varied less among simulation instances, suggesting its infer-

ence is less noisy (supplementary tables 2 and 3,

Supplementary Material online).

SpartaABC Is Generally Robust to Alignment Errors

When studying biological data outside the realm of simula-

tions, the real MSA, reflecting all homology relationships in a

set of sequences is not known but rather, has to be computed

using an alignment program. It has been previously reported

that such alignment programs are prone to errors (Blackshields

et al. 2006; Nuin et al. 2006; Thompson et al. 2011; Sela et al.

2015), over-alignment (Löytynoja and Goldman 2008; Katoh

and Standley 2016) and often disagree with each other

(Lassmann and Sonnhammer 2005; Blackburne and Whelan

2012). Hence, it is interesting to examine the performance of

FIG. 4.— Approximated posterior distributions are consistent with real parameter values. Each row shows the approximated posterior distributions for a

simulation from the basic parameter configuration. The real parameter value is marked as a solid line, and the inferred posterior expectation is marked as a

dashed line. The gray histograms denote the parameter values in each of the retained simulations (approximated posterior distribution).
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SpartaABC in cases where its input MSA is computed by align-

ment programs. We thus used three popular alignment pro-

grams: ClustalW V1.8 (Thompson et al. 1994), MAFFT V7

(Katoh and Standley 2013), and PRANK V140603 (Löytynoja

2014) to align each set of sequences obtained in the simula-

tion configurations mentioned above. We next used

SpartaABC to infer the indel parameters from each of these

computed MSAs. We found that inferred indel parameter

values were overall close to the real parameter values even

when SpartaABC was run on MSAs computed by alignment

programs (an overall average error of 18% across all configu-

rations, parameters and alignment programs, table 1).

However, the accuracy in parameter estimation was reduced,

compared with that obtained when providing SpartaABC with

the real INDELible MSAs (table 1). Moreover, we found that

inference accuracy varied between the different alignment

programs and between indel parameters. Specifically, the IR

parameter was underestimated using all alignment programs

(fig. 5, supplementary fig. 1A–F, Supplementary Material on-

line); estimation error was most severe with ClustalW (an av-

erage error of 48% across all configurations, table 1), slightly

less so with MAFFT (an average error of 47% across all con-

figurations, table 1), and least severe with PRANK (an average

error of 25% across all configurations, table 1). Notably, the

estimation of the IR parameter suffered the greatest inaccura-

cies when the IR parameter was set to a high value (IR¼ 0.1,

table 1). The estimation of the “a” parameter was overall

rather accurate and similar between all alignment programs

(an overall average error of 9% across all configurations and

alignment programs, table 1). Finally, the inference of the RL

parameter was accurate using any of the alignment programs

(an overall average error of 5% across all configurations and

alignment programs, table 1). For a full account of the statis-

tical significance of the differences in parameter estimations

through the three alignment programs see supplementary

table 4, Supplementary Material online.

Pairwise-Mode of Inference

High indel-to-substitution rate ratio values such as the one

examined in this study (IR¼ 0.1) were shown to pose a

more challenging task for alignment programs (Nuin et al.

Table 1

SpartaABC Performs Well on Simulated Data

Config. Value Real ClustalW MAFFT PRANK Pairwise Pairwise-exh.

PE Error (%) PE Error (%) PE Error (%) PE Error (%) PE Error (%) PE Error (%)

