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Abstract.—Classic alignment algorithms utilize scoring functions which maximize similarity or minimize edit distances.
These scoring functions account for both insertion–deletion (indel) and substitution events. In contrast, alignments based
on stochastic models aim to explicitly describe the evolutionary dynamics of sequences by inferring relevant probabilistic
parameters from input sequences. Despite advances in stochastic modeling during the last two decades, scoring-based
methods are still dominant, partially due to slow running times of probabilistic approaches. Alignment inference using
stochastic models involves estimating the probability of events, such as the insertion or deletion of a specific number of
characters. In this work, we present SimBa-SAl, a simulation-based approach to statistical alignment inference, which relies
on an explicit continuous time Markov model for both indels and substitutions. SimBa-SAl has several advantages. First,
using simulations, it decouples the estimation of event probabilities from the inference stage, which allows the introduction
of accelerations to the alignment inference procedure. Second, it is general and can accommodate various stochastic models
of indel formation. Finally, it allows computing the maximum-likelihood alignment, the probability of a given pair of
sequences integrated over all possible alignments, and sampling alternative alignments according to their probability. We
first show that SimBa-SAl allows accurate estimation of parameters of the long-indel model previously developed by Miklós
et al. (2004). We next show that SimBa-SAl is more accurate than previously developed pairwise alignment algorithms,
when analyzing simulated as well as empirical data sets. Finally, we study the goodness-of-fit of the long-indel and TKF91
models. We show that although the long-indel model fits the data sets better than TKF91, there is still room for improvement
concerning the realistic modeling of evolutionary sequence dynamics. [Long-indel model; pairwise alignment; sequence
simulations; SimBa-SAl; statistical alignment.]

Through the course of evolution, a sequence changes
with respect to its ancestor by substitution as well as
insertion–deletion (indel) events, yielding a modified,
possibly longer, or shorter sequence. An alignment of
a sequence to its ancestor represents the homology
relationships at the position level. Alignment inference
is a challenging task that has been studied for almost five
decades (e.g., Needleman and Wunsch 1970; Vingron
and Waterman 1994; Chatzou et al. 2016). Alignments
are typically prerequisites for at least three major
classes of investigation: inferring phylogenies, detecting
homologous regions, which point at common origin, and
possibly function, and analyzing the nature of molecular
evolution in terms of rates and selection (Yang 2014;
Graur 2016). Due to their great importance for these
evolutionary analyses, constructing alignments has been
dubbed “The Holy Grail of Sequence Analysis” (Gusfield
1997) and it continues to pose algorithmic challenges to
this day (Kemena and Notredame 2009; Iantorno et al.
2014).

Following the pioneering work of Needleman
and Wunsch (1970) who aligned two sequences by
optimizing a similarity score, distance minimizing
alternatives were presented by a series of authors
(e.g., Sankoff 1972; Sellers 1974; Wagner and Fischer
1974). Much effort was invested in choosing optimal
parameters for these algorithms, weighting indels of
various sizes (Waterman et al. 1976; Gotoh 1982) and

developing faster and memory efficient techniques
(Hirschberg 1975; Ukkonen 1985; Myers 1986).

Bishop and Thompson (1986) were the first to
treat alignment inference within stochastic evolutionary
process theory. However, later models in the field
heavily rely on the TKF91 model (Thorne et al. 1991).
In that seminal work, only indels of a single nucleotide
or amino acid were allowed. Thorne et al. (1992)
extended their model to allow for longer indels of
a geometric length distribution. However, overlapping
indels were not allowed, which is biologically unrealistic.
Miklós et al. (2004) extended statistical alignment to
longer indels. Although their work formed a robust
foundation for statistical alignment, very few studies
applied this model to analyze sequence data. One reason
for the paucity in follow-up studies is that the long-
indel model is conceptually more challenging compared
with TKF91 or score-based non-stochastic alignment
methods. Furthermore, the naïve implementation of
pairwise alignment (PWA) inference under this model
is quartic in the unaligned sequence lengths, which is
very slow. Together, these challenges resulted in a lack
of available software for statistical PWA inference using
genuine probabilistic approaches.

Despite these difficulties there are strong arguments
for the advantage of using probabilistic approaches to
align sequences. One such advantage is the ability to
estimate parameters concerning indel rates and sizes,
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which can be highly informative regarding how indel
dynamics change between genes and organisms (Ophir
and Graur 1997; Hamilton et al. 2003; Lunter 2007; Chen
et al. 2009; Levy Karin et al. 2017). Furthermore, unbiased
sampling of alternative alignment solutions, rather than
relying on a single point estimate, is possible when
employing a statistical approach. Moreover, a statistical
framework allows for model selection techniques to
determine which indel model best fits specific data.
Finally, stochastic models of indels are required for a
realistic simulation of sequences (e.g., Stoye et al. 1998;
Cartwright 2005; Fletcher and Yang 2009; Sipos et al.
2011).

Hidden Markov Models (HMMs) have been used for
the analysis of biological sequences for more than 20
years (e.g., Baldi et al. 1994; Krogh et al. 1994). These first
HMMs were clearly stochastic but did not correspond
to an evolutionary model, that is, they were a stochastic
representation of the sequence family members around
an equilibrium state and they ignored any underlying
tree structure and ancestor-descendant relationships.
However, most continuous time indel Markov models
can be expressed as HMMs. For example, the TKF91
and TKF92 models were formulated as HMMs by Hein
(2001) and Holmes and Bruno (2001) and the long-
indel model has an HMM representation as well (Miklós
et al. 2004). HMMs have since been widely improved
and are used in many advanced alignment algorithms,
including BaliPhy (Redelings et al. 2005) and Clustal
Omega (Sievers et al. 2011). Nevertheless, the translation
of continuous time Markov models to HMMs is often
not immediate (Holmes 2017) and the major difference
between the two arises in the analysis of multiple
sequences, as discussed below.

The first key step toward statistical multiple sequence
alignment (MSA) was taken by Steel and Hein (2001).
They presented the application of the TKF91 model to a
star tree with several branches. The ancestral sequence
of such a star tree can be generated by an HMM with
three states: “start”, “base” (nucleotide or amino acid),
and “stop”. Most subsequent MSA algorithms are a
generalization of this model (e.g., Lunter et al. 2003). One
key difference between describing an MSA using a set
of HMMs versus a continuous time Markov process is
that only in the latter, the model parameters are shared
among all tree branches while in HMM-based methods,
a different pair HMM is assumed for each branch of the
phylogenetic tree (e.g., Holmes 2003). Thus, constructing
the appropriate HMM for many sequences implies a
great increase in the size of the state space.

