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11.1 INTRODUCTION TO PROBABILISTIC METHODS

Evolutionary forces such as mutation, drift, and to a certain extent selection are
stochastic in their nature. It is thus not surprising that probabilistic Models of se-
quence evolution quickly became the workhorse of molecular evolution research. The
long, ongoing effort to accurately model sequence evolution stems from two different
needs. The first is that of evolutionary biologists: Models of sequence evolution allow
us to test evolutionary hypotheses to reconstruct phylogenetic trees and ancestral
sequences [1–3]. The second is that of bioinformaticians and system biologists—
probabilistic/evolutionary methods are critical components in numerous applications.
For example, the construction of similarity networks is based upon all-against-all
homology searches. Each pairwise evaluation is done using tools such as Blast
and Blat [4, 5], which rely on evolutionary models. Additional examples include
gene finding and genome annotation [6], alignment algorithms [7, 8], detecting
genomic regions of high and low conservation [9, 10], prediction of transcription
factor-binding sites [11], function prediction [12], and protein networks analysis
[13, 14]. In this chapter, we describe how probabilistic models are used to study
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substitution rates, that is, the rate at which mutations become fixed in the population.
We focus on the variation of substitution rates among sequence positions (spatial
variation). Our goal is to provide the needed mathematical and conceptual aspects of
modeling rate variation in sequence evolution.

11.2 SEQUENCE EVOLUTION IS DESCRIBED USING
MARKOV CHAINS

We start with a very simplified model of sequence evolution through which we intro-
duce basic principles of probabilistic evolutionary models. After describing the model,
we discuss its shortcomings as the motivation for the use of more complicated, yet
more realistic models.

Consider a sequence of length 100 base pairs. The model assumes that each
nucleotide is equally likely to appear, and that all substitutions from one state
to another have the same fixation probabilities. Specifically, we assume that
the nucleotide at each position is randomly drawn with equal probabilities:
πA = πG = πC = πT = 1/4. Once the first sequence is drawn, we let it evolve
through generations. In any given generation, each nucleotide can change with a
very small probability p. If a change occurs, the new nucleotide is drawn with
equal probabilities (1/3). Although this model is clearly oversimplified, various
questions regarding the evolutionary process can be addressed. For example, does
the sequence composition change over time (what will be the character distribution
after many generations)? What is the substitution rate (what will be the distribution
of the number of changes per generation per position)? What is the probability that
nucleotide A is replaced with nucleotide C after t generations? Fortunately, these
computational questions can be answered, once we describe the evolutionary process
at each position as a discrete Markov chain [15], summarized by the following matrix:

P =

A C G T

A

C

G

T

⎡
⎢⎢⎢⎣

1 − p p/3 p/3 p/3

p/3 1 − p p/3 p/3

p/3 p/3 1 − p p/3

p/3 p/3 p/3 1 − p

⎤
⎥⎥⎥⎦ .

The term Pij(t) denotes the probability that character i will end up being character
j after t generations. From the theory of Markov chains, this value is [Pt]ij . that is,
the i, j entry in matrix P , which is raised to the power of t. From the equality of
the transition probabilities among all characters, it is clear that after a long time, the
average nucleotide frequency of each nucleotide remains 1/4 (this is formally termed
the stationary distribution). Finally, the number of generations until a substitution
occurs (the waiting time of the process) is geometrically distributed with parameter p.

Our first extension of this model is to switch from a discrete time scale (measured
in generations) to a continuous time scale (measured in years). This is biologically
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reasonable because generations are seldom synchronized nor do they have a fixed
length. This generalization is standard in Markov process theory—instead of assuming
that the waiting times are geometrically distributed, we now assume that they are
exponentially distributed. Such an assumption leads to a continuous time Markov
process. The heart of the model is the instantaneous rate matrix Q. In this matrix, the
diagonal values are related to the waiting time of each character, that is, the waiting
time of character i is exponentially distributed with parameter—qii (where qij is the
entry of row i and column j of the Q matrix). Given that a substitution has occurred,
the probability that i changes to j is given by—qij/qii. Furthermore, the number of
substitutions from character i to character j in a small time interval dt is qij × dt. For
the model described above, the Q matrix is:

Q =

A C G T

A

C

G

T

⎡
⎢⎢⎢⎣

−3α α α α

α −3α α α

α α −3α α

α α α −3α

⎤
⎥⎥⎥⎦ .

