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Abstract

Motivation: Ancestral sequence reconstruction (ASR) is widely used to understand protein

evolution, structure and function. Current ASR methodologies do not fully consider differences in

evolutionary constraints among positions imposed by the three-dimensional (3D) structure of the

protein. Here, we developed an ASR algorithm that allows different protein sites to evolve accord-

ing to different mixtures of replacement matrices. We show that assigning replacement matrices to

protein positions based on their solvent accessibility leads to ASR with higher log-likelihoods com-

pared to naı̈ve models that assume a single replacement matrix for all sites. Improved ASR log-

likelihoods are also demonstrated when solvent accessibility is predicted from protein sequences

rather than inferred from a known 3D structure. Finally, we show that using such structure-aware

mixture models results in substantial differences in the inferred ancestral sequences.

Availability and implementation: http://fastml.tau.ac.il.

Contact: talp@tauex.tau.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Understanding how genes and genomes evolve is a major goal in mo-

lecular evolution. Ancestral sequences can help elucidate molecular

pathways that evolved millions to billions of years ago (Liberles,

2007). Other than the valuable evolutionary knowledge gained from

these sequences, ancestral proteins may contain desirable properties

that modern proteins lack, such as broader substrate range and

higher thermostability. Therefore, they can be used as a good start-

ing point for protein engineering (Gumulya and Gillam, 2017;

Ogawa and Shirai, 2014).

Inferring ancestral sequences can be challenging. While it is pos-

sible to use molecular paleontology, i.e. the extraction and recovery

of DNA information from fossils, this method still has many

obstacles to pass before it can be widely used (Zaucha and Heddle,

2017). Thus, a method called ancestral sequence reconstruction

(ASR) was developed and so far, it is the best way to deduce the ori-

gins of modern proteins (Liberles, 2007). In ASR, the ancestral

sequences are inferred by using the extant sequences, a phylogenetic

tree and a model of sequence evolution (Pupko et al., 2008).

The evolutionary rate at a specific site in a protein-coding gene

dictates the number of substitutions that this site experiences along

its evolution. While early modeling approaches to sequence evolu-

tion assumed, for simplicity, that all sites evolve at the same rate,

this was shown not to be the case more than 50 years ago (Fitch and

Margoliash, 1967). Rate variation among sites is affected by several

factors, among them are functional and structural constraints

(Yang, 1996). Currently, the Gamma distribution is most commonly

used to model among site rate variation (Yang, 1996).

Models that account for among sites rate variations and assume

a single replacement matrix across all sites are still an oversimplifi-

cation of the evolutionary dynamics. Specifically, such models ig-

nore the biological intuition and knowledge that sites in a protein

are subjected to different evolutionary constraints affected by differ-

ences in biochemistry and structure. Amino-acid replacement
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propensities substantially vary among different structural parts of

the protein and mainly due to solvent accessibility (Goldman et al.,

1998).

Several studies have previously suggested models which allow

for the replacement matrix to vary over protein sites. Koshi and

Goldstein (1995) use maximum-likelihood approaches to compute

site-specific replacement matrices for different regions within pro-

teins, either based on secondary structures or based on solvent acces-

sibility. Soyer et al. (2003) used multiple matrices to represent

different sites in the GPCR protein family. Juritz et al. (2013)

showed that similar conformations in different proteins are charac-

terized by similar site-specific replacement matrices.

Another approach to model replacement-propensity rate vari-

ation was suggested by Le and Gascuel (2010). They proposed using

an array of replacement matrices that capture the evolutionary con-

straints of different regions of proteins. Here, we utilized their ap-

proach in order to achieve more accurate ASRs and integrated the

methodology in FastML. This is done by using structural data to cal-

culate the most probable amino acid in each position using the most

fitting replacement matrix from the given array of matrices.

We show that even when structural data are missing, it is better to

compute ASR based on structure information prediction rather than

to infer ASR ignoring structural data.