Herein, we introduce a novel computational approach
for statistical alignment. We developed a versatile
simulation-based procedure to calculate the probability
of the basic building blocks of the long-indel statistical
alignment. Our proposed procedure serves as an
alternative to the original trajectory-based computation
to estimate these probabilities. Furthermore, we
accelerate the fundamental inference algorithm to
greatly reduce running times. We demonstrate the
applicability of the method using simulations as well as

analyses of the HOMSTRAD 2017 benchmark database.
Finally, we examine attributes concerning model fitting
by extracting summary statistics from input PWAs and
comparing them to summary statistics extracted from
corresponding sets of simulated PWAs.

MATERIALS AND METHODS

Generation of test data sets under the long-indel model
We define a “skeleton alignment” to be an alignment

over a binary alphabet: each entry is either “-”
(gap) or “#” (non-gap). In the long-indel model, the
skeleton alignment is dictated by three parameters:
r,�, and t (described in detail in the section The
Long-indel Model). We used the SimBa-SAl simulator
to produce 540 PWA skeletons: 20 skeletons from
each of 27 parameter combinations: r={0,0.3,0.6},
�={0.04,0.07,0.1}, and t={0.25,0.5,1}. The ancestral
sequence in each such skeleton had exactly 200 non-
gap characters. We then simulated a substitution process
over each such skeleton using the JTT replacement
matrix (Jones et al. 1992).

Generation of test data sets under the INDELible model
To test the robustness of PWA inference with the

long-indel model to model misspecification, PWAs
were also simulated using INDELible (Fletcher and
Yang 2009). The INDELible model relies on three
parameters: IR, A (described in detail in the section
Robustness to Model Misspecification), and a branch
length t. INDELible was used to simulate PWAs
under 27 parameter combinations: A={1.1,1.3,1.7}, IR=
{0.01,0.02,0.05}, and t={0.25,0.5,1}. Altogether, 540 (20
× 27) true PWAs were simulated. In each simulation,
the ancestral sequence length was set to 200 and
the substitution process followed the JTT replacement
matrix (Jones et al. 1992) along a branch of length t.
The maximal indel length was restricted to 50. Columns
composed of only gap characters were removed.

Column score computation
Each inferred PWA was compared with its

corresponding true PWA in order to evaluate its
accuracy. The accuracy measure is the column score,
the computation of which is fully described in the
supplementary material of Satija et al. (2009).

Gotoh and MAFFT pairwise inference procedures
We computed PWAs based on the Gotoh (1982)

algorithm using the NEEDLE program, which is part
of EMBOSS package version 6.3.0 (Rice et al. 2000).
MAFFT PWAs were computed using version 7.123b and
employing the FFT-NS-2 strategy (Katoh and Standley
2013). For both inference methods default parameter
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values were used. Both programs use the BLOSUM62
substitution matrix (Henikoff and Henikoff 1992).

SimBa-SAl implementation and source code
The programs (SimBa-SAl simulator and SimBa-

SAl inference) are implemented in C++. The source
code as well as its documentation are available
from https://github.com/elileka. To avoid underflows,
computations are carried out in log-space. Using the
Gumbel-max method allows sampling from a vector
of log-probabilities according to the probabilities.
Summing probabilities is possible by implementing the
log-sum-exp trick, in which the largest log probability
is subtracted from all other log probabilities and
the exponent of each difference is computed before
summation.

MODEL AND ALGORITHM

The long-indel model
The long-indel model is a full probabilistic

evolutionary Markov model that includes substitutions,
insertions and deletions (Miklós et al. 2004). It is a
time-reversible, context-independent model that allows
indels of arbitrarily long-sequence segments. The
formation of indels under this model is controlled
by three parameters: �,r, and �. The identity of the
characters inserted or deleted in an indel event is
independent of the event itself. Events are described to
occur rightward of the starting position. The parameter
� is the total rate a given position is deleted by events of
any length that started in that position or to its left. The
following geometric function is proposed to describe
�k , the rate of deletions of size k (k ≥1) that start at a
given position:

�k =�(1−r)2rk−1 (1)

This formulation assures the total rate a position is
deleted by an event of any size is equal to �. The r
parameter controls the tendency of events to be short
(r close to 0) or long (r close to 1).

The rate of insertions of size k that start to the right of
a given position is �k . The time reversibility of the model
implies a detailed balance (Miklós et al. 2004), which in
turn, implies the following concerning the equilibrium
probability of a sequence of length n:

v(n)=�n(1−�), (2a)

and that the following equation holds for every k (and
specifically for k =1):

�k = �k
�k

. (2b)

Thus,

�k =�k ×�k. (3)

The total rate of deletion events, d, that start at a given
position is

d=
∞∑

k=1

�(1−r)2rk−1 =�(1−r). (4)

Similarly, i, the total rate of insertion events that start at
a given position, is

i=
∞∑

k=1

�k�
k =

∞∑
k=1

��(1−r)2(�r)k−1 = ��(1−r)2

1−�r
. (5)

Thus, the total rate of events of any kind that start at a
given position is q=d+i.

In this study, we limited the maximal indel size to be
50, that is, events longer than 50 are considered to be of
length 50.

Simulating under the long-indel model
We implemented a pairwise sequence simulator under

the long-indel model (SimBa-SAl simulator). In this
work, we used it for two purposes: estimating indel
event probabilities (see below) and benchmarking PWA
inference procedures. Following Miklós et al. (2004), we
embed an ancestral sequence A in an infinite sequence.
In practice, since we limit the indel size to 50 characters,
we can embed the sequence within a finite sequence,
whose length we denote N. We simulate the evolution
of A and its flanking regions along a branch of length
t. The need to simulate with flanking regions stems
from the fact that indels can start to the left of A and
continue beyond the right border of A, exposing the left
end positions to uneven indel rates (see Miklós et al.
2004). The simulation takes advantage of independence
between the substitution and indel processes as assumed
in the long-indel model. Thus, we focus solely on the
indel process and produce an “alignment skeleton,” in
which each character is either “-” (gap) or “#” (non-
gap). In order to allow for the reconstruction of the true
alignment at the end of the simulation, each character
is assigned a unique ID (as described by Ezawa 2016).
Homologous characters share the same ID. If a character
is deleted from the evolving sequence, its ID is removed
with it and if a character is inserted, it is accompanied
with a newly generated ID. The simulation is initiated
with an ancestral sequence of length N (including the
flanking regions of the embedded ancestral sequence).
As the sequence evolves, its length changes. Let M be
the length of the evolving sequence at a given time point
and q as defined after equation 5. A waiting time for
the next event is drawn from an exponential distribution
with parameter M×q. If the waiting time exceeds
the branch length t, the simulation ends. The type
(insertion/deletion) and size of the event are sampled
according to the relative indel event rates. The leftmost
starting position of the event is sampled uniformly across
all positions. If the event is a deletion of size k, the starting
position and (k−1) positions to its right are removed. If
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the event exceeds the evolving sequence, it is truncated.
Similarly, if the event is an insertion, k characters are
inserted right to the starting position.

