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ABSTRACT

The degree of evolutionary conservation of an amino
acid in a protein or a nucleic acid in DNA/RNA re-
flects a balance between its natural tendency to mu-
tate and the overall need to retain the structural in-
tegrity and function of the macromolecule. The Con-
Surf web server (http://consurf.tau.ac.il), established
over 15 years ago, analyses the evolutionary pattern
of the amino/nucleic acids of the macromolecule to
reveal regions that are important for structure and/or
function. Starting from a query sequence or struc-
ture, the server automatically collects homologues,
infers their multiple sequence alignment and recon-
structs a phylogenetic tree that reflects their evolu-
tionary relations. These data are then used, within
a probabilistic framework, to estimate the evolution-
ary rates of each sequence position. Here we intro-
duce several new features into ConSurf, including
automatic selection of the best evolutionary model
used to infer the rates, the ability to homology-model
query proteins, prediction of the secondary structure
of query RNA molecules from sequence, the ability
to view the biological assembly of a query (in addi-
tion to the single chain), mapping of the conservation
grades onto 2D RNA models and an advanced view
of the phylogenetic tree that enables interactively re-
running ConSurf with the taxa of a sub-tree.

INTRODUCTION

ConSurf is a widely used tool for revealing functional re-
gions in macromolecules by analysing the evolutionary dy-
namics of amino/nucleic acids substitutions among homol-
ogous sequences (1–4). ConSurf estimates the evolution-
ary rates of the amino/nucleic acids and maps them onto
the sequence and/or structure of the query macromolecule.
Slowly evolving sites on the query surface are usually impor-
tant for function and thus, ConSurf analysis can pinpoint
critically important sites within the query macromolecule.
This is particularly true when the structure of the query
macromolecule is known, allowing to differentiate between
slowly evolving positions at the core, which are usually im-
portant for structural stability/folding (e.g. 5), and clusters
of slowly evolving surface positions, important for func-
tion (6–14). In the absence of structure, the evolutionary
data are presented on the query sequence together with site-
specific predictions of the buried/exposed status of each po-
sition, i.e. ConSeq mode (15). The power of ConSurf, in
comparison to other popular alternatives based on consen-
sus and relative entropy approaches, is that the evolution-
ary rates are estimated based on the phylogenetic relation-
ships among the homologues and the specific dynamics of
the analysed sequences using advanced probabilistic evolu-
tionary models (16,17). This statistically robust approach
makes it easier to differentiate between apparent conser-
vation due to short evolutionary time and genuine conser-
vation reflecting the action of purifying selection. Notably,
ConSurf also assigns confidence intervals around the cal-
culated evolutionary rates, which estimate the credibility of
the results.

The superiority of ConSurf’s estimation of evolutionary
conservation over entropy based methods in accurate pre-
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diction of protein active sites, as well as the identification
of biologically active peptides, was previously demonstrated
(18–20); elaborate comparison of ConSurf to alternatives
that do not explicitly account for the phylogenetic relations
among sequences is provided in the OVERVIEW section of
the ConSurf web server. The best established alternative to
ConSurf for the detection of functional regions is the Evo-
lutionary Trace method and variants thereof (6–8,21,22).
These are also based on phylogenetic analysis, but lack the
mathematical rigour of ConSurf, and do not provide any
credibility interval around the inferred scores. Recently, the
Golding lab introduced a rigorous model, based on phylo-
genetic Gaussian process, that accounts for spatial correla-
tion of substitution rates in different positions according to
the protein tertiary structure (23,24). Unlike ConSurf, this
sophisticated approach requires knowledge of the protein
structure.

Here we report the introduction of several new features
into ConSurf, designed to improve the performance and the
interface of the web server in the detection of functional re-
gions in proteins and nucleic acids.