IR

basic 0.02 0.021 11 0.01 48 0.011 45 0.017 17 0.051 154 0.022 15

alt1 0.02 0.023 25 0.014 32 0.014 36 0.02 20 0.047 137 0.028 43

alt2 0.02 0.02 11 0.01 51 0.01 48 0.016 21 0.051 153 0.021 12

alt3 0.02 0.022 15 0.011 45 0.012 39 0.018 14 0.059 193 0.023 18

alt4 0.02 0.02 13 0.01 51 0.01 52 0.015 27 0.036 82 0.020 12

alt5 0.01 0.01 15 0.007 27 0.007 33 0.011 19 0.031 213 0.013 28

alt6 0.1 0.102 7 0.016 84 0.022 78 0.044 56 0.126 26 0.104 10

“a” Parameter

basic 1.3 1.311 6 1.36 8 1.218 8 1.213 7 1.928 48 1.346 8

alt1 1.3 1.401 10 1.388 10 1.331 7 1.325 7 1.894 46 1.445 12

alt2 1.3 1.315 6 1.394 9 1.22 8 1.214 8 1.93 48 1.317 6

alt3 1.1 1.148 5 1.287 17 1.126 4 1.133 4 1.921 75 1.251 14

alt4 1.7 1.702 4 1.608 6 1.511 12 1.431 16 1.939 14 1.66 6

alt5 1.3 1.321 8 1.412 10 1.255 6 1.248 8 1.927 48 1.421 10

alt6 1.3 1.311 5 1.203 9 1.116 14 1.12 14 1.936 49 1.289 5

RL

basic 350 346.5 4 350.1 5 347.3 5 346.2 4 346.5 2 349.4 1

alt1 100 96.3 8 100 7 97.8 7 94.9 9 99.3 3 98.8 2

alt2 500 498.7 4 499.4 3 497.5 4 497.7 4 496.1 1 499.1 1

alt3 350 347.2 5 352.8 6 345.7 6 345 6 347.1 2 348.7 1

alt4 350 347.3 3 350.1 3 349.5 3 347.6 3 348.1 1 349.8 1

alt5 350 348.7 3 351.5 3 350.4 3 348.8 3 348 1 349.5 1

alt6 350 354.6 8 350 8 340.5 10 325.5 12 366.1 5 351.0 3

Fifty MSAs were generated for each of the seven simulation configurations. Posterior expectations (PEs) for each of the indel parameters were inferred six times. First, each
real MSA was given to SpartaABC in MSA-mode. Then, MSAs were computed by ClustalW, MAFFT, or PRANK and given as input to SpartaABC in MSA-mode. Next, SpartaABC was
run in the Pairwise-mode. Finally, SpartaABC was run in Pairwise-exhaustive-mode. Highlighted in bold are cases in which the Pairwise-mode or Pairwise-exhaustive-mode were
the most accurate among all cases in which the input was computed (i.e., excluding cases in which the real MSA was provided as input).
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2006; Jordan and Goldman 2012; Levy Karin et al. 2014). It is

thus not surprising that alignment programs compute less

accurate MSAs for input simulated by high indel-to-

substitution rate ratio. Moreover, the process of computing

an alignment for multiple sequences often relies on numerous

steps in which pairwise alignments are joined together, thus

possibly propagating errors during MSA construction (Gotoh

1996; Wallace et al. 2005). We suspected this error propaga-

tion process contributed to the inaccurate estimation of the IR

parameter in the high-IR configuration when the input was an

MSA computed by an alignment program (alt6 configuration,

table 1). We thus, sought a way to infer indel parameters in a

manner that is free of an MSA. To this end, we developed the

SpartaABC “Pairwise-mode”. In this mode, the input to

SpartaABC is a set of unaligned sequences. As a first stage,

all pairwise global alignments are computed between each

pair of sequences in the set, using the Gotoh algorithm

(1982). The SpartaABC’s summary statistics are computed

from each pairwise alignment and are then averaged to ob-

tain a single representative summary statistics vector of the

input. Next, the sequence simulation procedure takes place as

detailed above, producing a simulated real MSA. A set of

pairwise alignments is derived from the simulated real MSA

by taking the projected alignment over each pair of sequences

and removing columns that contain a gap character in both

sequences. In a similar manner to the input, summary statistics

are computed from each pairwise alignment and are aver-

aged to obtain a single representative summary statistics vec-

tor of the simulation. The distance between the vector of

summary statistics computed from the input and the vector

computed from each simulation is calculated as before. This

procedure is depicted schematically in figure 6, with stages

unique to the “Pairwise-mode” highlighted with a blue

background.

We next set to examine the performance of this Pairwise-

mode of inference. To this end, we ran SpartaABC over

unaligned sequence sets obtained in the seven parameter

configurations of the above described simulation study. We

found that inference of the RL parameter was more accurate

in the Pairwise-mode compared with running SpartaABC in

MSA-mode with any of the examined alignment programs.