At the end of the simulation, the descendant sequence
is compared with the ancestral sequence. Shared IDs
represent homologous characters. IDs that are not
found in the descendant indicate these positions were
deleted, whereas IDs greater-than or equal-to N indicate
characters that were inserted in the descendant. The
PWA is then trimmed to remove flanking regions of
length 200 characters from each side, which might have
been exposed to uneven indel rates.

Division of a PWA into segments
Miklós et al. (2004) described the division of a PWA

between an ancestral sequence A and a descendant
sequence D into conditionally independent alignment
segments, as detailed below. The PWA probability
computed in this study is conditioned on the ancestral
sequence A. The computation of this probability is
demonstrated with the following simple example, where
‘A’ and ‘D’ with a subscript denote amino acids or
nucleotide bases:

A0 A1 A2 – A3 A4 A5 A6

- D0 – D1 D2 – D3 -

We first note that the evolution of the sequence can be
described using four events: �− death, �− survival, �−
replacement, and �− insertion. In the above example, A0
dies (denoted �(A0)). Similarly, A1 survives (�(A1)) and
is substituted by D0 (�(A1,D0)) and D1 is inserted (�(D1)).
Using this notation, the PWA probability is

P(PWA|A)=P(�(A0),�(A1),�(A1,D0),�(A2),�(D1),�(A3),

�(A3,D2),�(A4),�(A5),�(A5,D3),�(A6)).

The events up to and including a match (homologous
position) on the right divide the list of events into
segments. For example, the second segment C2 consists
of the events:

C2 =�(A2),�(D1),�(A3),�(A3,D2).

The probability of the alignment can be rephrased using
conditional probability as:

P(PWA|A)=P(C1,C2,C3,C4)=P(C1)×P(C2|C1)

×P(C3|C1,C2)×P(C4|C1,C2,C3).

Since indel events do not cross match positions, given
the segment to its immediate left, each segment is
independent of any other preceding segments:

P(PWA|A)=P(C1)×P(C2|C1)×P(C3|C2)×P(C4|C3).

Furthermore, the dependence of each segment on the
previous one reduces to the dependence on a match
position on the left (denoted as M):

P(PWA|A)=P(C1)×P(C2|M)×P(C3|M)×P(C4|M).

Division of a segment into independent components
Under the model, the indel process is independent

of the substitution process, which allows factorizing
each segment. For example, the second segment can be
factorized as:

P(C2|M)=P(�(A2),�(D1),�(A3),�(A3,D2)|M)

=P(�(A2),�(D1),�(A3)|M)×P(�(A3,D2)|M).

Of note, P(�(A2)) and P(�(A3)) do not depend on the
identities of A2 and A3 since the entire alignment
computation is conditioned on the ancestral sequence
A and the indel process is assumed to be context-
independent. Hence, these probabilities can be written
as P(�(#1)) and P(�(#)), where # denotes any character
and the subscript indicates that the deleted sequence is
of length 1. Further, P(�(D1)) is equal to the insertion
probability of a substring of one character in length
(independent of the character identity) times the
probability that the identity of the inserted character
is D1. This probability can be represented as P(�(#1))×
P(D1). And thus:

P(C2|M)=P(�(#1),�(#1),�(#)|M)×P(D1)×P(�(A3,D2)).

By this factorization, each segment is decomposed into
two components; one that is character-independent and
one that is character-dependent, which does not depend
on M. The character-independent component is termed
a chop as defined by Miklós et al. (2004).

The L, N, R, and B chops
There are four types of chops depending on their

position with respect to adjacent segments. The first
segment from the left (C1 in the example above) harbors
the L chop. This chop is not conditioned on a match to
the left and includes the first �(#) factor. We follow the
notation of Miklós et al. (2004) and denote P(Li,j) as the
probability of an L chop in which i ancestral characters
were deleted and j descendant characters were inserted.
In the above example, the segment C1 is associated with
L1,0. An N chop is a chop that is conditioned on a match
position M to its left and includes a �(#) factor, that is,
an N chop always ends with a match position. An N
chop will always be to the right of an L or an N chop.
As in the case of an L chop, P(Ni,j) is the probability of
an N chop in which i ancestral characters were deleted
and j descendant characters were inserted. In the above
example, the chop associated with the second segment
has a probability P(N1,1)=P(�(#1),�(#1),�(#)|M). An R
chop is the last chop to the right. It is also conditioned
on a match position M to its left. However, it does not
include a �(#) factor. The probability P(Ri,j) is defined
similarly to P(Li,j) and P(Ni,j). Of note, if the alignment
ends on a match, the last chop is R0,0, that is, conditioned
on the last match, neither ancestral characters were
deleted nor descendant characters were inserted. Finally,
in theory there can be cases in which the alignment
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does not include even a single match position. In such a
case there is only a single chop in the alignment and its
probability is denoted P(Bi,j), where i is the length of the
ancestral sequence and j is the length of the descendant
sequence.

Thus, the PWA probability of the above example and
using the above notation is:

P(PWA|A)=P(L1,0)×P(�(A1,D0))

×P(N1,1)×P(D1)×P(�(A3,D2))

×P(N1,0)×P(�(A5,D3))

×P(R1,0).

Character-dependent probabilities
Any of the well-established substitution stochastic

models, such as JC, HKY85, and GTR for nucleotides
and JTT, LG, and WAG for amino acids can be used to
compute the character-dependent components of each
segment (see Arenas 2015 for a review of these models).

A simulation-based approach to estimate chop probabilities
Miklós et al. (2004) developed an elaborate trajectory-

based method for estimating chop probabilities. To
compute a specific chop probability, this trajectory-based
method enumerates over all possible paths of sequence
states. Each of these states is a result of a specific indel
event at a specific time. Due to the infinite number
of possible trajectories, boundaries over the number of
events need to be set. Let Q be the maximal number
of events, then the time complexity of computing each
chop probability is O(Q2). Moreover, the trajectory
computation depends on the indel model specification.
In this work, we propose an alternative procedure
for estimating chop probabilities, which is simulation-
based. Our method consists of simulating a long PWA
under the model and then using this alignment to
estimate and tabulate the probabilities of the various
chops (see below and Fig. 1). Importantly, our method
decouples the estimation of chop probabilities from
alignment inference computations (e.g., computing the
probability of a given PWA and finding the maximum-
likelihood PWA).

