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The evolutionary selection forces acting on a protein are commonly inferred using evolutionary codon models by con-
trasting the rate of synonymous to nonsynonymous substitutions. Most widely used models are based on theoretical
assumptions and ignore the empirical observation that distinct amino acids differ in their replacement rates. In this paper,
we develop a general method that allows assimilation of empirical amino acid replacement probabilities into a codon-
substitution matrix. In this way, the resulting codon model takes into account not only the transition–transversion bias
and the nonsynonymous/synonymous ratio, but also the different amino acid replacement probabilities as specified in
empirical amino acid matrices. Different empirical amino acid replacement matrices, such as secondary structure–specific
matrices or organelle-specific matrices (e.g., mitochondria and chloroplasts), can be incorporated into the model, making it
context dependent. Using a diverse set of coding DNA sequences, we show that the novel model better fits biological data
as compared with either mechanistic or empirical codon models. Using the suggested model, we further analyze human
immunodeficiency virus type 1 protease sequences obtained from drug-treated patients and reveal positive selection in sites
that are known to confer drug resistance to the virus.

Introduction

A multiple sequence alignment combined with the un-
derlying phylogenetic tree and a model of sequence evolu-
tion allows inference of the evolutionary selection forces
acting on a protein. While amino acid evolutionary
models are restricted to computing the purifying selection
acting on each site (e.g., Gaucher et al. 2002; Pupko et al.
2002; Susko et al. 2002; Mayrose et al. 2004), codon evo-
lutionary models can be used to compute both purifying and
positive Darwinian selection (Nielsen and Yang 1998;
Yang and Nielsen 2002; Yang and Swanson 2002;
Massingham and Goldman 2005). This is usually done by
contrasting the rate of neutral evolution as estimated by
synonymous (silent) substitutions to the rate of nonsynon-
ymous (amino acid altering) substitutions. Formally, the ra-
tio of the nonsynonymous substitutions rate (Ka) to the
synonymous substitutions rate (Ks) is estimated. Sites
showing Ka/Ks values significantly lower than 1 are re-
garded as undergoing purifying selection and therefore
may have a functionally or structurally important role. Sites
showing Ka/Ks values significantly higher than 1 are indic-
ative of positive Darwinian selection, suggesting adaptive
evolution (e.g., Sharp 1997; Akashi 1999; Hurst 2002).

Methods used for inferring Ka/Ks ratios are constantly
being developed (Li et al. 1985; Wong et al. 2004; Tang and
Wu 2006). Widely used models take into account factors
such as different probabilities for transitions and transver-
sions, codon bias, and among-site rate variation (Goldman
and Yang 1994; Muse and Gaut 1994; Nielsen and Yang
1998; Yang et al. 2000). In addition, although previous
methods inferred a global Ka/Ks value for the entire se-
quence or for subsequences using a sliding window ap-
proach (Fares et al. 2002; Berglund et al. 2005), recent
methods estimate the Ka/Ks ratio per amino acid site (Yang
2002; Suzuki 2004b). This enables the detection of single
sites that undergo positive selection despite a low global
Ka/Ks value for the entire protein.

Goldman and Yang (1994) and Muse and Gaut (1994)
developed codon-based evolutionary models for inferring
the Ka/Ks ratio. These models are mechanistic, that is, they
include parameters for the transition–transversion bias, the
codon frequencies, and, in the case of the Goldman and Yang
(1994) model, also the different replacement probabilities
between amino acids based on the Grantham (1974) phys-
icochemical distance matrix. Nielsen and Yang (1998) and
Yang et al. (2000) further developed mechanistic Bayesian
models that assume a prior distribution of Ka/Ks ratios.
However, unlike the model of Goldman and Yang (1994),
these models ignore the fact that distinct amino acids
differ in their replacement rates. Thus, these models will give
the same probability for a tryptophan codon changing into
a leucine codon (UGG /UUG), as for a phenylalanine co-
don changing into a leucine codon (UUU /UUG) because
they both require 1 transversion. However, according to em-
pirically derived amino acid–based replacement matrices,
such as the JTT matrix (Jones et al. 1992), the latter event
should be about 5 times more likely than the former. Re-
cently, Sainudiin et al. (2005) and Wong et al. (2006) have
developed mechanistic Bayesian codon models in which
amino acid physicochemical properties are explicitly taken
into account. In these models, codons are partitioned accord-
ing to a predefined physicochemical property, such as polar-
ity or charge. The difference in this property between 2
codons dictates their substitution probability. In this way,
specific physicochemical selective pressures acting on a pro-
tein can be modeled. This approach, however, is limited as it
only allows a single partition per model.

Empirical amino acid replacement matrices (e.g.,
Dayhoff et al. 1978; Jones et al. 1992; Adachi and Hasegawa
1996; Whelan and Goldman 2001) are extensively used in
various kinds of protein sequence analyses, such as mul-
tiple sequence alignment tools (Thompson et al. 1994),
homologous searches (Altschul et al. 1997), and phylog-
eny reconstruction (Kumar et al. 2004). In such empirical
matrices, the parameters of the replacement probabilities
are estimated from large data sets of protein sequences
and then assumed to be fixed when these matrices are ap-
plied to a specific protein. However, when one considers
codon-based data, estimating empirical codon matrices re-
quires a substantial amount of data and accurate inference
of thousands of parameters (because they involve an
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alphabet size of 61). Recently, Schneider et al. (2005)
estimated an empirical codon-substitution matrix from a
large number of coding data sets as an alternative to pa-
rameterized models. The empirical matrix is constructed
from 5 metazoan genomes and thus most accurately de-
scribes the evolution of these species. There is trade-off
between using parameter-rich models, which better fit
the data under study, but can risk overfitting, and nonpar-
ameterized models, which have no free parameters but can
risk underfitting. The empirical matrix is a conservative
approach of the latter type, which assumes 1 general ma-
trix for all genes. This implies 1 Ka/Ks ratio as well as the
same transition–transversion bias for all genes.