2 Materials and methods

2.1 Maximum-likelihood based marginal reconstruction
2.1.1 A single substitution model, no rate variation among sites

The input for the algorithm is a phylogenetic tree and a multiple se-

quence alignment of the extant sequences (E). The algorithm

assumes that alignment positions evolve independently given the

phylogenetic tree and therefore we describe our algorithm for ASR

for a single amino-acid position. It is also assumed that amino-acid

replacement probabilities are determined according to a continu-

ous time Markov process for amino acids such as the AAJC, the

Jukes and Cantor (1969) model for amino-acids, JTT (Jones et al.,

1992), mtREV (Adachi and Hasegawa, 1996), cpREV (Adachi

et al., 2000), WAG (Whelan and Goldman, 2001), DAY (Dayhoff

et al., 1978) or LG (Le and Gascuel, 2008). These models provide

for each amino acid a stationary probability pa and for each pair of

amino acids a and b, the probability that amino acid a is replaced

by amino acid b after an evolutionary time t: P(a!bjt). Our goal in

this algorithm is to infer the most likely assignment in each ances-

tral node. Note, that in this work, we refer to marginal reconstruc-

tions as opposed to joint reconstruction. In marginal

reconstruction, the probability of each ancestral character assign-

ment in each node is averaged over all possible assignments in the

other internal nodes of the tree (Pupko et al., 2000, 2002; Yang

et al., 1995).

To explain the likelihood computations, consider the phylogen-

etic tree of Figure 1. Here, the probability of the extant characters

(the tree likelihood) is:

P Eð Þ ¼
X
a1

X
a2

P a1ð ÞP a1 ! Ljt3ð ÞP a1 ! a2jt4ð ÞPða2 ! Kjt1Þ

Pða2 ! Ljt2

� (1)

where a1 and a2 are the amino acids assigned to nodes A1 and A2, re-

spectively. The first step in estimating ancestral sequences is to com-

pute the posterior probability of each character in each of the tree

nodes. These posterior probabilities are computed using Bayes

theorem. In the above example, the posterior probability of each

character in the root node is computed according to following

equation:

P a1jEð Þ ¼ P Eja1ð ÞPða1Þ
PðEÞ ¼ P Eja1ð Þpa1

PðEÞ

¼
pa1

P
a2

Pða1 ! L t3j ÞPða1 ! a2jt4ÞPða2 ! Kjt1ÞPða2 ! Ljt2Þ
PðEÞ

(2)

The most likely character of the root is computed by

argmaxa(P(ajE)).

Using Felsenstein’s dynamic programming algorithm

(Felsenstein, 1981), the posterior probabilities at the tree root (and

thus the most likely ancestor) can be computed in O(n) where n is

the number of sequences. We can re-root the tree in each possible

node and repeat the above computation, leading to an O(n2) algo-

rithm to find the ancestral sequences at all internal nodes. In this

study, we describe a more efficient dynamic programming algorithm

designed to find the ancestors in all the nodes simultaneously in

O(n). Similar dynamic algorithms were previously utilized by us for

the task of maximum-likelihood tree inference using expectation

maximization (Friedman et al., 2002).

We divide the calculations into three parts: a post-order tree tra-

versal we call ‘Up’, a pre-order traversal we call ‘Down’ and another

tree traversal (for which the order is not important) we call

‘Marginal’. The ‘Up’ computations are those suggested by

Felsenstein (1981) to calculate tree likelihoods.

• For each of the extant nodes (i.e. leaves) v we set UP[v][i]¼
dij, where j is the observed character at extant node v and dij is 1

if i ¼ j and 0 otherwise.
• For ancestor v for which both sons (S1, S2) have been calculated

and for character i we set:

Up v½ � i½ � ¼
�X

j

Pði! jjtv!S1 ÞUp S1½ � j½ �
��X

j

Pði! jjtv!S2 ÞUp½S2�½j�
�

(3)

While the ‘Up’ algorithm provides probabilities of a node given

all extant taxa that are its descendants, the ‘Down’ algorithm pro-

vides probabilities of a node given all the extant taxa that are not its

descendants (see Fig. 2, which shows the ‘Up’ and ‘Down’ for a spe-

cific node n).

Fig. 1. Example for a phylogenetic tree. The tree shows a single position with

three extant sequences that contain K/L and two internal nodes, A1 and A2
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• For the root node, we set Down[root][i] ¼ 1 for all i.
• For a node v, for which the ‘Down’ component of its father

node, f, was already computed we set:

Down½v� i½ � ¼
X

j

P i! jjtg!f

� �
Down½f � j½ �

X
k

P i! kjtf!b

� �
Up½b� k½ �

(4)

where g is the ‘grandfather’ node, and b is the ‘brother’ node (Fig. 2)
• For the sons of the root (which do not have a grandfather) the

calculation is simply:

Down½v� i½ � ¼
X

k

P i! kjtf!b

� �
Up½b� k½ � (5)