Tabulating N, L, R, and B chop probabilities
For a given long-indel parameter combination and

branch length t, the SimBa-SAl simulator is used to
generate a long-true PWA (the length of the ancestral
sequence including the flanking regions is 1,000,000). To
estimate the probability of each Ni,j chop, the alignment
is scanned from left to right. As detailed above, a segment
associated with an N chop ends on a match, conditioned
on a match to its left. The probability of the chop is

P(Ni,j)=
|Ni,j|∑
i,j |Ni,j|

FIGURE 1. A simulation-based estimation of chop probabilities.
A simulation to estimate chop probabilities starts with an ancestral
sequence of length N (here, N =7; throughout this study, N =
1,000,000). The simulation focuses solely on indel events; thus, the
actual character identities are irrelevant. Indel events occur along a
branch of length t in accordance with indel event rates (see Main Text).
At the end of the simulation, the true PWA is reconstructed based on
character IDs. Chop probabilities are estimated from this alignment.

where |Ni,j| denotes the total number of observed chops
of type Ni,j.

The L, R, and B chops occur at one or both alignment
ends. Therefore, their empirical estimation requires
several simulated alignments of various lengths. Instead
of repeated simulations, the same long-simulated PWA
used for the estimation of the N chops is divided
into segments of various sizes. The sizes of the
segments reflect the stationary length distribution (see
Eq. 2a). Chop probabilities are computed similarly to the
probability of an N chop.

Consistency checks
Appendix B of the long-indel paper (Miklós et al.

2004) presents equations (30–34), which hold in case
chop probabilities are consistent. We use these equations
to evaluate the empirical estimation procedure under
the long-indel model. Of note, the sums of B chops in
equation (31) and of R chops in equation (32) in Miklós
et al. (2004) are missing a factor of (1−�). We thus added
this factor to the consistency checks performed by our
program. Moreover, despite not being explicitly stated
in their paper, equation (33) should hold only in the case
t=1.

Generation of chop tables
We used the SimBa-SAl simulator to compute chop

tables under 55,480 parameter combinations of r,�,
and t. In all simulations, we fixed �=0.99 (see section
Parameter Optimization below). The parameter values
were: r={0,0.05,...,0.9},�={0.01,0.02,...,0.2}, and t=
{0.05,0.06,...,1.5}. These ranges represent reasonable
values of each of the model parameters. The set of r
parameter values covers the entire plausible range, the
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TABLE 1. Inference procedures and dynamic programming matrices

Goal Required matrices

Computing the ML-PWA conditioned on A S
Sampling a random PWA according to its

probability
Z

Computing the probability of D conditioned
on A (summing over all possible PWAs)

P

Computing the probability that a specific
chop-associated segment is included in a
PWA of A and D

X, P

A = ancestral sequence; D = descendant sequence.

set of � values spans cases with very few deletions (0.01)
to a very high deletion to substitution rate ratio (0.2) and
the t values cover a range starting with highly conserved
sequences up to highly diverged ones. The computed
chop tables under each of these parameter combinations
are available from the authors.

Inference using precomputed chop tables
There are several inference procedures concerning

an ancestral sequence A and a descendant sequence
D. All these inference procedures rely on similar
dynamic programming algorithms to compute various
matrices (Table 1). Below we modify the dynamic
programming procedure described by equations (14)
and (15) in Miklós et al. (2004) to compute the maximum-
likelihood pairwise alignment (ML-PWA) rather than
the probability of D conditioned on A. The computation
of the ML-PWA relies on two stages. In the first stage, a
matrix S is computed, where Si

j is the probability of the
partial ML-PWA of the first (i+1) ancestral characters
and the first (j+1) descendant characters, such that
character Ai is matched with character Dj (i=0,...,|A|−1
and j=0,...,|D|−1):

Si
j =max

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P(Li,j)×Pt(Ai →Dj)×
j−1∏
k=0

q(Dk),

maxn,m

⎧⎨
⎩Si−n−1

j−m−1 ×P(Nn,m)×Pt(Ai →Dj)×
j−1∏

k=j−m

q(Dk)

⎫⎬
⎭

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6)

where Pt(Ai →Dj) and q(Dk) are computed according
to the transition and stationary probabilities of the
substitution process, respectively. The limits of n and m
are 0≤n≤ (i−1),0≤m≤ (j−1).

In the next stage, the complete ML-PWA is recovered
by using the S matrix. Since each element Si

j refers
to the partial alignment whose last match is between
characters Ai and Dj, the rest of the alignment is a
segment associated with an R chop of the remaining

characters in A and in D:

P(ML−PWA)

=max

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P(B|A|,|D|)×
|D|−1∏
k=0

q(Dk),

maxn,m

⎧⎨
⎩S|A|−n−1

|D|−m−1 ×P(Rn,m)×
|D|−1∏

k=|D|−m

q(Dk)

⎫⎬
⎭

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(7)

where 0≤n≤ (|A|−1) and 0≤m≤ (|D|−1).
In equations (6) and (7), in case the number of inserted

descendant characters is equal to 0 (i.e., when j=0 or
m=0), the product associated with their insertion is
equal to 1.

As detailed in Table 1, additional dynamic
programming computations that can be carried
out by SimBa-SAl rely on several matrices: S,Z,P, and
X. Sampling a PWA is possible by replacing the “max”
operator in equations (6) and (7) above with sampling
chop-associated segments according to their relative
probabilities. This modification of equation (6) results
in the Z matrix. The P matrix can be thought of as
the “forward components” matrix. Its computation
is similar to that of the S matrix, with the “max”
operator replaced with summation. Element Pi

j is the
sum of probabilities of all partial alignments of the
first (i+1) ancestral characters and (j+1) descendant
characters such that character Ai is matched with
character Dj. Using P and replacing the ‘max’ operator
with summation in equation (7) allow computing the
probability of D conditioned on A (i.e., considering all
possible alignments). This modification of equations (6)
and (7) is used in the parameter optimization procedure
(see details below). The X matrix can be thought of
as the “backward components” matrix. Element Xi

j is
the sum of probabilities of all partial alignments of
ancestral characters (i+1) to the end and the descendant
characters (j+1) to the end, conditioned on a match
between Ai and Dj.