Here we suggest the construction of a combined codon
model that, on the one hand, assimilates empirical amino
acid replacement probabilities and, on the other hand, takes
into account theoretical assumptions (such as the transition–
transversion bias, different codon frequencies, and different
selection forces acting within and among genes). Different
empirical amino acid replacement matrices have been devel-
oped. For instance, mitochondrial proteins contain a high
proportion of hydrophobic residues (Naylor et al. 1995)
and are mostly membranous (Adachi and Hasegawa 1996).
Thus, the use of a specific replacement matrix, such as the ver-
tebratemitochondrial (mtREV)matrix(AdachiandHasegawa
1996) has been shown to better describe mitochondrial pro-
teins than the more general replacement matrix JTT (Jones
et al. 1992). Other context-dependent empirical amino acid
probability matrices were developed, for example, secondary
structures (alpha helices, beta sheets, and loops) (Koshi and
Goldstein 1995) and for transmembrane and nontransmem-
brane domains (Jones et al. 1994). These matrices as well
as other context-dependent empirical amino acid models
can be integrated into the combined codon models to create
‘‘context-dependent codon models.’’ Such models are more
realistic and may have a substantial effect on the accuracy
of the Ka/Ks estimates and on phylogeny.

The JTT (Jones et al. 1992), the mtREV (Adachi and
Hasegawa 1996), and the chloroplast (cpREV) (Adachi

et al. 2000) empirical amino acid matrices were used to con-
struct 3 such codon-based models. Twenty-seven nuclear,
viral, mitochondrial, and chloroplast genes were analyzed
to evaluate which of the models (mechanistic, empirical, or
our mechanistic–empirical combined model) better fits pro-
tein data sets. We show that the suggested combined model
is superior to the classical mechanistic model as well as to
the empirical model for the vast majority of genes analyzed.
Finally, we used our model to analyze sequences of human
immunodeficiency virus type 1 (HIV-1) protease obtained
from drug-treated patients and to infer the selection forces
acting on each codon site in the protein. This analysis
revealed specific sites as undergoing positive selection;
most of these sites were previously shown to confer drug
resistance to the virus.

Theory
Model of Codon Substitution Assuming Selection

Similar to most evolutionary models, the codon model
used here assumes a stochastic Markovian process. The
states of the model are the 61 sense codons (in the case
of the universal genetic code). In this model, we expand
a 20 3 20 empirical amino acid matrix into a 61 3 61 codon
matrix. Each replacement between 2 amino acids, aai and
aaj, in the empirical matrix is represented by ci 3 cj ele-
ments in the new codon matrix, where ci and cj are the num-
ber of codons coding for aai and aaj, respectively (see fig. 1).
However, as is evident from figure 1, each substitution
should be weighted differently based on 2 theoretical pa-
rameters (transition–transversion bias and codon frequen-
cies), as we will now formulate.

Let A represent the empirical amino acid replacement
matrix and Q* the derived codon-based matrix. The basic
assumption is that the infinitesimal replacement rate be-
tween 2 amino acids is the sum of such rates between all
the codons coding for these 2 amino acids, weighted by
the relative frequencies of those amino acids and codons.
This assumption was previously pointed out by Yang
et al. (1998) and is represented in the following equation:

wi � Aij 5
X

fl:aal 5 ig

X
fs:aas 5 jg

pl � Q*

ls; ð1Þ

where wi and pl denote the frequency of amino acid i and
codon l, respectively. Aij represents the substitution rate
from amino acid i to j, derived from the empirical amino
acid replacement matrix A. aal and aas denote the amino
acids coded by codon l and s, respectively, and Q*

ls repre-
sents the substitution rate from codon l to s. Q*

ls is given by
the following equation (for l 6¼ s):

Q
*

ls 5

tr � ps � xðaal;aasÞ l and s differ by 1 transition

tv � ps � xðaal;aasÞ l and s differ by 1 transversion

trr � ps � xðaal ;aasÞ l and s differ by 2 transitions

tvv � ps � xðaal;aasÞ l and s differ by 2 transversions

trv � ps � xðaal ;aasÞ l and s differ by 1 transition and 1 transversion

tsub � ps � xðaal;aasÞ l and s differ by 3 substitutions

;

8>>>>>>>><
>>>>>>>>:

ð2Þ

where tr and tv are weight parameters representing 1 tran-
sition and 1 transversion, respectively. trr, tvv, and trv are
weight parameters representing 2 transitions, 2 transver-
sions, and 1 transition and 1 transversion, respectively. tsub

FIG. 1.—A graphic representation of the ‘‘mechanistic–empirical
combined’’ model. A 20 3 20–amino acid matrix is expanded to a 61 3
61 codon matrix. Each replacement between a pair of amino acids (marked
in gray) from matrix A is converted to its corresponding codon-substitution
rates (marked in gray).
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is a weight parameter representing 3 substitutions of any
kind. The codon frequencies ps are calculated here using
the products of the observed nucleotide frequencies at each
of the 3 codon positions (Yang et al. 2000) (denoted as
F3 3 4 method). xðaal;aasÞ is a specific factor in the codon
matrix that is used to differentiate between the substitution
rates among codons coding for different amino acids. These
factors are not free parameters of the model. Rather, each
pair of amino acids defines one such x factor and thus one
specific case of equation (1). Thus, these factors represent
the empirical amino acid replacement probabilities that
are integrated into the codon model. Once the transition–
transversion parameters, codon and amino acid frequencies,
and Aij are known, each xðaal;aasÞ is determined by solving
equation (1). For synonymous substitutions (i.e., aal5 aas),
xðaal;aasÞ is arbitrarily set to one.

