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The degree to which an amino acid site is free to vary is strongly dependent on its structural and functional importance.
An amino acid that plays an essential role is unlikely to change over evolutionary time. Hence, the evolutionary rate at an
amino acid site is indicative of how conserved this site is and, in turn, allows evaluation of its importance in maintaining
the structure/function of the protein. When using probabilistic methods for site-specific rate inference, few alternatives
are possible. In this study we use simulations to compare the maximum-likelihood and Bayesian paradigms. We study
the dependence of inference accuracy on such parameters as number of sequences, branch lengths, the shape of the rate
distribution, and sequence length. We also study the possibility of simultaneously estimating branch lengths and site-
specific rates. Our results show that a Bayesian approach is superior to maximum-likelihood under a wide range of
conditions, indicating that the prior that is incorporated into the Bayesian computation significantly improves
performance. We show that when branch lengths are unknown, it is better first to estimate branch lengths and then to
estimate site-specific rates. This procedure was found to be superior to estimating both the branch lengths and site-
specific rates simultaneously. Finally, we illustrate the difference between maximum-likelihood and Bayesian methods
when analyzing site-conservation for the apoptosis regulator protein Bcl-xL.

Introduction

Rates of evolution in proteins are expected to vary
among sites due to different selective constraints. Under
the neutral theory of molecular evolution, amino acid
positions that are under stringent selective constraints are
expected to be highly conserved; positions that are more
tolerant to replacement are most often variable (Kimura
1983). Conserved sites may point to functionally and
structurally important regions involved in such activities as
ligand binding, enzymatic activity, protein-protein inter-
actions, or folding (Lichtarge and Sowa 2002).

Numerous site-specific conservation scores have been
proposed over the years (reviewed in Valdar 2002; see also
del Sol Mesa, Pazos, and Valencia 2003, Yao et al. 2003).
Though evolution is the driving force that determines site
conservation, none of these methods make full use of either
the information contained in the phylogenetic tree or the
stochastic nature of amino acid replacements. This deficit
may lead to erroneous predictions. For example, when
branch lengths are ignored, a replacement on a short branch
will be given the same weight as one occurring on a long
branch. However, an amino acid replacement between two
divergent sequences is less surprising than one occurring
between two closely related sequences. The incorporation
of advanced evolutionary models was proved to greatly
increase the accuracy of site-specific rate inference (Pupko
et al. 2002). Evolutionary rates are commonly measured as
number of replacements per amino acid site per year. The
term site-specific evolutionary rate in the context of our
conservation scores is different. Here, the rate is relative to
the average evolutionary rate across all sites and hence is
unitless. In addition, for each site we assume that the rate is
constant across all lineages. Finally, in this paper we limit

our discussion to site-specific rate inference that is based on
probabilistic evolutionary models.

Currently, likelihood methods are considered state-of-
the-art phylogenetic techniques, allowing robust statistical
testing of evolutionary hypotheses (Whelan, Lio, and
Goldman 2001). Several alternatives within the likelihood
framework are currently being used for inferring evolu-
tionary rates. These can be divided into two types: (1)
Bayesian methods that presuppose a prior distribution of
evolutionary rates, and (2) maximum-likelihood (ML)
methods that do not. Both approaches have solid statistical
foundations and are closely related, as they use the same
models of evolution and operate within the same statistical
framework.

The ML approach for estimating site-specific conser-
vation scores chooses the rate that yields the highest
probability to the observed data. The first site-specific rate
estimation usingML was the DNArates program developed
in the early 1990s by Gary Olsen. A paper describ-
ing DNArates was never published, but documentation can
be found at http://geta.life.uiuc.edu/;gary/programs/
DNArates.html (see also Felsenstein 2001). Nielsen (1997)
also studied ML based estimation for DNA sequences and
suggested incorporating a Gamma prior to avoid cases
where the ML estimate is infinite. Using the same ML
methodology, Pupko et al. (2002) developed the Rate4Site
tool for the identification of functional regions in proteins.
Rate4Site was embedded in the ConSurf server (Glaser
et al. 2003; http://consurf.tau.ac.il) and successfully identi-
fied functional residues at the contact interface of several
proteins (Donaudy et al. 2003; Mella et al. 2003; Ramelot
et al. 2003; RamShankar et al. 2003).

Bayesian inference is based on the posterior proba-
bility distribution, which is directly proportional to the
product of the prior distribution and the likelihood. A
Bayesian approach, assuming a Gamma prior for DNA se-
quences, was suggested by Yang and collaborators (Yang
and Wang 1995; Excoffier and Yang 1999). Computing
a Bayesian estimate based on a continuous Gamma
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distribution is computationally impracticable for even
a modest number of sequences (Yang 1996). Yang (1994)
suggested the discrete Gamma model as an approximate
method and found that four categories are sufficient to
provide a decent approximation to the continuous Gamma
distribution.