Time complexity
The time complexity of computing any of the matrices

above using the original method is O(n4 ×Q2), where
each of the unaligned sequences is of length O(n) and
O(Q2) is the time complexity of the chop probability
computation (see above). Using pre-computed chop
probabilities, the complexity is O(n4 ×c(V)), where V is
the size of the chop probabilities table and c(V) is the cost
of a look up operation (under current implementation,
c(V)= log(V)). Even this reduced time complexity
becomes limiting because of the O(n4) component. We
thus introduced additional accelerations.
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Accelerations
In order to reduce the running times of the dynamic

programming procedure, we have implemented a chop-
based acceleration. This acceleration modifies equation
(6) when computing element Si

j (similarly for matrices

Z,P, and X) to consider only previous Si−n−1
j−m−1 values

for which the corresponding Nn,m is found in the
precomputed chop table. Thus, the number of previous S
values depends on the size of the N chop table and not on
the value of i and j (i.e., it does not depend on the length
of the unaligned sequences). This modification results
in time complexity of O(n2 ×V). Of note, excluding
computations for Nn,m chops not found in the table
implicitly assigns 0 as the probability of any chop not
observed in the simulation procedure.

Parameter optimization
The above procedure describes the computation of

an ML-PWA for a specific set of model parameters.
However, the long-indel model parameters: r,�, �, and
the branch length t that best fit a given data set are
unknown. As different values of these parameters may
result in different ML-PWAs, these parameters need to
be inferred. We fixed the value of the � parameter to be
0.99. This decision is based on the equilibrium length
distribution (see Eq. 2a). As this length is geometrically
distributed with parameter �, the expected sequence
length n is E(v(n))= �

1−�
. Thus, under a reasonable

assumption that E(v(n))>100, we obtain that the value
of the � parameter should be greater than 0.99. Since � is
between 0 and 1, we fixed it to be 0.99.

Throughout this work, parameter combinations were
restricted to a set of 55,480 options (see details above).
This discretization allows using precomputed chop
tables, thus decoupling the inference procedure from
the one-time task of computing chop probabilities,
which accelerates the inference procedure. The score
of each parameter combination is computed based on
the P matrix, that is, the probability of D conditioned
on A, marginalized over all possible PWAs. Our
goal is to find the parameter combination (r,�, and
t) that maximizes this likelihood. We propose two
optimization schemes. The first scheme is a brute-
force ML paradigm, which considers all parameter
combinations, returning the parameter combination
that yielded the highest likelihood. The number of
dynamic programming computations in this scheme
is equal to the number of considered parameter
combinations and it is thus exhaustive. In the alternative
optimization scheme, we rely on a hill climbing search
procedure. The initial parameter combination for the
search is chosen by a quick scan of the parameter
space (see Supplementary Material available on Dryad
at https://doi.org/10.5061/dryad.p069231). Next, the
likelihood of the initial parameter combination is

computed. Each parameter combination has “immediate
neighbors,” which share exactly two out of three of its
parameter values and have a minimal distance from its
third parameter. For example, one of the neighbors of the
combination (r=0.05,�=0.01,t=0.34) is (r=0.05,�=
0.02,t=0.34). The likelihood of each of the immediate
neighbors of the initial parameter combination is
computed. If one of the neighbors has higher likelihood,
it replaces the initial parameter combination and its
immediate neighbors are examined. The replacement of
a combination by a better neighbor continues until no
improvement in likelihood is achieved.

RESULTS

Reconstruction of simulation parameters
Using the SimBa-SAl simulator and a JTT substitution

process (Jones et al. 1992), we generated a set of 540 true
PWAs under 27 parameter combinations of the long-
indel model (see Materials and Methods). We applied
the SimBa-SAl inference procedure with the chop-based
acceleration and the initial-PWA optimization scheme
to the 540 unaligned simulated sequence pairs. We
first measured the ability of the SimBa-SAl inference
procedure to identify the parameters that generated
the sequences. The inference error of each of the three
parameters was computed as (p̂−p)2, where p is the true
parameter value and p̂ is the value inferred by SimBa-
SAl. Over all 540 cases, the average inference errors were
0.0011 ± 0.0009, 0.0057 ± 0.0048, and 0.026 ± 0.0281
for the �,t, and r parameters, respectively. We next
aimed to examine how parameter accuracy depends on
the parameters used for simulating the PWAs (Fig. 2,
Supplementary Fig. S1, available on Dryad). We found
that the estimation error of all three parameters was
considerably higher when the r value was high (0.6)
rather than low or medium (0 or 0.3). For example, the
average estimation error of � in data sets with a low or
medium r value is 0.0008, whereas it is 0.0018 for data sets
with a high r value (for full details see Supplementary
Table S1, available on Dryad). A high r value compared
with a low r value combined with the same t and �
parameters means fewer indel events. Thus, data sets
with a high r value contain less indels, making it harder
to infer the parameters behind them.

Comparison to Gotoh and MAFFT pairwise procedures
We next set to evaluate the accuracy of the ML-PWAs

inferred with SimBa-SAl. To this end, we measured the
alignment accuracy by computing the column score of
the ML-PWA with respect to its corresponding true
PWA (see Materials and Methods). We compared these
scores to the measured scores for PWAs computed
by two commonly used PWA methods: the Gotoh
algorithm as implemented in the package EMBOSS
(Rice et al. 2000), and MAFFT PWA procedure (Katoh
and Standley 2013). Gotoh and MAFFT were run with
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FIGURE 2. Parameter reconstruction. Five hundred and forty simulated PWAs were generated by considering 27 parameter combinations
of the long-indel model. The unaligned sequences of each PWA were given to the SimBa-SAl inference procedure and the parameters inferred
for each dataset were compared with the true ones (full square). In each plot, the three y axes reflect the possible range of parameter values.
The figure depicts the accuracy of parameter estimation for nine combinations in which t=1. All combinations are presented in Supplementary
Fig. S1, available on Dryad.

default parameters (see Materials and Methods). Over
all parameter combinations, the average column scores
were 0.907, 0.908, and 0.929 for Gotoh, MAFFT, and
SimBa-SAl, respectively. The difference between Gotoh
and MAFFT was not statistically significant (Wilcoxon
paired test P>0.23), whereas the difference between
SimBa-SAl and MAFFT was (Wilcoxon paired test P<

2.2e−16, Fig. 3). We next tested whether the increased
accuracy is limited to a specific set of model parameters.
Our analysis clearly shows that this is not the case: the
increased accuracy of the SimBa-SAl inference procedure
was observed across most sets of individual parameter
combinations (Supplementary Fig. S2, available on
Dryad).
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FIGURE 3. Inference accuracy of long-indel model PWAs. Five
hundred and forty simulated PWAs were generated by considering
27 parameter combinations of the long-indel model. The unaligned
sequences of each PWA were given as input to MAFFT and SimBa-
SAl. The accuracy of SimBa-SAl is higher than that of MAFFT. “Avg.”
indicates the average column score.