To account for different selection strengths (Ka/Ks), the
nonsynonymoussubstitutions inQ*aremultipliedbyafactor
x, which determines the intensity of selection. The resulting
matrixQ# represents the infinitesimalcodon-substitutionrate
and is given by the following equations.

For l 6¼ s:

Q#ls 5
x � Q*

ls for a nonsynonymous substitution

Q*

ls for a synonymous substitution
;

�
ð3Þ

and for the diagonal elements:

Q#ll 5 �
X
fs:s6¼lg

Q#ls: ð4Þ

Selection 1 Neutral Model

Because the model described above is based on an em-
pirical amino acid replacement model, different pairs of
codons obtain different replacement probabilities depend-
ing on the amino acids they code for. As a result, the model
implicitly assumes selection. In other words, in a neutral
model all the x factors in equation (2) should be equal
for all pairs of amino acids. This cannot be reached regard-
less of the value of x. In order to create a model that allows
also neutral evolution, we combine the above ‘‘selection
model’’ with a model that assumes no selection, that is,
a model in which all the x factors are set to one. Under
the latter model, the substitution is specified by:

Q
0

ls 5

tr � ps l and s differ by 1 transition

tv � ps l and s differ by 1 transversion

trr � ps l and s differ by 2 transition

tvv � ps l and s differ by 2 transversion

trv � ps l and s differ by 1 transition and 1 transversion

tsub � ps l and s differ by more than 2 substitutions

;

8>>>>>>>><
>>>>>>>>:

ð5Þ

where tr, tv, trr, tvv, trv, tsub, and ps are the parameters as
before.

Thisselection1neutralmodelassumesaprobability f for
the selection matrix (Q#) and a probability 1� f for the neutral
matrix(Q0).Thus, the instantaneousratematrixfor theprocess
(Q) is f � Q#1ð1 � f Þ � Q0:We assume that the parameters tr,
tv, trr, tvv, trv, tsub, andps are the same inQ0 andQ#:We hereby
refer to this novel model as the ‘‘MEC’’ model, which stands

for mechanistic–empirical combination, as opposed to the
mechanistic model described by Nielsen and Yang (1998),
which we denote as the M model. We refer to the empirical
model (Schneider et al. 2005) as the E model.

Empirical Bayesian Estimation of Ka/Ks

Common to other mechanistic models, the free param-
eters of the model are estimated from the data being analyzed.
Here, the evolutionary times (branch lengths), the transition–
transversion parameters (tr, tv, trr, trv, tvv, and tsub), and the
parameter f are assumed to be identical over all sites and
are estimated using themaximum likelihood(ML) paradigm.
The parameter x is assumed to vary among sites, and thus
a prior statistical distribution accounting for heterogeneous
x values among sites is used. The parameters of this distri-
bution are also estimated using the ML methodology. We
note that any modification of a free parameter necessitates
recomputing the x factors so that equation (1) holds.

Here, 2 different prior distributions over x are as-
sumed, either a gamma distribution or a beta 1 x distribu-
tion (which assumes that the x values for a proportion p0 of
the sites is distributed beta[p,q], whereas the remaining pro-
portion 1 � p0 is assigned an x value higher than 1). These
distributions, known as the M5 and M8 models, respec-
tively, were suggested by Yang et al. (2000). After all
the parameters are estimated, an empirical Bayesian ap-
proach can be used to infer x for each site. Here, K 5
10 discrete categories are used to approximate the contin-
uous gamma or beta distributions, where all categories have
equal prior probabilities 1/K. The posterior probability that
a specific site is from category k is

Pðxkjdata; T; hÞ ffi Pðdatajxk; T; hÞ � PðxkÞPK

i5 1 Pðdatajxi; T; hÞ � PðxiÞ
; ð6Þ

where T denotes the tree topology and branch lengths, h
denotes all the free parameters (tr, tv, trr, trv, tvv, tsub,
f, and the parameters of the prior x distribution).
Pðdatajxi; T; hÞ is calculated from the phylogenetic tree
and branch lengths using Felsenstein’s pruning algorithm
(Felsenstein 1981), and PðxiÞis the prior probability of xi.