Site-specific evolutionary rates are directly connected
to the branch lengths of the phylogenetic tree (see
Materials and Methods). The problems of estimating
branch lengths and site-specific rates are thus inseparable.
Two possible solutions exist: (1) estimate branch lengths
first and then estimate site-specific rates, assuming that the
branch lengths are known (e.g., Nielsen 1997, Pupko et al.
2002); or (2) estimate branch lengths and site-specific rate
simultaneously, using an iterative procedure (e.g., Meyer
and von Haeseler 2003).

The purpose of this study is to compare the perform-
ances of ML and Bayesian estimates through simulation.
First, we shall study the effect of the number of discrete
Gamma categories on the performance of the Bayesian
method for the task of evaluating site-specific rates. Then,
we shall study the effect of various evolutionary
parameters, such as number of taxonomic units, branch
lengths, sequence length, and the shape of the rate
distribution, on the quality of predictions. These compar-
isons assume that the tree topology and branch lengths are
known prior to rate inference. We then explore the
accuracy of rate estimation in the more realistic scenario
where branch lengths are not known in advance. We
conclude with an illustrative biological example.

Materials and Methods
Maximum-Likelihood Estimation of Evolutionary Rates

The branch lengths of the phylogenetic tree represent
the average evolutionary rate across all sites. A site-specific
rate, r, indicates how fast this site evolves relative to the
average. A rate of 2.0 indicates a site that evolves two times
faster than the average. Thus, site-specific rates inferred
here are not absolute evolutionary rates that require
knowledge of divergence times, but rather they represent
a comparative quantity. We follow Yang (1993) and
present the likelihood computation using an example tree
shown in figure 1. We assume here that the tree T¼ (s, t),
defined by its tree topology s and associated branch lengths

t, is known in advance. Nodes are labeled as in figure 1. The
probability of the data given the rate parameter r is

Pðdata j r; TÞ
¼

X

X1;X2 2 Amino�acidsf g
pX1 3PX1;Mðrt1Þ3PX2;Gðrt2Þ

3PX2;Mðrt3Þ3PX1;Iðrt4Þ3PX1;X2ðrt5Þ; ð1Þ
where pX1

is the frequency of amino acid X1, and PX1;X2
(rt)

is the probability that amino acid X1 will be replaced by
amino acid X2 along a branch of length t, given that the
evolutionary rate at the site in question is r. Internal node 5
was arbitrarily chosen as the root of the tree. Because the
model we have used is time-reversible, the tree could have
its root anywhere with no effect on the calculations
(Felsenstein 1981). Given r, the likelihood P(data j r, T ) can
be calculated using Felsenstein’s (1981) postorder tree
traversal algorithm. The ML rate estimate is the rate that
maximizes the likelihood function P(data j r, T ). In the
rare case where all the characters at the leaves are different,
the ML value of r is infinite (see also Nielsen 1997). To
avoid this, we set an upper bound on r (rmax ¼ 20.0).

Empirical Bayesian Estimation of Evolutionary Rates

In the Bayesian case, a prior Gamma distribution over
the rates is assumed (Jin and Nei 1990; Swofford et al.
1996; Yang 1996). The Gamma distribution with param-
eters a and b has a mean a/b and variance a/b2. We set a¼
b so that the mean rate over all sites is 1.0 and the variance
is 1/a. The shape of the Gamma distribution is then
determined by a. When a . 1, the distribution is bell-
shaped, suggesting little rate heterogeneity. When a ! ‘,
there is a single rate for all sites. In the case of a , 1, the
distribution is highly skewed and is L-shaped. This
situation indicates high levels of rate variation.

Within the Bayesian framework, the posterior
probability is obtained from the likelihood function and
the prior probability. Assuming that the topology, the
branch lengths and a are known a priori, the probability of
any given rate, r, is

Pðr j data; TÞ ffi Pðdata j r; TÞPðrÞ
Pk

i¼1 Pðdata j ri; TÞPðriÞ
; ð2Þ

where P(data j r, T ) is obtained from equation (1), and P(r)
is the prior distribution on the rates. Here k discrete rate
categories are used to approximate the continuous Gamma
function (hence the approximation sign in eqs. 2 and 3),
such that all categories have equal prior probabilities (1/k).
The mean of each category, ri, is used to represent all the
rates within that category. The estimated rate is the
expected value of the parameter:

Eðr j data; TÞ ffi
Xk

i¼1

Pðri j data; TÞri

¼
Pk

i¼1 Pðdata j ri; TÞPðriÞriPk
i¼1 Pðdata j ri; TÞPðriÞ

: ð3Þ

Above it is assumed that the a parameter and the
branch lengths are known a priori. This is rarely the case