MATERIALS AND METHODS

In a typical ConSurf application, the query protein is first
BLASTed (25) against the UNIREF-90 database (26). Re-
dundant homologous sequences are then removed using
the CD-HIT clustering method (27,28). The resulting se-
quences are next aligned using MAFFT (29) and the gen-
erated multiple sequence alignment (MSA) is used to re-
construct a phylogenetic tree. Given the tree and the MSA,
the Rate4Site algorithm (16) is used to calculate position-
specific evolutionary rates under an empirical Bayesian
methodology (17). The rates are normalized and grouped
into nine conservation grades 1-through-9, where 1 in-
cludes the most rapidly evolving positions, 5 includes po-
sitions of intermediate rates, and 9 includes the most evo-
lutionarily conserved positions. It is important to notice
that structural data are not used up to this point, and the
rates are estimated based on sequence data alone. Finally,
the conservation grades are mapped onto the query se-
quence and/or structure using the ConSurf colour-code,
with cyan-through-purple corresponding to variable (grade
1)-through-conserved (grade 9) positions. The analysis is
conducted only if there are at least five homologous pro-
teins, otherwise the degree of uncertainty is too high.

The protocol for the selection of homologous sequences
was shaped while massive amounts of sequence data are be-
coming available (2,3). A balance between the number of
sequences used for analysis and their evolutionary or func-
tional relationship to the query molecule should be main-
tained. Thus, we try to adjust the default parameters used
for homologues collection to maintain this balance. This
includes (i) using CS-BLAST, suggested to be more sensi-
tive and accurate in searching for remote homologues, com-
pared to the commonly used BLAST algorithm (25); (ii) for
proteins, only sequences sharing at least 35% sequence iden-
tity with the query sequence are considered. This was sug-
gested to be the upper boundary of the ‘twilight zone’ for
protein structures (30); (iii) the MAFFT-LINSi procedure,
suggested to be one of the most accurate MSA method-

ologies (31), is used to align the homologous sequences.
Many alternatives to this typical outline are provided in
the server. For example, ConSurf is also applicable to nu-
cleotide sequences, it can be used with an external pre-built
MSA, and users can control many details of the default al-
gorithmic flow described above. The ConSurf methodology
and these advanced options are described in detail in the
‘OVERVIEW’, ‘QUICK HELP’ and ‘FAQ’ sections of the
ConSurf website (http://consurf.tau.ac.il).

RECENT ADDITIONS AND IMPROVEMENTS

Selecting the evolutionary model that best fits the data

In the previous ConSurf version, the user was allowed to
select one of several evolutionary models which differ from
each other in their biological assumptions and in the num-
ber of free parameters. For nucleotide sequences the follow-
ing models have been implemented: the Jukes and Cantor
model (JC69), which assumes equal base frequencies and
equal substitution rates (32); the Tamura 92 model that uses
only one parameter, which captures variation in G-C con-
tent (33); the HKY85 model, which distinguishes between
transitions and transversions and allows for unequal base
frequencies (34); and the General Time Reversible model,
which includes free parameters for each transition type and
base frequency (35). For protein sequences several models
were implemented: LG (36), JTT (37), Dayhoff (38), WAG
(39), mtREV for mitochondrial proteins (40) and cpREV
for chloroplast proteins (41). Different models can result
in different estimations of the phylogeny and evolutionary
rate (42,43). ConSurf now allows automatic selection of the
model that best fits the analysed sequences, as determined
by the Akaike information criterion (AIC) (44–46). Users
who prefer this option need to select it in the menu.

Predicting RNA secondary structures

For RNA sequence queries, ConSurf now offers the pos-
sibility to predict the secondary structure. Structures are
predicted using the RNAfold program of the Vienna pack-
age (47,48), and the structure with the lowest free energy
is selected. The ConSurf conservation grades are mapped
onto the predicted secondary structure. Correlating the evo-
lutionary data with the structural model offers the means
to quickly detect functional regions within the RNA query.
To exemplify this feature, we analyse the well-studied Phe-
tRNA molecule (Figure 1A). The calculation is based
on RFAM homologous sequences (49) of the Phe-tRNA
molecule (RFAM RF00005 family) clustered by CD-HIT
to the level of 80% sequence identity and aligned using
MAFFT. The results show that some bases in the T�C
and D loops are assigned particularly high conservation
grades. Some of these positions are known to be of struc-
tural and functional importance (50,51). Figure 1B shows
the conservation grades on the 3D structure of the Phe-
tRNA molecule (PDB ID: 1EHZ chain A), further empha-
sizing the importance of the evolutionarily conserved posi-
tions.
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Figure 1. ConSurf analysis of yeast Phe-tRNA. (A) Secondary structure prediction of the molecule coloured by conservation using the colour-code bar.
(B) Same analysis using the X-ray crystal structure of the molecule (PDB ID: 1EHZ, chain A).