The Ka/Ks ratio is a function of x. Once x is specified,
Q is defined and the Ka/Ks ratio can be calculated as de-
scribed by Goldman and Yang (1994). Ka is calculated
by summing plQls over all codon pairs, l and s, coding
for different amino acids, and dividing by the same summa-
tion under the neutral model. Similarly, Ks is calculated by
summing plQls over all codon pairs, l and s (l 6¼ s), coding
for the same amino acid, and dividing by the same summa-
tion under the neutral model. This allows the calculation of
Ka/Ks for each discrete category (xi), which we denote by
(Ka/Ks)(xi). The estimated Ka/Ks in each site is its posterior
expectation computed by

EððKa=KsÞjdata; T; hÞ ffi
Xk

i5 1

Pðxijdata; T; hÞ � ðKa=KsÞðxiÞ

5

Pk

i5 1 Pðdatajxi; T; hÞ � PðxiÞ � ðKa=KsÞðxiÞPk

i5 1 Pðdatajxi; T; hÞ � PðxiÞ
:

ð7Þ
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Sites for which the expected values are larger than 1
and the posterior probability of Ka/Ks . 1 is higher than
95% are considered as undergoing positive selection.

Model Comparison

All data sets conducted in this study were analyzed
with the MEC, M (M8 and M5), and E codon models.
For the MEC model, we considered 3 empirical replace-
ment amino acid probabilities matrices depending on the
data analyzed: JTT (Jones et al. 1992) for nuclear and viral
proteins, mtREV (Adachi and Hasegawa 1996) for mito-
chondrial proteins, and cpREV (Adachi et al. 2000) for
chloroplast proteins, denoted by MECjtt, MECmt, and
MECcp, respectively.

The MEC model presented here differs from the M
model in that it allows instantaneous substitutions between
pairs of codons that differ at 2 or 3 codon positions and in its
ability to take into account the different replacement prob-
abilities between amino acids. In order to evaluate the spe-
cific contribution of allowing instantaneous substitutions
between codons differing in more than 1 nucleotide, we
also compare the MEC, E, and M models with a variant
of the M model, which allows such substitutions. Formally,
this model is represented by the Q0 matrix as in equation
(5), with the inclusion of x as in equation (3). We refer
to this model as the M1 model.

The log-likelihood values obtained for each data set
under the different models can be compared to test which
model (MEC, M, M1, or E) best explains the data. The
likelihood ratio test (LRT) is commonly used in order to
test whether a certain model fits a particular data set signif-
icantly better than another model. However, the LRT is ap-
plicable only when 2 models are nested, which is not the
case here. We thus used the second-order Akaike informa-
tion criterion (AICc) (Akaike 1974), defined as

AICC 5 � 2logL1 2p
N

N � p� 1
; ð8Þ

where L is the likelihood, p represents the number of free
parameters, and N represents the sequence length.

Data Sets
Nuclear and Viral Data Sets

Thirteen data sets of protein-coding genes were ana-
lyzed. Nine multiple sequence alignments and tree topolo-
gies were taken from Yang et al. (2000) (referred to as D2,
D3, D4, D6, D7, D8, D9, and D10 in this paper). Here, we
renamed these data sets as D1–D8, respectively. Two data
sets from Yang and Swanson (2002) were analyzed: the
human class I major histocompatibility complex (MHC)
and the abalone sperm lysine genes, denoted here as D9
and D10, respectively. Three additional data sets of the pro-
tein phosphatase 2C (PP2C) superfamily were analyzed
(Stern et al. Forthcoming). The PP2C proteins are Mg21/
Mn21-dependent serine/threonine phosphatases, which
are essential for regulation of cell cycle and stress-signaling
pathways in cells (Sun and Tonks 1994; Hanada et al. 2001).
Each of the 3 data sets represents a pair of paralogous PP2C

genes that were chosen because they are believed to be the
result of a relatively recent duplication event (Stern et al.
Forthcoming). Following is a description of these 3 PP2C
data sets:

PP2Ca and PP2Cb, denoted by D11, include 2 paral-
ogous groups from different organisms: 6 sequences of
PP2Ca (rat, human, mouse, bovine, chimpanzee, and rab-
bit) and 5 sequences of PP2Cb (rat, human, mouse, bovine,
and chimpanzee).

PP2Cf and PPM1H, denoted by D12, include 2 paral-
ogous groups from different organisms: 8 sequences of
PP2Cf (human,chimpanzee,mouse,rat,dog,tetraodon,fugu,
and cow) and 9 sequences of PPM1H (human, chimpanzee,
chicken, mouse, rat, dog, zebrafish, frog, and tetraodon).

POPX-1/FEM2 and POPX-2, denoted by D13, include
9 sequences of POPX-1/FEM2 (human, chimpanzee, dog,
chicken, mouse, rat, fugu, frog, and zebra fish) and 10
POPX-2 sequences (human, chimpanzee, dog, chicken,
mouse, rat, zebrafish, frog, tetraodon, and fugu).

Mitochondrial Data Sets

Twelve mitochondrial protein–coding genes (cox1,
cox2, cox3, cytb, nd1, nd2, nd3, nd4, nd4l, nd5, atp6,
and atp8) from 20 organisms were analyzed. These data sets
as well as the tree topology were taken from a previous
study by Cao et al. (1998).

Chloroplast Data Sets

Two chloroplast genes, rbcL andmatK, were analyzed.
These data sets are a subset of the data analyzed by Kato
et al. (2003) (the archaeal sequences were excluded).

HIV Protease

AdatasetofHIV-1proteasesequenceswasusedtodem-
onstrate the ability of the new model to infer site-specific
selection forces following drug treatment. Twenty-two
sequences of patients that were treated with Amprenavir
(APV) were extracted from the Stanford HIV Drug Resis-
tance Database (http://hivdb.stanford.edu/). The multiple
sequence alignment is available as Supplementary Material
online.