Once the ‘Up’ and ‘Down’ components are computed, we calculate

the ‘Marginal’ component for each ancestor node:

Marg½v� i½ � ¼ piðUp v½ � i½ �Þ
X

j

ðDown v½ � j½ �ÞPði! jjtÞ (6)

Where t is the branch connecting node i to its father. For the root

the marginal is simply piðUp v½ � i½ �Þ.
Thus, the ‘Up’ component for a node v refers to the sub-tree below

this node, the ‘Down’ component refers to the remaining of the tree

excluding the edge connecting v to its father node and the marginal

component, combines these two factors to obtain the probability distri-

bution of characters for a specific node given the entire data. More ex-

plicitly, the above ‘Marginal’ components provide P að ÞP Ejað Þ for each

character a in each node. To get P ajEð Þ, we need to divide it by PðEÞ
which is easily computed by P Eð Þ ¼

P
a P að ÞPðEjaÞ over all marginal

probabilities in that node [as seen in Equation (1)].

2.1.2 Adding rate variation among sites

To add rate variation among sites, we assume a discrete Gamma dis-

tribution controlled by a shape parameter a (Uzzell and Corbin,

1971). The gamma distribution is divided to n discrete categories

(by default we use n¼8). The categories are divided so that each

category weight is 1/n. We denote R ¼ fr1; . . . ; rng the set of all pos-

sible rates. In the example tree of Figure 1, we use conditional prob-

ability to include the rate in the probability computation:

P Ejrð Þ ¼
X

a12A1

X
a2�A2

P a1ð ÞP a1 ! Ljt3rð ÞP a1 ! a2jt4rð Þ

Pða2 ! Kjt1rÞPða2 ! Ljt2rÞ (7)

It is similar to the P(E) calculation shown above, but here we

multiply each branch length by the rate r. The unconditional prob-

ability will therefore be:

P Eð Þ ¼
X
r2R

P Ejrð ÞP rð Þ (8)

And therefore, for the example in Figure 1, we obtain:

P Eð Þ ¼
X
r2R

X
a12A1

X
a2�A2

pa1
P a1 ! Ljt3rð ÞP a1 ! a2jt4rð Þ

P a2 ! Kjt1rð ÞPða2 ! Ljt2rÞPðrÞ (9)

The estimations of a specific ancestor a when incorporating rate

variation are:

P ajEð Þ ¼ PðEjaÞpa

PðEÞ ¼
P

r PðEja; rÞPðaÞPðrÞ
PðEÞ (10)

For each discrete rate r, the algorithm is the same as the algo-

rithm described above except that here, the ‘Up’, ‘Down’ and

‘Marginal’ components are calculated n times (once for each rate

category) separately. In each such a computation, instead of using

the branch length t, the branch length used is t � r. The total margin-

al probabilities PðEjaÞpa for a specific node v are computed by

P Ejað ÞP að Þ ¼
X

r

Marg v�½a½ �½r�PðrÞ (11)

2.1.3 Using rate variation and multiple replacement matrices

To use multiple matrices, we take the weight of each matrix per pos-

ition as additional input. The weights of all matrices in each position

should sum to a total of 1. We denote the array of matrices M ¼
{m1,. . ., mn} and the corresponding weight vectors W ¼ {w1,. . ., wn},

each entry contains the weight of its respective matrix per position.

In the example in Figure 1, we first condition on a specific matrix m

in addition to the rate variation:

P Ejr;mð Þ ¼ Pm Ejrð Þ ¼
X

a12A1

X
a2�A2

Pm a1ð ÞPm a1 ! Ljt3rð Þ

Pm a1 ! a2jt4rð ÞPmða2 ! Kjt1rÞPmða2 ! Ljt2rÞ (12)

It is similar to P(Ejr) shown above, but here we use the replace-

ment probabilities and stationary probabilities based on a specific m

matrix. The unconditional probability will be:

P Eð Þ ¼
X

i2f1:ng

X
r2R

Pmi
Ejrð ÞP rð Þwi (13)

And therefore, for the example in Figure 1, we obtain:

P Eð Þ ¼
X

i2f1:ng

X
r2R

X
a12A1

X
a2�A2

pmi
a1

Pmi
a1 ! Ljt3rð Þ

Pmi
a1 ! a2jt4rð ÞPmi

a2 ! Kjt1rð ÞPmi
ða2 ! Ljt2rÞPðrÞwi (14)

For each replacement matrix m the algorithm is the one calcu-

lated for the single replacement matrix with discrete rate variation.