Robustness to model misspecification
Next, we measured the effect of model

misspecification on the SimBa-SAl inference procedure.
To this end, we used INDELible (Fletcher and Yang
2009) to generate PWAs under an alternative indel
formation model. The INDELible model is controlled
by two parameters: IR and A. The IR parameter is
the rate of indel events relative to a substitution rate
of 1. The A parameter is the shape parameter of a
power law distribution from which the size of events
is drawn. Of note, the IR parameter is not equivalent
to the � parameter of the long-indel model. While the
� parameter of the long-indel model refers to the total
deletion rate per position by an event of any size, the IR
parameter reflects the rate of indel events, which start
at a given position. Moreover, the INDELible model is
a misspecification of the long-indel model with respect
to the following model choices: 1) the function of indel
lengths; 2) as opposed to the long-indel model, the
rate of insertions is assumed to be equal the rate of
deletions, which also means the INDELible model
is non-reversible. We generated 20 true PWAs from
each of 27 INDELible parameter combinations and a
JTT substitution process (see Materials and Methods).
These true PWAs were used to test the performance
and accuracy of Gotoh, MAFFT and SimBa-SAl. Over
all parameter combinations, the average column scores
were 0.888, 0.893, and 0.896 for Gotoh, MAFFT, and
SimBa-SAl, respectively. The difference between SimBa-
SAl and MAFFT was statistically significant (Wilcoxon
paired test P<0.0074, Fig. 4). We further repeated
these analyses for each set of parameters separately

FIGURE 4. Inference accuracy of INDELible PWAs. Five hundred and
forty PWAs were generated by considering 27 parameter combinations
of the INDELible model. The unaligned sequences of each PWA were
given as input to MAFFT and SimBa-SAl. The accuracy of SimBa-SAl
is higher than that of MAFFT.

and the same trend was observed (Supplementary
Fig. S3, available on Dryad). These results suggest
that the long-indel model is robust to moderate model
misspecifications. Finally, as can be seen in the lower
average column scores, the INDELible test data sets pose
a slightly harder challenge for the alignment inference
methods than the long-indel test data sets.

Alignment accuracy measured on the HOMSTRAD 2017
database

We downloaded 630 structurally-derived protein
PWAs from the HOMSTRAD 2017 database (accessed:
28 December 2017; Mizuguchi et al. 1998; Stebbings
and Mizuguchi 2004). For each of the 630 PWAs we
first measured the longest stretch of consecutive gap
characters. We filtered out 460 PWAs in which the longest
stretch was found at one of the alignment ends, as
these cases are suspected for non-homogenous rate of
indel events along the sequences. We then ran Gotoh,
MAFFT, and SimBa-SAl on the unaligned sequences
of the 170 retained data sets. With average column
scores of 0.742, 0.753, and 0.75 for Gotoh, MAFFT, and
SimBa-SAl, respectively, the differences in the measured
accuracies of the three methods were not statistically
significant (Wilcoxon paired test P>0.25 for all three
comparisons). We next reanalyzed the HOMSTRAD 2017
data sets using SimBa-SAl, this time sampling 100 PWAs
according to their probability. In 33 of the 170 cases, the
true PWA was found in the sample and in eight out of
these 33 the ML-PWA was not the true PWA. Of note,
the column scores computed for the HOMSTRAD 2017
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FIGURE 5. Model fitting testing scheme. Model parameters are inferred from an input PWA by SimBa-SAl (Stages 1, 2, and 3) and 100 simulated
PWAs are generated under those parameters (Stage 4). The same summary statistic is extracted from the simulated PWAs (Stage 5) and from the
input PWA (Stage 6). The number of simulations in which the summary statistic is greater than or equal to the value computed based on the
input PWA (NGE) and the number of simulations in which it is smaller (NS) are used to compute an empirical P value for the input PWA.

database are substantially lower than those obtained
when analyzing simulated data sets, suggesting that
the indel dynamics characterizing HOMSTRAD 2017
alignments are more complex than the indel dynamics
generated by both INDELible and the long-indel model.

Model fitting
To investigate the reason for the lower scores

computed for the HOMSTRAD 2017 database, we aimed
to better characterize how well the long-indel model
reflects indel dynamics in nature. In case the model
captures the essence of the dynamics, it is expected
that summary statistics concerning indel formation
extracted from an input biological PWA and from a
set of corresponding PWAs simulated under the model
parameters that best fit this biological PWA should
be similar. Here, we focused on the following three
summary statistics: 1) the average length of a block
of positions without any gaps (“average gapless block
length”), 2) the longest gapless block, and 3) the ratio

of gap to non-gap characters in the alignment. Our test
of model fitting is designed to assign an empirical P
value to each examined input PWA with respect to each
of the three summary statistics by comparing it to 100
corresponding PWAs simulated under the model. The
stages of the test are depicted in Figure 5.

We first focused on the long-indel test PWAs. These
data sets were simulated under the long-indel model
and thus, the model should fit them. Specifically, when
considering a summary statistic extracted from each
input PWA, we expect its value to come from the same
distribution of values as its 100 corresponding simulated
PWAs. In other words, we expect the distribution of
empirical P values to be uniform between 0 and 1.
Focusing on the long-indel test data sets allowed us
to examine the impact of the SimBa-SAl parameter
inference procedure. We first measured the fit of the
model when the corresponding simulated PWAs were
generated using the same parameters behind each of the
input PWAs (skipping stage 2 in Fig. 5). As expected, we
found that the distribution of the 540 empirical P values
was uniform between 0 and 1 for all three summary

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article-abstract/68/2/252/5098294 by tel aviv university-sourasky central library user on 04 M

arch 2019



Copyedited by: TP MANUSCRIPT CATEGORY: Systematic Biology

[20:38 6/2/2019 Sysbio-OP-SYSB180060.tex] Page: 262 252–266

262 SYSTEMATIC BIOLOGY VOL. 68

statistics (Fig. 6A). We next examined the distributions
of empirical P values when the computation relied
on simulated PWAs based on the long-indel model
parameters inferred by SimBa-SAl. Here, we found
slight deviations from the expected uniform distribution
(Fig. 6B).