FIG. 1.—A four-taxon unrooted tree used to illustrate the likelihood
calculations. The external nodes (leaves) are labelled 1 to 4; internal nodes
are labelled 5 to 6. Branch lengths are marked by ti, where i is the branch
identifier. Capital letters in parentheses are one-letter abbreviations for
amino acids.
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when analyzing real data sets. If a is unknown and only
the branch lengths are known a priori, one may estimate a
by maximizing P(data j a, T ) using a discrete distribu-
tion to approximate the Gamma distribution (Yang 1994;
Yang and Wang 1995). The estimated a can then be used
in the prior Gamma distribution for the Bayesian method.
The replacement of a by its estimate has an empirical
Bayesian justification (Yang and Wang 1995). Empirical
Bayesian approaches differ from other Bayesian methods
in that the prior is determined, in part, by the data (Leonard
and Hsu 1999). Computing the rate estimate using
equation (3) with an empirical Bayesian estimate of a is
referred here as EB-EXP.

Estimating Branch Lengths

When the branch lengths are unknown one may
estimate the branch lengths using the classical ML
approach and then treat these branch lengths as known
for the task of rate estimation, using either the ML or the
Bayesian method. When inferring the branch length in this
case we assumed a Gamma distribution and found the ML
estimates of the a parameter and the branch lengths simul-
taneously. Alternatively, in the maximum-likelihood frame-
work one can consider a rich model in which each site has
its own rate. The tree and branch lengths can be estimated
using this model (see, e.g., Meyer and von Haeseler 2003).
In this case, assuming that the tree topology is known
a priori, the parameters of the model (i.e., the site-specific
rates) and the branch lengths are estimated simultaneously
by an iterative procedure. In each iteration we first estimate
site-specific rates, given the branch lengths. We then find
the ML estimate of the branches given the rates. We
continue until convergence of the likelihood function. We
call this rich-model method ML-RICH.

Branch lengths and site-specific rate estimates are not
independent. One can always multiply all branch lengths by
a constant factor c and divide all rates by this factor,
resulting in no change in the likelihood score. To avoid this
circularity, in all methods, site-specific rates were scaled so
that the average is 1. Our simulations indicate that scaling
has a negligible effect on EB-EXP, whereas it increases the
accuracy of the ML methods (data not shown).

Simulation

A simulated site-specific rate parameter was assigned
to each site. Given a model tree and simulated rates,
protein sequences were generated by simulating evolu-
tionary changes along the branches. The simulation used
the JTT model of amino acid replacement (Jones, Taylor,
and Thornton 1992), in which each site evolves in-
dependently. For each run a total of 500 sites were
generated in this manner.

For the simulation, one must determine the ‘‘true’’ rate
in each site. If the true rates are sampled from a Gamma
distribution, this could bias the results toward the Bayesian
method, which assumes a Gamma prior. To avoid this bias,
the rates used in our simulations were drawn from an
empirical rate distribution inferred from a biological
multiple sequence alignment (MSA) with many homologs.

We used a distribution inferred by EB-EXP from an MSA
of 34 homologous Src-homology-2 (SH2) domains (Pupko
et al. 2002). The simulated rates were scaled so that the
average was set to 1. To avoid a possible bias because
the rate distribution was inferred by a specific method,
the same MSA was used to infer a second empirical
distribution using ML. The simulation results obtained with
this distribution were similar with regard to the relative
accuracy of the methods (data not shown).

Due to the complexity of the parameter space, we
studied only several special cases. In all trees used, the
length of interior branches was d and that of the exterior
branches was 3d. Our simulation runs varied in their value
of d, number of sequences, sequence lengths, and rate
distributions used for generating the data. Illustrative
model tree with six and 18 sequences are shown in figure
2. The generated sequences, along with the model tree,
were given as input to the EB-EXP and ML methods and
rates were inferred for each position. We note that in these
simulations the tree topology and branch lengths were
assumed to be known a priori. The a parameter of EB-EXP
was inferred from the data for each run. A different set of
simulations were performed to study the more complicated
case in which the branch lengths are not given a priori (see
below). In each simulation run, the accuracy of inference
was analyzed by computing the mean square error (MSE)
between the simulated rates and the respective inferred
estimates. MSE was calculated as

MSE ¼ 1

n

Xn

i¼1

ððtrue riÞ � ðestimated riÞÞ2; ð4Þ

where n is the sequence length. Low MSE values indicate
high accuracy. Ten simulation runs were performed for
each simulated condition. As an accuracy measure we used
mean MSE over these 10 runs.