Results
Comparisons of Nuclear and Viral Genes

When comparing the fit of the different models to bi-
ological data sets, 12 out of the 13 tested data sets showed
a significant improvement in the log likelihood under the
MECjtt model as compared with the M model for the beta
1xprior distribution (table 1). Similar results were obtained
when the gamma distribution was assumed, but in this case,
MECjtt was significantly higher only in 11 out of the 13
data sets (table 2). For all 13 data sets both the MECjtt
and the M models showed significantly higher maximum
log-likelihood values compared with the E model (table 1).

The M1 model is a variant of the M model, in which
instantaneous substitutions between pairs of codons that
differ at 2 or 3 codon positions are allowed. Comparing
the M with the M1 models shows that allowing such sub-
stitutions significantly improves the likelihood in 9 out of
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13 data sets for the beta 1 x prior distribution (table 1), and
in 11 out of 13 data sets for the gamma prior distribution
(table 2). In some cases, the M and M1 models differ in
more than 100 points of likelihood, showing that taking into
account multiple instantaneous substitutions between pairs
of codons is not an artifact of overparameterization, but
rather reflects the substitution pattern in the data.

The MECjtt is superior to the M1 model in 11 of the
13 tested data sets for the beta 1 x prior distribution (table
1) and in 10 of the 13 data sets for the gamma prior distri-
bution (table 2). The difference in log-likelihood scores be-
tween these model was sometimes larger than 100. Thus,
integrating the empirical amino acid replacement probabil-
ities into codon models significantly increases the fit of the
model to the data.

Context-Dependent Models

The mitochondrial and chloroplast genomes are
known to evolve under different selection pressures than

nuclear genes, as indicated by the observed differences be-
tween the empirical mitochondrial (Adachi and Hasegawa
1996) and chloroplast (Adachi et al. 2000) matrices com-
pared with the standard empirical matrix (JTT; Jones et al.
1992). Moreover, the nuclear and mitochondrial genomes
use a different genetic code. We thus expect codon models
derived from the organelle empirical amino acid matrices to
better describe the evolution of mitochondrial and chloro-
plast genomes compared with the standard codon models.
Therefore, we compared the M, M1, and the MECjtt
models with a mitochondrial codon model, MECmt, or
chloroplast codon model, MECcp, for mitochondrial and
chloroplast data sets, respectively.

Mitochondrial Data Sets

We compared the fit of MECmt, MECjtt, M, and M1
models with 12 mitochondrial data sets. Table 3 contains
log-likelihood and AICc values for these 12 data sets
assuming the beta 1 x distribution. For 11 data sets, the

Table 1
The AICc Scores and Maximum Log-Likelihood Values for the Analysis of 13 Data Sets under the M, M1, E, and
MECjtt Models. The Beta 1 v Prior Distribution Was Assumed for the M and MECjtt Models

Data Set SLa NSb

AICc Score (log likelihood)

M M1 E MECjtt

D1 144 17 7,469.16 (�3,686.1) 7,364.62 (�3,624.43) 9,844 (�4,882.32) 7,110.82 (�3,495.53)
D2 254 23 9,440.51 (�4,663.8) 9,398.02 (�4,631.7) 12,291 (�6,093.34) 9,281.25 (�4,571.7)
D3 490 22 19,611.73 (�9,755.1) 19,659.2 (�9,772.63) 27,044 (�13,477.3) 19,417.48 (�9,650.52)
D4 192 29 6,917.2 (�3,370.7) 6,927.03 (�3,364.47) 10,199 (�5,021.89) 6,890.17 (�3,343.7)
D5 947 23 18,833 (�9,365.9) 18,824.53 (�9,356.06) 26,535 (�13,222.6) 18,592.26 (�9,238)
D6 500 23 13,797.19 (�6,845.4) 13,800.11 (�6,840.64) 19,100 (�9,503) 13,823.99 (�6,851.3)
D7 342 18 18,463.44 (�9,188.8) 18,347.05 (�9,124.18) 26,097 (�13,011.7) 18,104.45 (�9,001.6)
D8 91 13 2,294.97 (�1,106.4) 2,307.76 (�1,101.2) 3,353 (�1,645.42) 2,283.66 (�1,086.6)
D9 135 25 9,100.46 (�4,464.62) 8,979.09 (�4,389.61) 11,352 (�5,603.25) 8,719.53 (�4,256.74)
D10 270 192 12,687.95 (�7,234.74) 12,411.42 (�7,071.04) 17,402 (�9,619.33) 12,492.64 (�7,106.81)
D11 480 11 8,949.55 (�4,449.45) 8,912.94 (�4,425.54) 11,314 (�5,637.28) 8,855.78 (�4,395. 82)
D12 777 17 26,187.31 (�13,055.85) 25,860.88 (�12,887.1) 32,713 (�16,324) 25,467.32 (�12,689.2)
D13 832 19 39,599.32 (�19,757.59) 39,288.26 (�19,596.5) 48,253 (�24,089.8) 38,924.91 (�19,413.7)

NOTE.—Values are shown in bold for the model with the lowest AICc score and for the model with the highest log-likelihood value.
a Sequence length.
b Number of sequences.