In this matrix, α is referred to as the instantaneous rate between any two states.
Higher values of α specify a process in which more substitutions occur in each
time interval. The substitution probabilities can be obtained by exponentiating the
Q matrix.

Specifically, Pij(t), the probability that character i will end up being character j

after t time units equals [eQt]ij . The model described by the matrix Q above is termed
the JC model after its developers [16], who also provided explicit formulae for Pij(t),
eliminating the need for matrix exponentiations:

Pij(t) = 1 − e−4αt

4
Pii(t) = 1 + 3e−4αt

4
. (11.1)

An important characteristic of the JC model is that it is time reversible: πxPxy(t) =
πyPyx(t). Explicitly, the probability of the event “start with x and evolve to y” is
equal to the probability of the event “start with y and evolve to x.” This implies that
πxQxy = πyQyx. Note, however, that time reversibility does not impose the Q matrix
to be symmetric.

For any continuous time Markov process, the expected number of character
transitions in t time units is the summation over all nondiagonal entries:

d =
∑

i

∑
j /= i

πiQijt. (11.2)

For the JC model, this is simply: d = 3αt.
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11.2.1 Estimating Pairwise Distances

We next show how the JC model is used to estimate the distance between two given
sequences. Consider the sequence ACCA evolving through time to ACCG. We know
that at least one substitution has occurred, but if we consider backward and multiple
substitutions, it is possible that various other substitutions have occurred. Using like-
lihood calculations, we can estimate the number of substitutions that have occurred.
The likelihood of observing the two sequences above is the probability of starting with
ACCA multiplied by the replacement probabilities. Assuming site independence, the
likelihood is

L(t, α) = πAPAA(t) × πCPCC(t) × πCPCC(t) × πAPAG(t), (11.3)

L(t, α) =
(

1

4

)4 (
1 − e−4αt

4

) (
1 + 3e−4αt

4

)3

. (11.4)

As α and t are usually unknown, one can estimate their values by maximizing the
likelihood function. Since the two parameters always appear in the form of α × t, it
is clear that one cannot evaluate each parameter separately. In fact, in all evolutionary
models, the parameters of the rate matrix Q and time appear as such multiplications.
However, if the product α × t is estimated, d above can thus be estimated. The α

parameter is usually set to a fixed value of 1/3 and by doing so d = 3αt = t, and thus
optimizing t is equivalent to optimizing d. In other words, in this setting, one can
think of t not as time measured in years, but rather as evolutionary time measured in
substitutions per site. In fact, for all evolutionary models, d is always set equal to t

and the equation above becomes:

d =
∑

i

∑
j /= i

πiqijt =
∑

i

∑
j /= i

πiqijd = d
∑

i

∑
j /= i

πiqij (11.5)

⇒
∑

i

∑
j /= i

πiqij = 1.

Thus, by normalizing Q so that the average instantaneous rate is one, it is ensured
that in a branch of length t, we expect that the average number of substitutions across
all sites will also be t.

For the JC model, a closed-form formula for the distance d that maximizes the
likelihood can be obtained [17]:

d̂ = −3

4
ln

(
1 − 4

3
p̂

)
, (11.6)

where p̂ is the proportion of sites, which differ between the two compared sequences.
In the example above, p̂ = 0.25 and thus d̂ ∼= 0.3. Notably, for more complicated
models, no such closed-form formula exists, and the distance estimate is obtained by
numerically maximizing the likelihood function.



UN
CO

RR
EC

TE
D
PR

OO
FS

SEQUENCE EVOLUTION IS DESCRIBED USINGMARKOV CHAINS 261

Figure 11.1 A rooted tree (left) and an unrooted tree (right) and their associated branch lengths.
The assignment for one position of the sequence is shown.

11.2.2 Calculating the Likelihood of a Tree

The JC model, although an extreme oversimplification of the evolutionary process,
is already very powerful. For example, given a set of sequences from various
organisms, one can estimate the number of substitutions that have occurred between
each sequence pair. Given these distance estimates, a phylogenetic tree can easily be
reconstructed, for example, using the neighbor joining (NJ) method [18].

Given the model, one can compute the likelihood of a given tree, that is, the
probability of observing the sequence data given the tree topology (T ), the branch
lengths (t), and the model (M). The likelihood for the rooted tree in Figure 11.1 is:

P(data | T, t, M)

=
∑

x,y,z={ACGT }
πxPx→y(t5)Px→z(t6)Py→T (t1)Py→T (t2)Pz→G(t3)Pz→A(t4).