It means that for every matrix in the model array, both ‘Up’, ‘Down’

and ‘Marginal’ are calculated for all rates. The total marginal proba-

bilities for a specific node v are computed by:

PðEjaÞpa ¼
X

m

X
r

Marg v�½m½ � r½ � a½ �P rð Þwm (15)

Of note, the matrices and their associated weights can be esti-

mated directly from the data analyzed using maximum-likelihood.

Fig. 2. Tree division to ‘Up’ and ‘Down’
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However, the matrices and weights can be also obtained based on

data external to sequences being analyzed. Here, we apply this latter

case, where we use pre-computed matrices for buried and exposed

protein regions and the weights are computed based on the protein

solvent accessibility values (see below). Note, that using pre-

computed empirical amino-acid matrices is the standard in the field

of phylogenomics, e.g. when analyzing with the LG, WAG or JTT

matrices. As these matrices and weights are not directly estimated

from the sequence data, they are not considered as free parameters

when comparing different models in model-selection procedures. Of

note, for the current work, we use the same test data as that used in

Le and Gascuel (2010). Thus, test data and the training data used to

estimate the buried and exposed matrices are truly disjoint. This

provides further justification for not considering these matrices as

additional free parameters.

2.2 Replacement matrices based on solvent

accessibility
Solvent accessibility was extracted from structural data using DSSP

(Kabsch and Sander, 1983; Touw et al., 2015). Absolute solvent ac-

cessibility values were normalized using maximum solvent accessi-

bility values calculated empirically for each amino acid (Tien et al.,

2013). When structural data were unavailable (or to simulate such

cases), solvent accessibility was predicted using Sable (Adamczak

et al., 2004). Predictions were performed on a consensus sequence

that contained for each position, the most common character.

Positions were dichotomized to either ‘Buried’ or ‘Exposed’ using a

10% relative solvent accessibility as threshold (Goldman et al.,

1998). It is possible that even when the structural data were avail-

able, the solvent accessibility of some positions within the multiple

sequence alignment was ambiguous, e.g. due to the introduction of

short insertions. In such cases, these positions were assigned 50%

weight buried and 50% weight exposed.

2.3 Datasets and trees
We analyzed 148 protein datasets, which were chosen because they

included very few gaps and structural data for at least one of the ex-

tant sequences were available. These data were previously used by

Le and Gascuel (2010). For each dataset, the phylogenetic tree was

inferred using PhyML-structure with the EX2 model and the CONF/

MIX mode with no among site rate variation (Le and Gascuel,

2010). Notably, the EX2 model is identical to the BE model

described below. For each tree topology, the branch lengths were

optimized under the maximum-likelihood criterion, under the speci-

fied model. The Cþþ code for branch length optimization under

each of these models was added to the FastML program (Ashkenazy

et al., 2012).

2.4 Markovian models
A total of eight amino-acid replacement models were tested, among

which five have previously been used in ASR: (i) the AAJC, the

Jukes and Cantor (Jukes and Cantor, 1969) model for amino-acids;

(ii) DAY (Dayhoff et al., 1978); (iii) JTT (Jones et al., 1992); (iv)

WAG (Whelan and Goldman, 2001) and (v) LG (Le and Gascuel,

2008). Here, we tested three additional models, all of which are

based on combining two amino-acid replacement matrices: the E

matrix that models surface exposed sites and the B matrix that mod-

els buried sites (Le and Gascuel, 2010). The models differ in how the

weights are assigned to each position. The BE model classifies each

position as either exposed or buried based on a 10% accessibility

threshold (see above). In buried (exposed) position, the weight of

the B matrix is set to 1 (0), while the weight of the E matrix is set to

0 (1). In the MIX1 model, we designated solvent accessibility be-

tween 10–20% as uncertain and applied 0.5 weights for both the B

and the E matrices. Finally, in the MIX2 model, we designated two

uncertainty regions. For positions with solvent accessibility between

10–20%, we applied a weight of 0.667 for the B matrix and a

weight of 0.333 for the E matrix. For positions where the solvent ac-

cessibility ranged from 20% to 30%, we applied weights of 0.333 and

0.667 for the B and E matrices, respectively. As noted above, although

the new models use multiple matrices, the number of parameters is the

same as for the classic models because the weights are not free parame-

ters estimated as part of the probabilistic evolutionary model.