Table 2
The AICc Scores and Maximum Log-Likelihood Values for the Analysis of 13 Data Sets under the M, M1, and
MECjtt Models Assuming a Gamma Prior Distribution

Data Set SLa NSb

AICc Score (log likelihood)

M M1 MECjtt

D1 144 17 7,471.47 (�3690.8) 7,359.8 (�3,625.9) 7,102.68 (�3495.4)
D2 254 23 9,440.45 (�4,663.78) 9,386.95 (�4,629.35) 9,266.30 (�4,567.44)
D3 490 22 19,814.67 (�9,858.9) 19,638.82 (�9,764.92) 19,426 (�9,657.3)
D4 192 29 6,906.99 (�3,369.77) 6,912.7 (�3,361.85) 6,881.99 (�3,344.24)
D5 947 23 18,865.44 (�9,384.3) 18,818.22 (�9,355.15) 18,616.25 (�9,253)
D6 500 23 13,797.55 (�6,848) 13,796.03 (�6,841.1) 13,820.55 (�6,852.1)
D7 342 18 18,458.07 (�9,188.7) 18,331.64 (�9,119.08) 18,089.22 (�8,996.6)
D8 91 13 2,285.74 (�1,105.9) 2,297.64 (�1,101.01) 2,274.13 (�1,086.9)
D9 135 25 9,091.42 (�4,465.35) 8,969.91 (�4390.97) 8,702.61 (�4,257.32)
D10 270 192 12,628.77 (�7215.95) 12,385.86 (�7,068.18) 12,474.76 (�7,112.63)
D11 480 11 8,948.64 (�4,451.21) 8,906.86 (�4,424.76) 8,845.16 (�4,392.78)
D12 777 17 26,184.67 (�13,056.7) 25,849.03 (�12,883.4) 25,466.86 (�12,691.2)
D13 832 19 39,605.05 (�19,762.7) 39,281 (�19,595.1) 39,611.43 (�19,759.2)

NOTE.—Values are shown in bold for the model with the lowest AICc score and for the model with the highest log-likelihood value.
a Sequence length.
b Number of sequences.
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highest log-likelihood and AICc values were obtained un-
der MECmt. The second highest values were obtained un-
der MECjtt. The 1 data set (atp8) that did not support the
use of MEC models comprises relatively short sequences,
containing only 71 sites. Thus, we hypothesize that there
were not enough data in this protein to support the addi-
tional free parameters used in the MEC models.

Chloroplast Data Sets

We further analyzed 2 chloroplast data sets with the
MECjtt, MECcp, M, and M1 models. In both data sets,
the maximum log-likelihood values under the MECcp
model were significantly higher as compared with the M
model. However, for 1 data set a significant highest score
was obtained under the M1 model. Surprisingly, for both
data sets the maximum log-likelihood values obtained
under the MECjtt model were higher compared with those
obtained under the MECcp model (table 4). This point is
further addressed in the discussion.

Site-Specific Ka/Ks of the HIV-1 Protease

To illustrate the potential of the MEC model, we fo-
cused on the inference of site-specific selection forces of the
HIV-1 protease. HIV-1 protease is an essential enzyme for
viral replication and is the target for design of antiviral
drugs (Peng et al. 1989; Flexner 1998). The enzyme is
an aspartic protease composed of 2 identical 99–amino acid

monomers. Specific and well-characterized patterns of
drug resistance mutations are associated with a variety of
protease inhibitors (Condra et al. 1996; Molla et al.
1996; Craig et al. 1998; Patick et al. 1998). Such mutations
are divided into 2 categories: primary resistance mutations,
located at the substrate cleft, and secondary mutations,
located elsewhere in the enzyme. Primary mutations
generally reduce the inhibitor binding, whereas secondary
mutations may compensate for the decreased kinetics
inflicted by the primary mutation or confer resistance
by altering enzyme catalysis, dimer stability, or inhibitor-
binding kinetics or by reshaping the active site through
long-range structural perturbations (Ho et al. 1994; Molla
et al. 1996; Erickson et al. 1999; Barbour et al. 2002;
Muzammil et al. 2003). It is assumed that such drug
resistance–conferring sites are highly correlated with sites
showing Ka/Ks values significantly greater than 1 (e.g.,
Chen et al. 2004).

We used the MEC model to study drug resistance of
HIV-1 protease to a specific protease inhibitor, APV.
Twenty-two sequences of protease were analyzed (see data
set). The x parameter was assumed to follow a gamma dis-
tribution. Tree topology was constructed by the Neighbor-
Joining algorithm (Saitou and Nei 1987). As input for the
Neighbor-Joining algorithm, pairwise distances were com-
puted applying the ML criterion under the M model and
assuming x 5 1 for all sites and transition–transversion
ratio 5 2. Fixing the tree topology, all branch lengths as

Table 4
AICc Scores and Maximum Log-Likelihood Values for the Analysis of 2 Chloroplast Data Sets under the 4 Models:
M, M1, MECjtt, and MECcp

Data Set SLa NSb

AICc Score (log likelihood)

M M1 MECjtt MECcp

matK 509 28 19,652.36 (�9,760.95) 19,531.71 (�9,694.24) 19,581.74 (�9,717.96) 19,596.76 (�9,725.47)
rbcL 394 64 16,760.15 (�8,185.32) 16,724.2 (�8,155.94) 16,547.34 (�8,065.17) 16,552.2 (�8,069.1)

NOTE.—Values are shown in bold type for the model with the lowest AICc score and for the model with the highest log-likelihood value.
a Sequence length.
b Number of sequences.