FIG. 2.—Illustrative unrooted model tree with (a) six sequences and
(b) 18 sequences. The lengths of the internal and external branches are
d and 3d, respectively.
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Choosing the Number of Discrete Gamma Categories

When using the discrete approximation to the
continuous Gamma distribution, the more categories that
are used the better the approximation will be. However, the
computation time increases linearly with the number of
categories. Thus, we evaluated the minimum number of
categories needed to provide an acceptable approximation
to the continuous Gamma distribution. To make sure that
our results are not specific to a single tree, or to a specific
MSA, seven different data sets were tested (table 1). In
four data sets (1–4 in table 1) the dependency between the
number of categories and the accuracy of the inferred rates
was tested on the phylogenetic trees as in figure 2. The rate
at each position was drawn from a Gamma distribution
with a given value of a. Two values of a were considered:
a¼ 0.3 represents a severe among-site rate variation while
a¼ 1.0 is an example of little among-site rate variation. In
data sets 5–7 (table 1), the trees used for the simulations

were based on neighbor-joining (NJ) trees (Saitou and Nei
1987) inferred from real data sets. In this case, the rate at
each position was drawn from a rate distribution that was
obtained by analyzing the three real data sets using ML. In
all cases 500 positions were simulated.

Accuracy as a Function of Rate Variation

To study the effect of different levels of rate variation,
the simulated rates were drawn from a 24-category discrete
Gamma distribution with a specified a parameter. Fifteen
different values of a were checked, ranging from 0.1 to 1.5
at equal intervals. This range appears to cover most of the
values estimated from real data sets (Sullivan, Holsinger,
and Simon 1996; Yang 1996). Three different sets of
branch lengths were tested: d¼ 0.1, 0.25, and 0.5. In each
case, trees with either six or 18 sequences were examined.
The a used in the prior for EB-EXP was estimated from
the simulated sequences.

Program Availability

TheML and EB-EXP rate-inference methods were im-
plemented in computer programs written in C11 and
are available at http://www.tau.ac.il/;talp/rate4site.html.
A server for automatic inference of conserved regions in
proteins and for projecting them onto the three dimen-
sional structure is available through the ConSurf server
(http://consurf.tau.ac.il/).

Results
Choosing the Number of Discrete Gamma Categories

When the number of categories was increased, the
accuracy of inference increased until a plateau was reached
(fig. 3). In all seven data sets, increasing the number of
categories above 16 appeared to contribute little additional
accuracy (fig. 3). We chose 16 categories for EB-EXP in
all further analyses.

Accuracy as a Function of the Number of Sequences

Trees with six, 12, 18, 24, and 30 sequences were
examined. Figure 4a shows the simulation results when
d was fixed at 0.1. The accuracy of the estimates increased
as the number of sequences increased. This is expected
since more data are available at each position for rate
inference. Noticeably, the Bayesian estimate is highly
accurate for even a small number of sequences. The MSE
between the inferred rates and their simulated values was

Table 1
Simulated Data Sets Used for Testing the Dependency Between Number of Categories and
Accuracy

Data set
Number of
Sequences Tree Rate Distribution

1 6 Predetermined as in figure 2a, d ¼ 0.1 Gamma, a ¼ 0.3
2 6 Predetermined as in figure 2a, d ¼ 0.1 Gamma, a ¼ 1.0
3 18 Predetermined as in figure 2b, d ¼ 0.1 Gamma, a ¼ 0.3
4 18 Predetermined as in figure 2b, d ¼ 0.1 Gamma, a ¼ 1.0
5 6 NJ tree inferred from lysozyme c data set Inferred from the data using ML
6 34 NJ tree inferred from SH2 data set Inferred from the data using ML
7 24 NJ tree inferred from SH3 data set Inferred from the data using ML

FIG. 3.—Accuracy of EB-EXP estimations as a function of number
of categories. Accuracy was measured by using MSE. The data set
number (table 1) is listed on the right-hand side of each curve. (a) Results
obtained with a fixed phylogenetic tree. (b) Results obtained with trees
and distributions inferred from real data sets.
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below 0.52 for as few as six sequences. In contrast,
a comparable level of accuracy is not achievable with ML
even when the number of sequences is as large as 30. The
considerable increase in accuracy for EB-EXP compared
to ML is especially evident when data are scarce. EB-EXP
superiority was reinforced when an extremely divergent
tree was used to simulate the rate (i.e., d ¼ 1.0). Though
the prediction power decreased for both methods, the
quality of the ML estimates dropped substantially, with
MSE in the range of 2.14 (30 sequences) to 2.29 (six
sequences), whereas the MSE for EB-EXP ranged between
0.58 (30 sequences) and 0.78 (six sequences).