However, inference of the “a” parameter was poorer in the
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FIG. 5.—SpartaABC is generally robust to different alignment algorithms. Fifty sequence data sets obtained using the basic parameter configuration

were aligned by either ClustalW, MAFFT, or PRANK. The MSAs computed by each alignment program were given as input to SpartaABC. The real parameter

values are marked as bold points. As reference, we also present the inferred values using the real MSAs generated by INDELible. Numbers above each boxplot

indicate average percent estimation error.
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Pairwise-mode (table 1). Interestingly, inference of the IR pa-

rameter depended greatly on the IR value. In six out of the

seven examined parameter configurations, the IR value was

set to be 0.02 or lower. In all these configurations, more ac-

curate results were obtained with SpartaABC in MSA-mode

than those obtained in SpartaABC Pairwise-mode. However,

when IR was high (0.1), the SpartaABC Pairwise-mode was

superior to SpartaABC MSA-mode for all MSA programs

(26% error in the pairwise-mode compared with 56%,

78%, and 84% based on PRANK, MAFFT, and ClustalW, re-

spectively, table 1). We thus conclude that when a high indel

rate is expected or when an MSA cannot be reliably com-

puted, the RL and IR parameters can be better inferred in a

pairwise manner.

Pairwise-Exhaustive Mode of Inference

A possible source of bias in the above-described pairwise

mode is that the real data and the simulated data are pro-

cessed differently. Specifically, the summary statistics from the

pairwise sequences of the real data are inferred after applying

the Gotoh algorithm (1982) for each pair, whereas in the

simulated data, the pairwise alignments are derived from

the simulated MSA, and summary statistics are derived from

these pairwise alignments. In order to study the impact of this

potential bias, we developed a variant of the SpartaABC

Pairwise-mode, in which the pairwise alignments in each

simulation stage were not derived from the simulated real

MSA, but rather were computed using the Gotoh algorithm,

similar to the sequence pairs of the real data. This variant,

which we denote “Pairwise-exhaustive-mode”, thus per-

forms the exact same computation on the input data and

on the simulated data. However, as its name suggests, com-

puting O(nˆ 2) Gotoh pairwise alignments (where n is the

number of sequences) in each simulation stage poses a heav-

ier computation burden, compared with deriving the pairwise

alignments from the real MSA. We next examined the per-

formance of SpartaABC Pairwise-exhaustive-mode across all

seven indel parameter configurations. We found that with an

average of 10% estimation error across all indel parameters

and all configurations, SpartaABC Pairwise-exhaustive-mode

was the most accurate of all SpartaABC inference methods

(table 1). For a full account of the statistical significance of the

differences in parameter estimations between MSA-mode us-

ing PRANK and the two variants of the Pairwise-mode see

supplementary table 5, Supplementary Material online.

The comparison of the running times of all SpartaABC

modes is given in table 2. As can be seen, the SpartaABC

MSA-mode and Pairwise-mode take an average of

43 min per computation instance. Although offering

greater accuracy in parameter estimations, the

Pairwise-exhaustive-mode has longer running times by

a factor of 45, on average (an average of 32.25 h per

computation instance).
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FIG. 6.—SpartaABC algorithm scheme (Pairwise-mode). Highlighted in a blue background are the steps unique to the Pairwise-mode.
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Alignment Errors and the Inference of Positive Selection

We next set touseSpartaABC to study the impact of alignment

errorsonpositive selection inference.To this endweobtaineda

set of 189 mammalian coding genes. Each gene in this set had

orthologous sequence information for 42 mammalian species

and was aligned using PRANK V140603 (Löytynoja 2014) (for

full details on how this data set was composed, see Materials

and Methods). We first inferred positive selection for each

gene by using the program PAML (Yang 2007). The program

was run in two modes: fitting either the M8a model (Swanson

et al. 2003), constraining no positive selection, or the M8

model (Yang et al. 2000) allowing for positive selection.

Using the log-likelihood scores of each model, as computed

by PAML, we conducted a likelihood ratio test (LRT) for each

gene to select between the models (for full details concerning

the LRT, see Materials and Methods). For 69 out of 189

(36.5%) genes in our data set the null model was rejected,

indicating a signal for positive selection.

We then used SpartaABC to study the indel parameters

from each of the 189 MSAs in the mammalian data set (in

MSA-mode). We found no significant difference (Mann–

Whitney test) between the distributions of indel parameters

characterizing the set of genes detected to undergo positive

selection and the set of genes where no positive selection was

detected (fig. 7). The mean indel parameter values for the

mammalian data set were: IR¼ 0.04, “a”¼ 1.118, and

RL¼ 478 (codons).