We next examined the fit of the TKF91 and the long-
indel models to the 170 data sets of the HOMSTRAD
2017 database. Of note, TKF91 is a private case of the
long-indel model in which r=0. We thus measured the
fit of this model by running the SimBa-SAl inference
procedure on each input of the HOMSTRAD 2017
database with chop tables in which r=0 (2,920 tables
out of all 55,480 tables of the long-indel model). For
the long-indel model, we found strong deviations from
the uniform distribution for all three summary statistics
(Fig. 6C). Specifically, 32% and 21% of the empirical
P values associated with the average gapless block
length and longest gapless block, were smaller than
0.05, respectively. In addition, 41% of the empirical
P values associated with the ratio of gap to non-
gap characters were greater than 0.94. Together, these
deviations suggest that the long-indel model tends to
over-align the HOMSTRAD PWAs. For the TKF91 model,
the deviations were even stronger (Fig. 6D). Specifically,
63% and 55% of the empirical P values associated with
the average gapless block length and longest gapless
block, were smaller than 0.05, respectively, and 53%
of the empirical P values associated with the ratio of
gap to non-gap characters were greater than 0.94. This
suggests that not only the TKF91 model over-aligns the
HOMSTRAD PWAs, the insertion or deletion of a single
character at a time makes it deviate even more from
the indel dynamics observed in real biological data sets.
Put together, these results concerning the long-indel
and TKF91 models suggest there is still much room
for improvement in the modeling of indel dynamics in
biological sequence data (see Discussion).

The unrealistic indel patterns of the TKF91 model are
demonstrated in the analysis of the HOMSTRAD GAD
(family: GatB and aspartyl tRNA synthetases) domain.
Figure 7 depicts the HOMSTRAD true GAD PWA as
well as the ML-PWA estimates based on either the long
indel or the TKF91 models. Clearly, in this example, the
ML-PWA under the long-indel model is closer to the
HOMSTRAD PWA than the ML-PWA under the TKF91
model. Relative to the real GAD PWA, the TKF91 ML-
PWA is characterized by an overabundance of very short
indels, which result in a shorter average gapless block, a
shorter maximal gapless block and a higher ratio of gap
to non-gap characters. In contrast, the ML-PWA under
the long-indel model, although different from the true
PWA, is characterized by indel summary statistics that
resemble those of the true PWA.

Running times
The SimBa-SAl parameter optimization procedure

used throughout this work saves costly dynamic

programming computations. The average number of
dynamic programming procedures performed in the hill
climbing search was 19.4 ± 14.9 on the long-indel test
data sets, 19.8 ± 14.4 on the INDELible test data sets, and
46.7 ± 42 on the HOMSTRAD 2017 database. On average,
a single dynamic programming procedure, which uses
the chop-acceleration method, took 4.9 ± 4.1 s on the
long-indel test data sets, 19.9 ± 18.4 s on the INDELible
test data sets, and 48.6 ± 107.3 s on the HOMSTRAD
2017 database. All computations were carried out on
a computer cluster where each node has 2 2.50GHz
Intel(R) Xeon(R) CPUs with 64GB shared RAM. Each of
the two CPUs has 20 cores.

DISCUSSION

In this work we present SimBa-SAl, a simulation-based
method for statistical alignment. Analysis with SimBa-
SAl is performed in two stages. First, chop probabilities
under a specific model and its parameters are estimated
using a simulation. The tabulated results of this one-
time computation are used in all subsequent analyses.
Second, using the precomputed chop probabilities, PWA
estimates are inferred using dynamic programming
procedures as listed in Table 1. Dividing the analysis into
these two stages relies on the independence of the indel
process from the substitution process as well as on the
decomposition of an alignment to independent chop-
associated segments. Beyond these assumptions, the
SimBa-SAl approach offers great flexibility in the choice
of a generative model for indel formation utilized in the
first stage. In this study, we chose to focus on the long-
indel model. One of the major limitations of inference
with this model is the long running times under a naïve
implementation, as also noted by Miklós et al. (2004). We
proposed two accelerations to the algorithm in addition
to decoupling chop probability computations from the
inference procedure. The first acceleration is based on
excluding N chops from consideration in the dynamic
programming procedure (Eq. 6). In such an acceleration,
a chop should be excluded from computation if its
probability is small enough. However, defining a
criterion for “small enough” is not straight-forward.
The SimBa-SAl approach offers a natural interpretation
of this criterion by excluding chops that were not
observed in simulations. The second acceleration saves
dynamic programming procedures with respect to
parameter choice. We show the utility in a hill
climbing optimization procedure to select a parameter
combination among a large set of precomputed chop
tables. Of note, both these accelerations are applied in
the second stage of the SimBa-SAl method (the inference
procedure), indifferent to the model that generated the
chop tables.

Our analyses of the performance of the SimBa-SAl
method focused on accuracies measured with respect
to the ML-PWA. This allowed us to compare SimBa-SAl
to Gotoh and MAFFT, which produce point estimates of
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FIGURE 6. The fit of the long-indel and TKF91 models. The empirical P values computed for a collection of datasets with respect to each of
the three summary statistics were divided into 20 equally-sized bins between 0 and 1. The dashed line indicates the expected 5% of P values in
each bin. When the input PWAs are from the long-indel model and each corresponding set of PWAs is simulated under the same parameters as
the input, the empirical P values follow a uniform distribution between 0 and 1 (A). When the input PWAs are from the long-indel model and
each corresponding set of PWAs is simulated under the parameters inferred by SimBa-SAl, the empirical P values exhibit slight deviations from
a uniform distribution between 0 and 1 (B). When the input PWAs are from the HOMSTRAD 2017 database and each corresponding set of PWAs
is simulated under the parameters inferred by SimBa-SAl under the long-indel model, the empirical P values exhibit strong deviations from a
uniform distribution between 0 and 1 (C). When the input PWAs are from the HOMSTRAD 2017 database and each corresponding set of PWAs
is simulated under the parameters inferred by SimBa-SAl using only the TKF91 model, the empirical P values exhibit the strongest deviations
from a uniform distribution between 0 and 1 (D).
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>1c0aa NPMELTDVADLLKSVEFAVFAGPANDPKGRVAALRVPGGASLTRKQIDEYGNFVKIYGAKGLAYIKVNERAKGLEGINSPVAKFLNAEIIEDILDRTAAQDGDMIFFGADNKKIVADAMGALRLKVGKDLGLT
>1g51a FGLELKEVGPLFRQSGFRVFQEAE-----SVKALALPK--ALSRKEVAELEEVAKRHKAQGLAWARVEE-----GGFSGGVAKFL-EPVREALLQATEARPGDTLLFVAGPRKVAATALGAVRLRAADLLGLK