(11.7)

This is the likelihood of a single position. The likelihood of the entire dataset is
achieved by assuming that all positions are conditionally independent:

P(data | T, t, M) =
N∏

i=1

(Di | T, t, M), (11.8)

N is the sequence length and Di are the data represented by column i of the alignment.
Using this computation, we can go over many trees and rank them according to
their likelihood. The maximum-likelihood (ML) tree reconstruction method chooses
the tree with the highest likelihood score. In practice, the number of possible trees
is enormous, and thus, available tree reconstruction programs use heuristic search
strategies, rather than calculate the likelihood of all possible trees [19].

11.2.2.1 Rooted versus Unrooted Trees When constructing phylogenetic
trees, we would ultimately like to obtain a rooted tree, a tree in which one node,
called the root, specifies the common ancestor of all sequences. In such a tree, the
directionality of time is defined. However, in most tree-reconstruction methods,
including those that employ likelihood computations, only unrooted trees can be
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obtained. When the likelihood is computed using a time-reversible model, the
position of the root does not affect the likelihood score.

For any time reversible model, the likelihood of the position shown in Figure 11.1
is:

P(data | T, t, M) = (11.9)

∑
x

∑
y

∑
z

πxPx→y(t5)Px→z(t6)Py→T (t1)Py→T (t2)Pz→G(t3)Pz→A(t4) =

∑
z

∑
y

πyPy→T (t1)Py→T (t2)Pz→G(t3)Pz→A(t4)
∑

x

Py→x(t5)Px→z(t6) =

∑
z

∑
y

πyPy→T (t1)Py→T (t2)Pz→G(t3)Pz→A(t4)Py→z(t5 + t6).

The second line is obtained from the reversibility property and the third line from
the Chapman–Kolmogorov equation (Pt1+t2 = Pt1Pt2 ). Thus, the likelihoods for the
rooted and unrooted trees are the same, where for the unrooted tree in Figure 11.1,
the likelihood is computed after the root is arbitrarily set to node y. Felsenstein [20]
developed an efficient postorder tree traversal algorithm to compute the likelihood of
an unrooted tree.

11.2.3 Extending the Basic Model

While the JC model paved the way to probabilistic analysis of sequence data, it as-
sumes biologically unrealistic assumptions, which may lead to erroneous conclusions:

(1) The substitutions probabilities as well as the initial character probabilities are
assumed to be identical for all character states.

(2) All positions are assumed to evolve under exactly the same process.

(3) All positions are assumed to evolve independently of each other.

A great deal of research was devoted to develop computationally feasible models,
which alleviate these unrealistic assumptions. Regarding the first assumption, the in-
troduction of several parameters in the substitution matrix resulted in a nested series of
models such as the K2P model that assumes unequal rates of transition and transver-
sion [21], the F81 model that allows any value for the nucleotide frequencies [20] and
the most general time reversible model, GTR, in which a parameter is assumed for
each substitution type [22].

When analyzing amino acid sequences, there are 190 different types of substitu-
tions. If a parameter is assumed for each such substitution type, a large number of
parameters should be estimated afresh for each protein dataset analyzed. Estimating
such large number of parameters from a small dataset is likely to result in large errors
associated with each estimated parameter and in over fitting of the model to the data
[23]. For this reason, researchers have evaluated amino acid matrices from a large set
of aligned amino acid sequences (often, the entire protein sequence databank). Using
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these matrices, one can compute the likelihoods of a given multiple sequence align-
ment of protein sequences without optimizing any parameter of the Q matrix. The first
such empirical matrix was developed by Dayhoff et al. [24]. When more data became
available, updated matrices were computed, such as the JTT matrix [25] and the WAG
matrix [26]. Since mitochondrial and chloroplast proteins evolve under genetic codes
different from nuclear proteins, empirical amino acid substitution matrices were also
estimated for mitochondrial proteins [27] and for chloroplast proteins [28].