Table 3
AICc Scores and Maximum Log-Likelihood Values for the Analysis of 12 Mitochondrial Data Sets under the 4 Models:
M, M1, MECmt, and MECjtt

Data Set SLa NSb

AICc Score (log likelihood)

M M1 MECmt MECjtt

atp6 226 20 12,837 (�6,366.63) 12,817.36 (�6,349.01) 12,693.44 (�6,285.43) 12,703.94 (�6,290.68)
atp8 71 20 4,975.2 (�2,381.1) 4,995.59 (�2,352.71) 4,993.9 (�2,342.04) 4,983.32 (�2,336.75)
cox1 515 20 22,998.59 (�11,453.5) 23,007.26 (�11,451.8) 22,813.09 (�11,353.5) 22,851.29 (�11,372.6)
cox2 235 20 10,871.45 (�5,384.32) 10,882.9 (�5,382.39) 10,749.59 (�5,314.15) 10,771.79 (�5,325.25)
cox3 281 20 12,791.02 (�6,345.92) 12,779.46 (�6,333.05) 12,562.62 (�6,223.17) 12,643.88 (�6,263.8)
nd1 318 20 16,841.73 (�8,372.3) 16,815.55 (�8,352.42) 16,518.09 (�8,202.3) 16,601.47 (�8,243.99)
nd2 348 20 22,617.68 (�11,260.9) 22,545.84 (�11,218.4) 22,044.53 (�10,966.4) 22,091.53 (�10,989.9)
nd3 119 20 6,756.11 (�3,307.29) 6,763.6 (�3,303.03) 6,642.1 (�3,239.45) 6,684.44 (�3,260.62)
nd4 474 20 26,996.88 (�13,452.3) 26,938.39 (�13,416.9) 26,358.67 (�13,125.8) 26,474.67 (�13,183.8)
nd4l 98 20 5,845.11 (�2,847.72) 5,844.06 (�2,829.91) 5,734.54 (�2,771.27) 5,769.12 (�2,788.56)
nd5 616 20 37,734.15 (�18,821.9) 37,768.74 (�18,833.4) 37,129.9 (�18,512.8) 37,245.1 (�18,570.4)
cytb 392 20 19,835.97 (�9,870.81) 19,806.15 (�9,849.52) 19,488.59 (�9,689.44) 19,600.95 (�9,745.62)

NOTE.—Values are shown in bold for the model with the lowest AICc score and for the model with the highest log-likelihood value.
a Sequence length.
b Number of sequences.
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well as the 9 parameters of the model were estimated by
ML. Visualization of site-specific Ka/Ks estimations
under the MEC model was obtained by translating the
scores to a discrete color scale and their projection onto
the 3-dimensional structure (Protein Data Bank ID:
1T7J; Surleraux et al. 2005) using the RasMol program
(Sayle and Milner-White 1995) (fig. 2). Positive selection
was evident in 5 sites (10, 37, 54, 63, and 82). Each of these
sites had a posterior expectation of Ka/Ks higher than 1 with
a posterior probability of at least 0.95 (see Theory). Two ad-
ditional sites (35and50)belong tocategories thatyieldKa/Ks
. 1, with a posterior probability of at least 0.85. Of the pre-
dicted 7 sites, 5 (10, 50, 54, 63, and 82) are known to confer
drug resistance (Shafer et al. 2000).Sites10and63contribute
to resistance and belong to the secondary mutation category.
Site 54 in the flap region (fig. 2) confers intermediate
resistance. Site 50 within the cleft region (fig. 2) is known
to confer high-level resistance. This site is capable by itself
of reducingsusceptibility to theAPVdrugandthusbelongsto
the primary resistance mutation category. Site 82 (cleft
region; fig. 2) was detected as a positively selected site with
a posterior probability of 0.98. However, in this site only
valine to isoleucine (V82I) replacements are observed.
Although site 82 is reported to be responsible for APV drug
resistance, V to I mutations are not cited as APV drug resis-
tance related (Shafer et al. 2000). Thus, the positive selection
in thissitemightbeexplainedbyanadaptiveresponsetoother
factors, such as the immune system, rather than a specific
response to APV.

Five sites that are reported in the literature as drug
resistance–conferring sites were not detected as undergoing
positive selection. These sites (84, 46, 47, 32, and 90) did
not show Ka/Ks values significantly .1. For some of these
sites, clearly the data do not support positive selection. For
example, in site 90 the sequence alignment contains only
leucine and hence, the estimated Ka/Ks is very low (0.124).
Site 84 belongs to the primary resistance category and
results in a Ka/Ks score of only 0.38. However, according
to the alignment, only 2 replacements are observed in that
site (i.e., all sequences have isoleucine except 2 sequences
that contain valine). In other sites (47 and 32) known as
conferring low or intermediate resistance or contributing to
resistance, the Ka/Ks values may indicate a weak purifying
selection close to neutral selection (with Ka/Ks values
around 0.85). Another explanation is that these sites show
a mixture of strong purifying selection and positive selection
in a lineage-specific manner. In site 46 (fig. 2), positive se-
lection was suggested, with a Ka/Ks 5 1.3; however, it was
not statistically significant (posterior probability of 0.84).

In addition to predicting positive selection forces for
sites that are known to confer drug resistance, we also pre-
dicted 2 sites (35 and 37) that were not previously reported
as such. Site 37 is identified as having undergone positive
selection with a Ka/Ks posterior expectation value equal to
2.75 and posterior probabilities of the positive selection cat-
egories equal to 0.97. Site 35 obtained a Ka/Ks estimate of
1.75 with a posterior probability of 0.85. Thus, we may pre-
dict that these sites may contribute to viral replication in the
presence of APV. As can be seen in figure 2, these sites are
structurally remote from the active site and are hence pre-
dicted to belong to the second category.