Predicting a template-based structure for protein sequences

In the previous version, when only the sequence (rather than
the structure) of the query protein was provided as input
(i.e. ‘ConSeq mode’), ConSurf searched the PDB (52,53) us-
ing BLAST (54) to suggest probable homologues of known
structure. If the search was productive, the conservation
grades were mapped on each of the homologous structures.
In the new version, we go one step further and use HH-
Pred (55) and MODELLER (56) to produce a homology-
model of the query. Briefly, HHPred uses a hidden Markov
model to search for potential templates of known 3D struc-
ture in the PDB (57). The MODELLER algorithm (56) is
then used to predict a 3D model for the query sequence. The
ConSurf conservation grades are subsequently mapped on
the predicted model.

In addition, the homology model is used to predict the
solvent accessibilities of the amino acids. To this end, we
use the relative solvent accessible surface areas of the amino
acids, calculated using NACCESS (58) and the predicted
structure. The derivation of solvent accessibility from the
3D model is expected to be more accurate compared to the
buried/exposed prediction, made solely using the protein
sequence (59). The latter option is still offered in cases where
a template is not available.

Refining ConSurf results using a subset of sequences

Occasionally, purifying selective forces may be strong in
one part of the phylogeny yet relaxed (or different) in the
remaining parts, indicative of gain or loss of function in
some taxonomic clades or in protein subfamilies. In a typ-

ical ConSurf analysis, the whole set of homologues (either
user-supplied or automatically collected using the default
setting) is analysed as a single group, masking this impor-
tant functional signal. The new ConSurf version provides
the means to refine an initial ConSurf analysis by allowing
users to select a subtree containing a fraction of the homol-
ogous sequences and conduct a follow-up analysis of these
selected sequences. To this end, in the ConSurf Results page,
the MSA and tree are now visualized using the WASABI
platform (60). Users can thus choose any internal node on
the phylogenetic tree and open a WASABI menu using a
right mouse click (see an example in Supplementary Figure
S1). Selecting the option ‘run ConSurf on subtree’ will issue
a new window with a follow-up ConSurf run for the selected
sequences of the subtree.

Improved visualizations
This new version of ConSurf suggests three major visual-
ization improvements:

(i) Accounting for protein assembly. Many proteins func-
tion together as complexes, or biological units (5).
Therefore, accounting for the full assembly can shade
further light on the importance of residues located at
the interfaces between the subunits. The new version
of ConSurf automatically suggests the possibility to
map the calculated evolutionary conservation grades
of the amino acids not only onto a single chain, taken
from the asymmetric unit of the crystal, which is of-
ten deposited in the PDB, but also on all the appear-
ances of the chain in the biological assembly as pre-
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Table 1. The main recent improvements in ConSurf

Feature ConSurf––2010 ConSurf––2016

Selecting evolutionary model Only according to user selection New option for automatic selection of the model
showing the best fit to MSA

RNA secondary structure Not available Predicting RNA secondary structure using Vienna
package and projecting ConSurf grades on the
structure

Projecting scores on identical chains and
protein assemblies

Scores projected only on single chain, and do
not support protein assemblies

Projecting scores on all identical chains and the
most probable assembly downloaded from PISA

FirstGlance in Jmol Version 1.44 supporting only Jmol viewer Version 2.42 supporting JSmol which is Java free
viewer (see additional features and improvements
of the new version at: http:
//bioinformatics.org/firstglance/fgij/versions.htm)

Phylogenetic tree viewer Only the tree is shown using a Java applet The MSA is shown together with the phylogenetic
tree using the WASABI platform (Java free)