Next, the inferred substitution parameters for the selected

codon model for each gene (for example, the transition/trans-

version ratio and the dN/dS categories, see Materials and

Methods for full details), as inferred by PAML were used to-

gether with its indel parameters, as inferred by SpartaABC to

simulate 120 data sets under no positive selection and 69 data

sets with positive selection (Fletcher and Yang 2009). Each of

the simulated data sets was then analyzed in the same way

the original mammalian genes were analyzed: computing co-

don alignments using PRANK, using PAML to fit the M8 and

M8a models, and selecting between the models with an LRT.

For the 120 null data sets, we found that the null model

was rejected 12 times, suggesting a false positive rate of 10%

and for the 69 alternative data sets, we found that the null

model was rejected 66 times, suggesting power of 95.7%.

For the 120 null data sets, we also computed the proportion

of cases in which the null model was rejected when using the

real INDELible MSAs. Using the real INDELible MSAs, the null

model was rejected five times, yielding a false positive rate of

4.2%, which is close to the 5% false positive rate one would

expect.

These results are in line with previous results showing over-

estimation of the rate of positive selection (Wong et al. 2008;

Fletcher and Yang 2010; Markova-Raina and Petrov 2011;

Privman et al. 2012). The over-estimation of the false positive

rate was abolished when the real MSA was given, lending

further support for the cause of this inflated estimation rate.

However, unlike these previous reports, the simulations con-

ducted here were based on indel parameters that were esti-

mated from the relevant data, and were not chosen arbitrary

(see discussion).

Assuming that the false positive rate for the empirical

mammalian data set is indeed 10% suggests that the number

of genes evolving under positive selection is closer to 62 out of

189 (32.8%) rather than 69 out of 189 (36.5%). These results

show more than 6-fold enrichment of positively selected

genes compared with the null expectation.

Discussion

In this study, we have presented SpartaABC, an approximate

Bayesian computation algorithm to infer indel parameters

from sequence data. With three inference modes, the input

to SpartaABC can be either a multiple sequence alignment

(MSA-mode) or a set of unaligned sequences (Pairwise-

mode and Pairwise-exhaustive-mode). SpartaABC relies on

numerous sequence simulations, each of which under a sam-

pled combination of proposed indel parameters. It then retains

the indel parameters for which the simulated sequences re-

sembled the input as measured by a vector of extracted sum-

mary statistics. Using the retained indel parameters, posterior

distributions as well as point estimates for the indel parameters

are computed. Our simulation study shows that SpartaABC

results in reliable parameter estimations, even when the input

MSA was computed using an alignment program and thus

not guaranteed to be free of errors. However, when the indel-

to-substitution rate ratio (IR) was very high, the ability of

SpartaABC to infer this parameter through computed MSAs

was reduced. We have shown that under these conditions,

using either the Pairwise-mode or, even better, the Pairwise-

exhaustive-mode allowed for more accurate estimations of

this parameter. However, the Pairwise-exhaustive-mode is

on average 45 times slower than the other two modes of

inference. Therefore, if the indel-to-substitution rate ratio is

expected to be high and computational resources are limiting,

one could combine two fast strategies to infer indel parame-

ters by using the MSA-mode to infer the “a” parameter and

using the Pairwise-mode to infer the RL and IR parameters.

Table 2

SpartaABC’s Running Times

Config. MSA-Mode Pairwise-Mode Pairwise-Exhaustive-Mode

basic 34 6 5 30 6 7 1,867 6 496

alt1 16 6 4 23 6 2 252 6 61

alt2 51 6 10 63 6 3 3,395 6 991

alt3 42 6 6 36 6 7 2,359 6 448

alt4 30 6 7 37 6 7 1,660 6 384

alt5 29 6 6 46 6 3 1,762 6 334

alt6 119 6 23 54 6 7 2,254 6 1,142

NOTE.–The average running time for each of the SpartaABC computation modes
over all seven parameter configurations in minutes (6 standard error).
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One possible reason for the increased accuracy of the

Pairwise-exhaustive-mode could be that the exact same com-

putational procedure is performed on the input to SpartaABC

and on the simulated sequences in each simulation step. This

is in contrast to the Pairwise-mode, in which in each simula-

tion step, projected pairwise alignments are produced by us-

ing the real simulated MSA. That is, in each simulation step,

there is an implicit use of information about the homology

relationships between all pairs of sequences as coded in the

full MSA; such information is of course, unavailable when

computing the set of all pairwise alignments from the input.