Discussion

To date, the majority of codon models are based either
on theoretical assumptions or on empirical data. The model
that we have developed here combines between these 2
approaches. Analysis of a wide variety of data sets shows that
using a combined model has a large impact on the likelihood.
On average, there was a difference of 122 points between the
log likelihood under the MEC models and the log-likelihood
under the M model with some data sets showing a difference
of as many as 300 points. Furthermore, in comparison with
the E model, the MEC model was shown to significantly bet-
ter fit all analyzed data sets with an average log-likelihood
difference of around 2,500 points. This result suggests that
a strictly empirical codon model can be significantly im-
proved if parameters that are highly variable among data sets
are integrated within the model.

It is widely accepted that different proteins that belong
to different organelles as well as different regions within
a protein (such as transmembrane and nontransmembrane
domains or different secondary structure elements) evolve
under different evolutionary constraints. The context-
dependent codon models described here directly take this
variation into account. Noticeably, the majority of mito-
chondrial genes show an improvement in the log likelihood
under a combined model derived specifically for mitochon-
drial genes (MECmt), as compared with the general com-
bined model (MECjtt). This indicates the importance of
accounting for the different replacement probabilities
between amino acids evolving under different contexts.
However, analysis of the chloroplast data does not show
an advantage to the MECcp model over the MECjtt model.
To test whether this result is due to a specific limitation of
our MEC model, we compared the likelihood scores com-
puted using JTT and cpREV models for the same data, this
time using amino acids data instead of codons. The same
trend was observed in this analysis as well, with JTT better
fitting the data as compared with cpREV. Repeating these
analyses with additional chloroplast data may eliminate this
inconsistency.

The majority of the mechanistic codon models disal-
low instantaneous substitutions between codons that differ
at 2 or 3 codon positions. The underlying assumption is that
the probability for more than 1 codon position substitution
in a small time interval may be negligible. Thus, for exam-
ple, the rate of change between codon ATG (codes for
methionine) and TTT or TTC (both code for phenylalanine)
equals zero. However, empirical amino acid models such
as JTT allow the instantaneous change between amino acid
methionine and phenylalanine, which requires 2 substitu-
tions in 2 codon positions. The superior performance of
the M1 over the M model for the majority of the data sets
suggests that the process at the DNA level may cause in-
terdependence of substitutions at the 3 codon positions.
This observation was previously pointed out by Yang
et al. (1998).

Our model assumes that each site evolves indepen-
dently of the other sites. However, this simplifying assump-
tion is clearly not the case. Models that take into account
dependencies among sites often assume dependencies only
among adjacent positions (Yang 1995; Felsenstein and
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Churchill 1996; Stern and Pupko 2006). Effort is also
directed to integrate structural information into the evolu-
tionary model, thus introducing relationship between
nonsynonymous substitutions and protein structure (e.g.,
Robinson et al. 2003). One approach toward this goal
involves using a 3-dimensional window for detecting the
selection forces acting on the protein (Suzuki 2004a;
Berglund et al. 2005). In another approach, the substitution
model is constructed so that the tertiary structure is taken
into account by using the empirical energy functions (or
statistical potentials) (Parisi and Echave 2001; Robinson
et al. 2003; Rodrigue et al. 2005; Rastogi et al. 2006). Using
these functions, nonsynonymous substitutions rate depends
on its effect on protein stability. Models that take into
account 3-dimensional structural information as well as
context-dependent models accounting, for example, for
proteins’ secondary structures, are not often used. It is
hoped that the large increase in available protein structural
information and the development of efficient algorithms for
integrating such information into evolutionary models will
boost the utility of such models in any phylogenetic anal-
ysis of protein-coding sequences.

A few methods were developed to detect positive se-
lection operating on a specific lineage along a phylogenetic
tree (Fares et al. 2002; Yang and Nielsen 2002; Berglund
et al. 2005; Pond and Frost 2005). Because positive selec-
tion operates only on a few sites in short period of evolu-
tionary time (Siltberg and Liberles 2002), methods that
allow Ka/Ks ratio to vary both among sites and among lin-
eages have better power in detecting positive selection. Re-
laxing the assumption of homogenous selection pressure
among lineages can be easily accommodated in our sug-
gested models by allowing x to vary among branches.

Codon models are important not only for the inference
of selection, but should also be applied for other phyloge-

netic based application. Absurdly, although most phyloge-
netic trees are reconstructed based on coding DNA
sequences, the most realistic codon-based models are rarely
used. This is also the case for ancestral sequence recon-
struction, molecular dating, and the construction of multiple
sequence alignments. In this sense, the codon models sug-
gested here, which explicitly take into account variation of
substitution rates between different amino acids, may be
more suitable for these tasks. Furthermore, with the advent
of more sophisticated algorithms for constructing amino
acid replacement models (e.g., Muller and Vingron 2000;
Muller et al. 2002), our approach becomes more feasible
for computing a codon-based model for a specific kind
of data.

Supplementary Material

The multiple sequence alignment is available available
at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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FIG. 2.—The selection pattern for HIV-1 protease chain A as inferred using the MECjtt model. The protein is represented as a space-fill model, where
the Ka/Ks scores are color coded onto its van der Waals surface. The inhibitor APV is shown in blue as a backbone model. The color-coding bar shows the
coloring scheme: burgundy corresponds to purifying selection, white corresponds to neutral selection, and dark yellow to positive selection.
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