Rerun ConSurf using sequences from sub-tree Not available Interactive selection of sub-tree sequences using
WASABI, and rerun ConSurf with these sequences

Structural information for proteins query
sequence (no PDB provided)

Suggesting highly similar homologues
sequences to the protein query sequence and
projecting ConSurf scores on them

In addition to the suggested homologues, template
based structure prediction is performed using
HHPred and MODELLER

Solvent accessibility information when
protein’s PDB structure is not available

Predicted from sequence information only When possible, extracted using NACESS from the
3D structure modelled by HHPred

1 2 3 4 5 6 7 8 9

Variable Conserved
1 2 3 4 5 6 7 8 9

Variable Conserved

A B

Figure 2. ConSurf analysis of the � subunit of DNA polymerase III from Escherichia coli (PDB ID: 2POL). The interfaces between the two subunits of
the homodimer (on both sides of the dotted line) are highly conserved, as well as the internal face of the ring, which interacts with the DNA. (A) Molecule
coloured by the traditional ConSurf scale. (B) Molecule coloured by the new colour-blind friendly scale.
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dicted by PISA (http://www.ebi.ac.uk/pdbe/prot int/
pistart.html) (61). Figure 2A demonstrates this new
feature using the 3D structure of the � subunit of
DNA polymerase III from Escherichia coli. The pro-
tein functions as a homo-dimer, and as anticipated,
most of the residues at the inter-subunit interfaces (62)
are highly evolutionarily conserved (Leu108, Lys74,
Ile272, Leu273, Glu300, Glu304). The full ConSurf
analysis of this structure is available for interactive ex-
ploration under the ‘GALLERY’ section of the web
server.

(ii) Supporting non-Java-based visualization. To enable in-
teractive visualization of 3D molecular structures on
devices with no Java installed, or for which Java is not
available (e.g. smart phones), a new version of First-
Glance in Jmol (http://bioinformatics.org/firstglance/
fgij/) was implemented with JSmol (63). Briefly, JSmol
uses HTML5 and JavaScript to implement the func-
tionality offered by the Jmol application, which is im-
plemented in Java (http://www.jmol.org/). It allows 3D
visualization on modern web browsers (e.g. Chrome,
Edge) which, in attempt to avoid security threats, no
longer support Java applets (such as Jmol) running
from the browser.

(iii) New colour-blind friendly pallet. In addition to the tra-
ditional cyan-through-purple pallet corresponding to
variable (grade 1)-through-conserved (grade 9) scores,
the new version also suggests a more colour-blind
friendly pallet of green-through-purple scale (see ex-
ample in Figure 2B).

CONCLUSIONS AND PROSPECTS

We presented improvements to the ConSurf method and
web server for the detection of functional regions in pro-
tein and nucleotide sequences. The ConSurf calculation is
conducted using sequence data, but the results are particu-
larly enlightening when viewed on the 3D structure of the
macromolecule, or model thereof. The main changes com-
pared to the previous version of ConSurf are summarized
in Table 1.

Our understanding of the physicochemical interactions
underlying the selective forces responsible for evolutionary-
rate differences among sites is very partial. Quantitatively,
it was estimated that only 60% of the data can be explained
(64). Nevertheless, exploiting evolutionary rate differences
is useful in various biological studies, including structure
analysis (e.g. 65,66) and prediction (e.g. 67), interpretation
(68) and design of mutations (69), identification of natural
peptides (20), systems and genome-wide studies (70) and
studies of the last common ancestor (71). Until a few years
ago, the bottleneck of the analysis was to obtain a suffi-
cient number of homologous sequences of the query and
to design an algorithm that makes the best use of these ho-
mologues to estimate the evolutionary rates. While efforts
to improve the rates estimates are constantly undergoing
(23,24,72,73), with the flood of sequence data, the main
challenge now is to cope with thousands of homologous se-
quences by clustering the data and finding a large and di-
verse set of true homologues that faithfully represents the

diversity. We plan to implement such a clustering method
in ConSurf in the very near future.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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