Accuracy as a Function of Sequence Divergence

We investigated the accuracy of site-specific rate
inference as a function of the degree of sequence
divergence. For this purpose, we tested different model
trees with branch lengths ranging from d¼ 0.0125 to d¼
1.0. The result for a tree with six sequences is shown in
figure 5. Again, EB-EXP appears superior to ML. For d¼
0.0125, very low accuracies were observed for both
methods. This can be explained by the insufficient
evolutionary time needed to observe sufficient differences
in the number of amino acid replacements among different
positions. In this case, even positions with high rates of
evolution are likely to exhibit no more than a handful of
replacements. Thus, there is insufficient signal to infer
accurate rates. For highly diverged sequences, the number
of observed amino acid replacements may be saturated,
which results in difficulties to distinguish between slow

and fast evolving sites. Thus, for EB-EXP, a decreased
accuracy was observed for high values of d (fig. 5). A
similar behavior was reported by Yang and Wang (1995)
on a tree with four sequences. For ML the accuracy as
a function of d showed a peculiar pattern (fig. 5). This
peculiarity was caused by the tendency of ML to infer
extreme rates as well as by the dependency of MSE on the
maximum rate chosen for ML (rmax) and the scaling
procedure.

Accuracy as a Function of a

Here we examined the effect of the amount of rate
variation on the accuracy. For this purpose, different
values of a were simulated. When a tree with six
sequences was considered, the accuracy increased with a
(fig. 6a). This is true for both methods. However, the
increased accuracy with a is much more noticeable for

FIG. 4.—Accuracy of predictions as a function of the number of
sequences. Accuracy was measured by using MSE. In all trees d¼0.1. (a)
When the branch lengths are known prior to rate inference. (b) When the
branch lengths are unknown. In this case the branch lengths of the model
tree were optimized before the tree was given as input to the EB-EXP and
ML inference methods. The results obtained using EB-EXP, ML, and
ML-RICH are marked with squares, circles, and triangles, respectively.

FIG. 5.—Accuracy of predictions as a function of the branch lengths
d. The model tree used was as in figure 2a. The results obtained using EB-
EXP and ML are marked with squares and circles, respectively.

FIG. 6.—Accuracy of predictions as functions of a. The two
inference methods are labeled as in figure 5. (a) The results obtained with
a model tree as in figure 2a and d ¼ 0.1. (b) The results obtained with
a model tree as in figure 2b and d ¼ 0.1.
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EB-EXP compared to ML. The difference in accuracy be-
tween the two methods was less noticeable when trees with
18 sequences were used (fig. 6b).

Accuracy as a Function of Sequence Length

Sequence length might influence the quality of the
inferred rates because it influences the accuracy of branch
lengths and a parameter estimates. We first studied the
effect of sequence length on the rate estimation when only
the a parameter was estimated. Thus, the branch lengths
were assumed to be known. As sites are considered
independently, this need only influence EB-EXP; a ML
does not require the estimation of a. As seen from figure
7a, the influence of the sequence length is not noticeable,
as the accuracy is quite constant across different sequence
lengths.

A second series of simulations were carried out to
check the influence of sequence length on the rate
inference when the branch lengths of the model tree were
not given a priori but rather were optimized using ML
(Felsenstein 1981) before estimating the site-specific rates.
The results in figure 7b show that the effect of sequence
length on accuracy is negligible in this case also.

Rate Estimation When the Branch Lengths Are
Unknown a Priori

When the branch lengths are unknown two alter-
natives exists. Either the branch lengths are first estimated
and then site-specific rates are inferred (using either ML or
EB-EXP) or the branch lengths and site-specific rates are

estimated simultaneously using the ML-RICH method (see
Materials and Methods). We tested the accuracy of site-
specific rate prediction using these three alternatives (ML,
EB-EXP, and ML-RICH). Figure 4b presents our results
for trees with different number of sequences. As expected,
EB-EXP was superior to both ML methods, with ML
better than ML-RICH in all cases studied. However, the
differences between the methods diminished as the number
of sequences increased, with the three methods reaching
almost the same level of accuracy for 30 sequences.

Case Study

Will the differences between the various inference
methods be noticeable when analyzing real data sets? To
address this question we examined the evolutionary
conservation pattern of the Bcl-2 protein family. This
protein family plays a central role in the regulation of
apoptotic cell death (Adams and Cory 1998). The family is
divided into two subfamilies: anti-apoptotic and pro-
apoptotic. All family members possess at least one of four
conserved sequence motifs, known as Bcl-2 homology
(BH) domains (BH1-BH4). Here we focus on the Bcl-xL
protein, for which the structure is known. Bcl-xL contains
all four BH domains, whereas distantly related proteins
that promote apoptosis posses only BH3. The BH1, BH2,
and BH3 domains strongly influence homo- and hetero-
dimerization of Bcl-xL. BH4 has been shown to be
essential for Bcl-xL to prevent apoptotic mitochondrial
changes (Shimizu et al. 2000).