Differences in the computational procedure performed on the

input and on the simulated data exist in the MSA-mode as

well, as the input MSA is computed by an alignment program

whereas the MSA examined in each simulation is the real

MSA provided by the integrated sequence simulator.

However, in this mode of computation, the set of sequences

as a whole is available to the alignment program to consider

at once. Thus, the difference between the available implicit

information in each simulation step and in the computation

performed on the input is probably smaller when compared

with the difference in the Pairwise-mode. Nonetheless, a var-

iant of SpartaABC in which an alignment program such as

PRANK (Löytynoja and Goldman 2005; Löytynoja and

Goldman 2008; Löytynoja 2014) is integrated into

SpartaABC and used in each simulation step could be devel-

oped to minimize the difference in available information for

this mode of computation. This option was not implemented

because it requires realigning each of the N simulated MSAs, a

task which is exceedingly computationally intensive.

As part of this study we compared the performance

of SpartaABC in MSA-mode to that of SPARTA

(Levy Karin et al. 2015). On average, the two algorithms

provided similar accuracy in parameter estimation with

similar running times. However, in most configurations,

parameter estimations by SpartaABC in MSA-mode were

less noisy (supplementary tables 2 and 3, Supplementary

Material online). Generally, SpartaABC offers the follow-

ing advantages over SPARTA: 1) unlike SPARTA, which is

an ad-hoc procedure, SpartaABC is nested within a statis-

tical framework of inference; 2) unlike SPARTA,

SpartaABC is not a search algorithm—it approximates

the posterior distribution of indel parameters. As such, it

is not subject to problems of local minimum; 3) SpartaABC

offers three modes of inference (as opposed to a single

mode in SPARTA). Its two pairwise modes are of special

use when the input MSA is highly unreliable. 4)

SpartaABC offers more summary statistics than SPARTA

and more flexibility in the inclusion/exclusion of each of

them in its computation.

One interesting future direction to this research is to de-

velop richer indel models and study their parameters using

SpartaABC. For example, in the current implementation, a

single free parameter (IR) controls the relative occurrence of

indel versus substitution events. An indel model with one pa-

rameter controlling the rate of insertions and one for the rate

of deletions is expected to fit biological data significantly bet-

ter (Ajawatanawong and Baldauf 2013). Additional assump-

tions that are potentially oversimplified and can be relaxed

include not considering spatial variation of indel parameters

along the sequence and uniform indel rates along the phy-

logeny, to name a few.

Should SpartaABC be extended to deal with more complex

models of sequence simulations, it would probably be useful
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FIG. 7.—There are no significant differences between the indel processes of genes that have experienced positive selection and those that have not. The

figure depicts the density of indel parameter values as inferred by SpartaABC based on 189 mammalian coding genes aligned with PRANK.
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to extract additional summary statistics from the input and

from the simulated data. In this study, we used a leave-one-

out approach to examine the individual contribution of each

summary statistic. When dealing with larger numbers of sum-

mary statistics, more sophisticated approaches, such as partial

least squares (PLS) can be used to select summary statistics

and reduce their dimensionality (Boulesteix and Strimmer

2006; Wegmann et al. 2009).

Currently, SpartaABC provides the integrated sequence

simulator with a single tree topology. By doing so, it implicitly

makes the assumption that the provided tree is the correct

description of the phylogenetic relationships between the se-

quences in the input set. SpartaABC can be further extended

to deal with tree uncertainties by sampling the tree topology

from a set of possible trees. Such a set could be generated in

various ways; for example, by obtaining a credible set of trees,

as computed, by MrBayes (Ronquist et al. 2012) from the

posterior distribution of tree topologies. Furthermore, the

tree topology itself can be a parameter for SpartaABC to infer,

with retained simulations reflecting more probable tree topol-

ogies concerning indel dynamics.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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