HOMSTRAD GAD PWA 

>1c0aa NPMELTDVADLLKSVEFAVFAGPANDPKGRVAALRVPGGASLTRKQIDEYGNFVKIYGAKGLAYIKVNERAKGLEGINSPVAKFLNAEIIEDILDRTAAQDGDMIFFGADNKKIVADAMGALRLKVGKDLGLT
>1g51a FGLELKEVGPLFRQSGFRVFQEAES-----VKALALPK--ALSRKEVAELEEVAKRHKAQGLAWARVEE-----GGFSGGVAKFLEP-VREALLQATEARPGDTLLFVAGPRKVAATALGAVRLRAADLLGLK

Long indel GAD ML-PWA; r = 0.6, µ = 0.05, t = 1.13; log-likelihood(1g51a|1c0aa) = -284.76; log-likelihood = -289.12; posterior-probability(ML-PWA) = 0.013; P values: 0.4, 0.51, 0.59

>1c0aa NPMELTDVADLLKSVEFAVFAGPANDPKGRVAALRVPGGASLTRKQIDEYGNFVKIYGAKGLAYIKVNERAKGLEGINSPVAKFLNAEIIEDILDRTAAQDGDMIFFGADNKKIVADAMGALRLKVGKDLGLT
>1g51a FGLELKEVGPLFRQSGFRVFQE-A-ES---VKALALP-KA-LSRKEVAELEEVAKRHKAQGLAWARVEE-G-GFSG--G-VAKFLEP-VREALLQATEARPGDTLLFVAGPRKVAATALGAVRLRAADLLGLK

TKF91 GAD ML-PWA; r = 0, µ = 0.07, t = 1.11; log-likelihood(1g51a|1c0aa) = -294.28; log-likelihood = -306.68; posterior-probability(ML-PWA) < 5e-6; P values: 0.01, 0.03, 0.93  

FIGURE 7. The fit of the long-indel and TKF91 models to the GAD domain. The HOMSTRAD true PWA, SimBa-SAl long-indel ML-PWA, and
SimBa-SAl TKF91 ML-PWA are presented one above the other. For clarity of indel patterns, non-gaps are presented with a gray background.
Three summary statistics were examined: 1) the average gapless block length, 2) the longest gapless block, and 3) the ratio of gap to non-gap
characters in the alignment. The estimated parameter values as well as the empirical P values for each of the three summary statistics are presented
above the SimBa-SAl PWAs. The log-likelihood of each alignment as well as the log of the total probability of the descendant conditioned on the
ancestor were computed as detailed in Table 1 and in the section “Inference using pre-computed chop tables.”

the alignment. We found that SimBa-SAl with the long-
indel model offered greater-than or equal-to accuracy on
simulated data sets as well as on the HOMSTRAD 2017
database.

Unlike Gotoh and MAFFT, SimBa-SAl has the ability
to account for alignment uncertainty. Several software
that account for alignment uncertainty were previously
developed: Baliphy (Redelings et al. 2005), StatAlign
(Novák et al. 2008), and FSA (Bradley et al. 2009). Baliphy
assumes a phylogenetic tree of the analyzed sequences,
where each branch is associated with its own HMM.
In this formulation, indel formation is not based on an
explicit stochastic indel process. StatAlign is based on
TKF92 and thus poses its limitations (see Introduction).
FSA is based on pair HMMs to estimate posterior
probabilities for matches and indels between each pair
of sequences. An annealing step follows to combine
these probabilities to form an MSA. Thus, although these
programs explicitly account for alignment uncertainty,
they do not analyze substitutions and indels in a unified
manner as a continuous time stochastic process along a
phylogenetic tree. One way in which SimBa-SAl can be
used to account for uncertainty is to consider a sample of
PWAs, drawn based on their probabilities, rather than a
single point estimate. When analyzing the HOMSTRAD
2017 database, we showed that in certain cases, such
a sample contains the true PWA even when the true
PWA is not the ML-PWA. The importance of sampling
becomes even clearer when examining the posterior
probability of any single point estimate. In the GAD
example presented in Figure 7, we show that the ML-
PWAs (computed either under the long-indel or the
TKF91 model) have low posterior probabilities (<0.013
in both cases), which demonstrates the need to account
for alignment uncertainty. Furthermore, a sample of
PWAs could then be used for various applications,
such as constructing better protein structure models and
homology testing.

When we examined model fitting, we found that
although the long-indel model fits the HOMSTRAD
2017 database better than the TKF91 model, there is still
room for improvement when it comes to constructing

realistic models of indel formation. The modularity of
SimBa-SAl should allow the integration of various indel
formation models, which relax some of the assumptions
of the long-indel model. The first of these assumptions
is time reversibility of the indel process. This
assumption, which is often the result of mathematical
convenience considerations, is not necessarily realistic
with respect to the evolutionary process of biological
sequences. Specifically, this assumption implies the
same equilibrium length distribution for all analyzed
sequences. Moreover, it implies a detailed balance in
which deletions are the mirror image of insertions, that
is, the rate of inserting k characters times the stationary
probability of length n is equal to the rate of deleting
k characters times the stationary probability of length
(n+k). Rivas and Eddy (2008) have proposed a non-
reversible Markov model over an alphabet where a gap is
an additional character. However, their model does not
allow for long indels. Using the framework developed in
this work, it is possible to extend the long-indel model
to a non-reversible version by assuming independent
parameters for the insertion and deletion rates. A second
assumption concerns the description of indel lengths
using a geometric function, which might not be realistic
(Chang and Benner 2004; Ezawa 2016). Because SimBa-
SAl uses simulations to evaluate chop probabilities, and
because given the chop probabilities, the computation
is independent of the indel length distribution, it is
relatively straight-forward to explore different indel
length functions. Another strong assumption of the
long-indel model is that indels occur uniformly along
the sequence. One possible extension can include
simulations and inferences under indel-rich and indel-
poor zones. Finally, the current indel model assumes
that indels are context-independent, which is clearly
false (Benner et al. 1993). However, relaxing this
assumption is more challenging as it would require
introducing dependencies between the substitution
and indel processes, which would complicate the
decomposition of a PWA into chop-associated segments.
This would, in turn, result in high computation times for
statistical alignments.
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SimBa-SAl is designed to compute pairwise statistical
alignments. Extending it to analyze multiple sequences
is a laudable, albeit challenging, goal. It will require
the definition of a chop with respect to multiple
sequences or alternatively, the recursive construction of
pairwise chops with respect to their mutual ancestor (as
developed by Steel and Hein 2001 for the TKF91 model).
Accelerations, such as the chop-based acceleration will
be of great importance in order to maintain reasonable
running times.
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