Homologous sequences were obtained from the
SwissProt database (www.expasy.org/sprot/). Since only
five orthologous sequences were obtained, we supple-
mented the alignment with 26 paralogous sequences. An
MSA of these homologs was built using ClustalW
(Thompson, Higgins, and Gibson 1994). We call this data
set BCL-BIG. A smaller MSA consisting of the 14 closest
homologs of Bcl-xL was also constructed. This set only
includes representatives from the anti-apoptotic family.
We call this data set BCL-SMALL. For both data sets, an
NJ tree was inferred using pairwise distances estimated by
ML. Branch lengths in the resulting tree were then
optimized using ML. The trees and the MSAs were given
as input to the EB-EXP and the ML rate-inference
methods. The inferred rates were then projected onto the
three dimensional structure of a complex between Bcl-xL
and a Bak BH3 fragment (PDB ID: 1bxl; Sattler et al.
1997). In this step, the continuous evolutionary rates were
partitioned into a discrete scale of 9 bins. The range of
each bin varied such that each one contained 1/9 of the
positions. Bin 9 contained the most conserved positions
and bin 1 contained the most variable positions.

The conservation pattern obtained by both EB-EXP
and ML using the BCL-BIG set of homologs yielded two
main surface patches of conserved residues (fig. 8a and b).
The first patch corresponds to a hydrophobic groove,
formed by residues from the BH1, BH2, and BH3 regions.
This patch is the binding site for the Bak peptide. The
conservation pattern obtained by EB-EXP is slightly more
pronounced than the patch obtained by ML. The second
conserved patch corresponds to the BH4 domain. Empirical

FIG. 7.—Accuracy of predictions as a function of sequence length
obtained with a model tree as in figure 2a and d¼ 0.1. The two inference
methods are labeled as in figure 5. (a) When the branch lengths of the
model tree were given to the two inference methods. (b) When the branch
lengths of the model tree were optimized before the tree was given as
input to the inference methods.
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evidence suggests that BH4 prevents apoptosis (Huang,
Adams, and Cory 1998). However, this region is missing in
more distant family members that also promote cell
survival. In addition, no single residue in BH4 appeared
to be essential for its function (Huang, Adams, and Cory
1998). EB-EXP graded the whole BH4 region as less
conserved compared to ML.

A second analysis was carried out using only BCL-
SMALL. This data set represents a difficult case for rate-
inference since limited data are available. As the sequences
used are quite similar to one another, many positions are
uninformative (i.e., all the proteins exhibit the same amino
acid at homologous positions). With EB-EXP the main
conserved patch is still noticeable. However, the patch is

FIG. 8.—The conservation pattern obtained for the Bcl-xL/Bak complex (PDB ID:1bxl) using (a) EB-EXP with BCL-BIG, (b) ML with BCL-BIG,
(c) EB-EXP with BCL-SMALL, and (d) ML with BCL-SMALL. The Bcl-xL protein is presented as a spacefill model. Conservation scores are color-
coded onto the van der Waals surface of the protein. The Bak peptide is shown as a yellow backbone model. The color-coding bar shows the coloring
scheme: burgundy corresponds to maximal conservation, white corresponds to average conservation, and turquoise to maximal variability.
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a bit scattered and extends beyond the interface boundaries
(fig. 8c). Interestingly, the conservation pattern obtained
with ML is expanded throughout the protein (fig. 8d). This
is due to the fact that 51 out of 168 residues received the
highest conservation score. Hence, much more than 1/9 of
the positions are grouped in the most conserved bin. In this
case ML cannot differentiate well between positions that
are conserved because of their functionality and those that
are conserved because of insufficient evolutionary signal.

Discussion

In this study we used simulations to compare the
empirical Bayesian and ML site-specific rate-inference
techniques. We also studied the effect of various pa-
rameters on the accuracy of each method.

One basic assumption in this study was that the rate at
each site is constant during evolution. However, one might
also try to find sites that are conserved in one part of the
tree but are variable in the other. Such rate shifts may
indicate change in the selection intensity at specific sites
during evolution (reviewed in Gaucher et al. 2002). Rate
shifts can also be inferred using an empirical Bayesian
approach (Susko et al. 2002; Blouin, Boucher, and Roger
2003) or by using ML (Knudsen and Miyamoto 2001;
Pupko and Galtier 2002). In our simulations we assumed
that the tree topology is known a priori. In cases where this
is not the case, one might use the Markov chain Monte
Carlo technique to take the uncertainty of the tree topology
into account (Huelsenbeck et al. 2001). Bayesian methods
in phylogeny were recently criticized by Suzuki, Glazko,
and Nei (2002) in the context of overestimation of
Bayesian support for internal nodes. In our case, however,
we limited the Bayesian part to a Gamma prior over the
evolutionary rates, which is not the case with Bayesian
methods that aim at inferring phylogenies.