3 Results

We predicted the ancestral sequences of all datasets using five pro-

tein models for nuclear encoded proteins and three structure-aware

models, which account for the solvent accessibility of each protein

site (listed in Fig. 3). Briefly, the models assign different weights to

two replacement matrices: ‘Buried’ (B) and ‘Exposed’ (E). The sim-

plest of these models is the BE model, which assigns a ‘Buried’ re-

placement matrix to buried positions and an ‘Exposed’ matrix to

exposed positions (see Materials and Methods Section). The BE

model was first applied using solvent accessibility data extracted

from the three-dimensional (3D) structure of each analyzed protein.

The single matrix LG model (Le and Gascuel, 2008) was chosen as a

baseline to compare the performance of the BE model to the simpler

models that assume a single amino-acid replacement matrix for all

sites. Performance was estimated using the log-likelihood score for

the most likely marginal reconstruction at the root of each dataset.

While all models which comprise of a single replacement matrix

scored better than LG in less than 20% of the datasets, the BE model

scored higher than LG in more than 90% of the datasets tested

(Fig. 3).

Even though the BE model had higher log-likelihoods than LG, it

is plausible that the differences in the log-likelihoods are negligible.

We thus next compared the log-likelihood differences between all

models and LG (Fig. 4). While the other models scored mostly lower

than LG (negative difference) the BE model scored substantially

higher in most datasets. Of note, log-likelihood differences of

Fig. 3. Comparison of all models to the LG model. The new BE model with the

structural data scored higher than LG in over 90% of the datasets tested. For

each model the Y axis shows the percentage of datasets which had a higher

log-likelihood score compared to the LG model
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10 points or higher are considered highly significant in such cases as

the one considered here, in which there is no difference in the num-

ber of free parameters between the compared models.

In the above analysis, all tree topologies were estimated using

the BE model. It was previously shown that the tree topology may

vary depending whether the BE or LG model is used (Le and

Gascuel, 2010). To verify that the superiority of the BE model over

LG does not stem from the fact that the BE model was used to re-

construct the tree topologies, we repeated the above analysis, this

time when all tree topologies were reconstructed using the LG model

as implemented in PhyML 3.0 (Guindon et al., 2010). The superior-

ity of the BE model remains even when LG is used to reconstruct

tree topologies (Supplementary Fig. S1).

To test the BE model in cases where the 3D structure was un-

available for any of the extant sequences, we analyzed the 148 data-

sets as above, but this time, their solvent accessibility was predicted

from the consensus sequence using Sable (Adamczak et al., 2004).

We compared the log-likelihood results to those obtained using the

single-matrix models (Fig. 5). Similar to the case in which the struc-

tural data are known, the BE model obtained substantially higher

log-likelihood scores compared to the single-matrix model.

Interestingly, in 84 out of the 148 analyzed protein datasets, the BE

model with predicted solvent accessibility had slightly higher log-

likelihood score than the BE model for which the solvent accessibil-

ity was retrieved from the 3D structure.

The above BE model classifies each position as either exposed or

buried based on a strict 10% solvent accessibility cutoff. However,

positions that are 20% solvent-exposed are expected to experience

different selective constraints compared to positions which are 50%

solvent-exposed. It is also expected that some of the positions that

have 20% solvent accessibility have accumulated amino-acid

replacements similar to buried positions, while others, similar to

exposed positions. We thus next tested whether accounting for such

uncertainty in classifying positions to either ‘Buried’ or ‘Exposed’

can benefit ASR. Specifically, we tested two mixing variants, MIX1

and MIX2, for which positions with intermediate solvent accessibil-

ity are modeled according to Equations (12)–(15), i.e. the probabil-

ity of each ancestral character in these positions is a weighted

average over the two matrices B and E (see Materials and Methods

Section). When comparing the log-likelihood score to the BE model,

a clear significant improvement for most datasets was observed

(Fig. 6). Among these two models, MIX1 had a higher average log-

likelihood than MIX2, but the differences were insignificant.

We next tested the extent of differences in reconstructed sequences

when comparing the LG and MIX1 models. Position differ between

models, if the models do not agree for the position in at least one intern-

al node. Out of all protein datasets analyzed, differences were observed

in 98% (145/148). The distribution of the number of positions that dif-

fer in at least one internal node between the LG and MIX1 models out

of the total length is shown in Figure 7. As can be seen, for some data-

sets, the fraction of affected positions was higher than 30%.