When using a discrete approximation to the Gamma
distribution, as in EB-EXP, the number of discrete
categories must be specified. Yang (1994, 1995) suggested
that four rate categories are sufficient to provide an
optimum or near-optimum fit by the model to the data and
to provide a good approximation to the continuous Gamma
distribution. Our results showed that four categories are
insufficient. For example, when four rate categories are
used, 12.5% at each end of the distribution is not taken into
account, i.e., 25% of the area below the rate distribution
curve is ignored. Consequently, very high or very low
substitution rates cannot be observed. This is unfortunate,
since these are exactly the rates we seek to identify when
predicting functionally important sites. We note, however,
that Yang’s (1994) emphasis was either phylogenetic tree
reconstruction or estimating the shape of the Gamma
distribution, which may not change dramatically with the
number of categories. In contrast, here we were interested
in the rates themselves. The discrete Gamma method with
eight categories was recently used by Susko et al. (2002) to
infer rate shifts in different subtrees and by Excoffier and
Yang (1999), Meyer, Weiss, and von Haeseler (1999), and
Misof et al. (2002) to infer substitution rates per site. In
light of our findings, choosing 16 categories instead of
eight may improve the results.

The simulation results showed that EB-EXP performs
better thanML. Since both methods use the same likelihood
function in their computations, the differences between EB-
EXP and ML must be due to the incorporation of the
prior distribution, which reduces the posterior probability
of extreme unfavorable observed rates in EB-EXP. It can be
claimed that the superiority of the Bayesian approach
depends on how well the prior function fits the data. An
empirical Bayesian approach is used here, in which the
parameter of the prior Gamma function is inferred from
the data. This gives more flexibility for the prior to fit
the data.

There is another difference between the EB-EXP and
ML methods. In EB-EXP, the inferred rate is the
expectation over the posterior rate distribution (Yang and
Wang 1995; Excoffier and Yang 1999; Susko et al. 2002),
whereas the ML estimate is the rate that maximizes the
likelihood function. A second Bayesian method, EB-MAP,
is possible, in which the rate yielding the maxi-
mum a posteriori probability is chosen (i.e., rmap ¼
argmaxrP(r j data, T )). One advantage of EB-MAP over
EB-EXP is that there is no need to use a discrete ap-
proximation to the continuous Gamma distribution. This
can be done by a maximization procedure directly on the
continuous posterior distribution. However, taking the ex-
pectation of the continuous Gamma distribution is known to
be asymptotically more accurate than EB-MAP when the
accuracy is measured by a sum-of-square error function.
Thus, the advantage of using EB-MAP is that there is no
need to approximate the Gamma distribution, while the
advantage of EB-EXP is that without the approximation it
should be asymptotically more accurate. Simulation results
obtained with EB-MAP were very similar, though slightly
inferior, to those obtained with EB-EXP (data not shown).
We chose EB-EXP for this study because in this method it is
easier to obtain not only a point estimate but also its
credibility interval (Susko et al. 2002). We note that
a common way to infer site-specific rates (e.g., Meyer,
Weiss, and von Haeseler 1999) is to choose the discrete rate
category that contributes the most to the posterior
distribution. This is not a real ‘‘Map’’ estimate: because
the prior probability of each category is identical, this would
in fact be a discrete version of the ML approach.

We note that in our simulation the accuracy of
inference is overestimated, since we rarely know the true
tree as was set up in the simulation. In addition, the
substitution model used for the simulation is the same as
the one used for inference, which is most certainly not the
case for real data sets. Nonetheless, this discrepancy is the
same for all inference methods, so our conclusions re-
garding the relative efficiency of the two inference methods
should still hold. This uncertainty in the estimation of
tree topology, branch lengths, and evolutionary model also
results in underestimated credibility intervals obtained for
EB-EXP.

We demonstrated that regardless of the inference
method employed, accuracy of prediction depends strongly
on the amount of data, i.e., the number of sequences in the
MSA. We further showed that the degree of similarity in
these sequences, represented by branch lengths in the
phylogenetic tree, also affects results. A decrease in
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prediction success was observed when the branch lengths
were extremely short. In these cases the number of amino
acid replacements was too small to allow reliable rate
inferences. For EB-EXP, when branch lengths are very
large, multiple replacements at a site might obscure the
history of a character, resulting in a reduced accuracy. As
ML tends to adopt extreme rates and MSE scores are
highly sensitive to extreme rate values, a peculiar behavior
for highly diverged sequences was observed in ML.

The shape of the rate distribution influences rate
inference accuracy. Meyer and von Haeseler (2003)
recently presented an ML variant that identifies site-
specific substitution rates. In their simulation study that
included different model trees, a decrease in accuracy was
observed with increasing a values, which is in disagree-
ment with our results. The discrepancy can be explained
by the different approaches used to infer accuracy. While
MSE was used in our study, Meyer and von Haeseler
(2003) used the correlation coefficient between the inferred
and simulated rates. To illustrate why these two criteria for
accuracy may yield different results, consider two sites
evolving at relative rates of 1.02 and 0.98, respectively. If
the inferred rates are 1.0 and 1.01, respectively, the
inferred rates are very close to the true values but they are
in the wrong order. MSE measures the deviation of the
inferred rate from its true value for each site independently
from the other sites. The correlation coefficient, however,
measures to what extent the inferred and simulated rates
vary together. Thus, when the rates are nearly homogenous
(i.e., high a values), rates with extreme values are rare and
the inference is more accurate (low MSE). Correlation
coefficients, however, are expected to be relatively low.

Another shortcoming of the ML method is that its
point estimates tend to adopt extreme values when the
amount of data drops below a critical threshold (Lewis
2001). Thus, when the data are scarce, as was the case
when rates were inferred from less than 12 sequences, ML
resulted in very rough estimates (MSE¼ 2.92 and 2.0 for
six and 12 sequences, respectively, compared with 0.51
and 0.32, respectively, for EB-EXP). Figure 9a and b show
scatter plots of inferred rates obtained using the ML and
EB-EXP methods versus the simulated values. Whereas
several extreme values were observed using the ML
method (fig. 9a), the inferred rates of the EB-EXP method
were clustered close to the y¼ x line (fig. 9b).

When a large amount of sequences is available, one
could be tempted to use the ML-RICH model, assuming
a specific rate for each site. This model can be used to
estimate both the phylogenetic tree and the site-specific
rates simultaneously. Our results showed that the huge
increase in the number of free parameters in the ML-RICH
method results in decreased accuracy of site-specific rate
estimates compared to ML. However, the difference in
accuracy diminished as the number of sequences was
increased, reaching almost the same accuracy for 30
sequences. It is expected that as the number of sequences
increases, using the ML-RICH model would be more
acceptable because more data would be available at each
position. We note that Meyer and von Haeseler (2003)
suggested a variant of the ML-RICH model for any
number of sequences. Clearly, the reduced accuracy of rate

inference show that this is not justified in the general case
and could lead to a reduced accuracy of site-specific rate
estimates.

One of the main difficulties in calculating site-specific
conservation scores is to distinguish between amino acid
sites that are conserved due to their functionality and those
that appear to be conserved due to insufficient time since
divergence. EB-EXP appears to differentiate better
between these two cases. ML calculates only the most
probable rate, which may be misleading when little data
are available. Looking at the Bcl-xL example, the arginines
in positions 6 and 139 provide an illustration. Both
positions are fully conserved, yet while Arg139 is present
in all 32 homologs, Arg6 appears in only 11 of them. ML
could not discriminate between these two positions and
assigned both the highest conservation score. In contrast,
EB-EXP rated Arg139 as the most conserved position.
Indeed, mutating Arg139 to glutamine in Bcl-xL has been
shown to inhibit its anti-apoptotic function (Sattler et al.
1997). Arg6, on the other hand, was only the 29th
conserved position (out of 169) when graded by EB-EXP,
as it was missing in 21 homologs. This result is congruent
with experiments: mutating Arg6 to alanine, in Bcl-xL’s
close homolog Bcl-2, did not diminish the protein activity
(Huang, Adams, and Cory 1998).

The distinction between the Bayesian and ML
analyses was reinforced when using limited data, as was
the case with BCL-SMALL. Whereas the conservation
pattern using EB-EXP was a bit more scattered than in the
complete analysis (fig. 8c as compared to 8a), ML graded
a vast number of positions as extremely conserved (fig.
8d). As a consequence, the conserved patch expands far
beyond the Bak binding groove.

FIG. 9.—Scatter plots of 500 inferred rates versus their simulated
values with a model tree with six sequences and d¼ 0.1 for (a) ML and
(b) EB-EXP. The grey line marks the y ¼ x line.
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A robust evolutionary analysis can provide means for
the identification of patches of conserved residues on the
protein surface, which are essential for the protein’s
function. The bottleneck for the in silico identification of
these functional patches appears to be the availability of
sequence data (Bell and Ben-Tal 2003). Too little variation
in the MSA caused by too few sequences or too little
diversity among them can render evolutionary analysis
meaningless (Thornton et al. 2000). Ten available
homologous proteins appear to be the sensitivity threshold
when using ML (Bell and Ben-Tal 2003). Our study
implies that these are exactly the conditions where EB-
EXP is distinctly better than ML.
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