While the overall likelihood score is higher for the BE model

compared to the LG model, some insights may be gained by analyz-

ing the results in light of the physico-chemical properties of each

position. We first asked whether the log-likelihood gain (i.e. the dif-

ference between the log likelihoods of the BE and LG models per

position) is the same for positions that differ in their secondary

structure. We classified each position as either ‘extended’ (Beta

strand, ‘E’ in the protein data bank), ‘helical’ (Alpha helix, ‘H’ in

the protein data bank), ‘other’ (T, B, S, I, G, ‘?’ or ‘.’ In the protein

data bank), as done by Le and Gascuel (2010). Interestingly,

Fig. 4. Comparing log-likelihood scores of all models to the LG model, BE

model relies on structure data. The Y axis is the difference in log-likelihood

compared to the LG model. The AAJC model scored significantly lower than

the other models and is therefore not shown

Fig. 5. Comparing log-likelihood scores of all models to the LG model, in

which the BE model relies on predicted data. The improved log-likelihood

scores are comparable to those achieved when the 3D data are available

Fig. 6. Comparing log-likelihood scores of the mix models to the BE model.

Adding a range of uncertainty and applying mixture of both matrices to it, is

mostly beneficial in terms of log-likelihood
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although our model does not take secondary structure into account

explicitly, we found that the average log-likelihood gain for ‘helical’

positions was 0.27 while for ‘extended’ it was 0.2 and only 0.1 for

the ‘other’ category (P<1E–20; ANOVA). We next compared log-

likelihood gains for ‘Buried’ versus ‘Exposed’ positions. The average

log likelihood difference between the BE and LG model for buried

position was 0.26 but only 0.13 for the exposed positions (P<1E–

20; Student’s t-test). To further understand the effect of solvent ac-

cessibility on model fit, we classified positions according to their

solvent accessibility to six bins: 0%, 0–3% and 3–10%, 10–24%,

24–44% and 44–100%. The first three bins are analyzed using the

‘B’ model, while the remaining bins are analyzed using the ‘E’

model. The average log-likelihood gains for each bin were 0.5, 0.25,

0.0001, –0.13, 0.16 and 0.36, respectively (P<1E–20; ANOVA).

These results show that relative to the BE model, LG poorly captures

the amino acid replacement patterns in extremely ‘Buried’ or ex-

tremely ‘Exposed’ positions.

4 Discussion

A variety of software for ASR exist (Lartillot et al., 2009; Tamura

et al., 2013; Yang et al., 1995). The ever-growing sequence data and

the interest in accurate ASR algorithms pose new challenges for such

ASR tools. For example, indels were initially treated as unknown

characters, which led to ancestral sequences that are longer than all

extant sequences. In FastML, we thus reconstruct indel presence/ab-

sence in each node prior to sequence reconstruction (Ashkenazy

et al., 2012). In this work, we aimed to further improve ASR meth-

odologies by allowing the sequences to evolve according to multiple

replacement matrices. Specifically we have shown that fitting a re-

placement matrix to each position based on structural information

can be highly beneficial for ASR.

In a recent study that benchmarked various ASR methodologies,

FastML achieved one of the best scores (Randall et al., 2016).

Unfortunately, the experiment resulted in relatively easy to recon-

struct sequences, and differences among ASR methodologies were

minimal. Nevertheless, that research motivates the development of

improved experimental benchmarks for ASR.

As we show here, using an array of replacement matrices can be

beneficial when taking structural data into account. Such an ap-

proach should also be advantageous for studying proteins that con-

tain both trans-membranal and cytosolic domains or to analyze

separately different secondary structures. Protein engineering also

uses ASR to generate proteins that are more stable than extant pro-

teins and to increase the substrate range of engineered proteins. It is

expected that the approach suggested here in which structural infor-

mation is integrated into the ASR computations should lead to

improved engineered proteins.

Our approach to integrate structural information implicitly

assumes that both buried, and solvent-exposed positions remain so

along the entire course of evolution. In cases where the phylogenetic

tree is large and contains dramatic structural changes this assump-

tion might be violated. In addition, the extent to which the protein

structure is accounted for in this work is limited to buried and

exposed information. More sophisticated models that integrate site-

specific structural attributes with amino acid replacement propen-

sities are expected to provide even more accurate estimates of ances-

tral sequences (see Chi et al., 2018 and references therein).
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