11.3 AMONG-SITE RATE VARIATION

When examining a multiple sequence alignment, such as that presented in Figure 11.2,
it is typical that some positions vary more than others. There are two explanations

Figure 11.2 Multiple sequence alignment and a phylogenetic tree of six lysozyme c sequences.
Data from Yang et al. [29].
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for this observation. The first is that these variations result from the stochastic nature
of amino acid substitutions. Meaning, all positions evolve under the same stochastic
process, but some positions experienced more substitutions than others simply by
chance. An alternative explanation is the existence of an additional layer of variation
caused by differences in the evolutionary process among positions. Two indications
favor the second explanation. The first is based on biological knowledge. It is widely
accepted that the intensity of purifying selection varies across protein positions. For
example, positions that are associated with the active site of enzymes are under strong
purifying selection compared to the remaining protein sites. These positions will
thus exhibit little sequence variation relative to the other positions among analyzed
sequences.

The second argument in favor of the second hypothesis is statistical in nature and
is illustrated here using the lysozyme c dataset (Figure 11.2(a)). For each of the 128
positions of the alignment, we counted the observed number of different character
states. In Table 11.1, we present the number of positions in which a single character
state is observed, the number of positions in which two character states are observed,
and so on. We next simulated sequences according to the JTT amino acid replacement
model, keeping the tree topology and branch lengths as in Figure 11.2(b). All positions
were simulated under the same evolutionary process, implying a homogenous rate
distribution among all positions (see below). The average and standard deviation of
the number of positions in the simulated alignments for which there are 1, . . . , 6
character states, out of 100 simulations runs, are also shown in Table 11.1. As can
be seen, there are large discrepancies between the observed and simulated patterns.
Since the simulations reflect our expectation from the model, it can be concluded that
the data and the model do not agree well.

The above arguments illustrate the inadequacy of the simple model, suggesting
that the assumption of homogenous stochastic process for all sites is unrealistic and
that variation of the stochastic process among sites must be taken into account. This
can be achieved by assuming that there are several types of sites, each evolving under

Table 11.1 Observed and simulated number of character states in the lysozyme c
dataset. The quantile gamma discretization technique with four rate categories was
used to model among site rate variation (see section 4). The log-likelihood of the data
under the homogenous model was –1044, and the log-likelihood of the among-site
rate variation was –1035.8, with an ML estimate of α = 1.3.

Number of Simulated under Simulated under
character homogenous rate among-site rate
states Observed distribution variation model

1 46 33.9 ± 4.8 44.1 ± 5.3
2 44 56.7 ± 5.5 43.0 ± 5.3
3 29 30.4 ± 4.5 28.4 ± 4.9
4 8 6.4 ± 2.2 10.6 ± 3.3
5 1 0.6 ± 0.8 1.9 ± 1.4
6 0 0.03 ± 0.17 0.13 ± 0.37
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a different stochastic process. Since our focus is on the variation in the number of
substitutions, we assume that these types differ in their waiting times. If process
A is identical to process B except that all waiting times of A are halved, then the
Q matrix of process A is simply twice the Q matrix of process B. Thus, sites are
characterized by Q matrices differing from each other up to a multiplication factor,
which is termed the evolutionary rate of the process. The most straightforward model
accounting for among-site rate variation is to assume that all sequence positions have
the same substitution matrix, Q, with each site characterized by its own evolutionary
rate. Thus, site i is characterized by the matrix Q × ri, where ri is the evolutionary rate
of site i. Recall that for a process M characterized by a rate matrix Q, Pij(t | M) =
[eQ×t]ij . Thus, for a site with a process M ′ characterized by an evolutionary rate
ri, the substitution probabilities become Pij(t | M ′) = [e(Q×ri)×t]ij = [eQ×(ri×t)]ij =
Pij(ri × t | M). This implies that when computing the likelihood of a site with a rate
r, instead of multiplying the Q matrix by r, the likelihood can be obtained simply by
multiplying all the branches by r and using the original Q. Since the branch lengths
are indicative of the average number of substitutions, this implies that a site with an
evolutionary rate of 2 experiences on average twice as many substitutions as a site
with an evolutionary rate of 1.

A common approach to model rate heterogeneity among sites is to assume that there
are K possible rate categories (r(1), . . . , r(K)) with associated probabilities (p(1), . . . ,

p(K)). The rates and their associated probabilities are collectively termed θ. The rate of
site i (ri) can be any one of these K possible rates, according to their associated prob-
abilities. Formally, a distribution � over the possible evolutionary rates is assumed,
and the rate ri is in fact a random variable drawn from �.

When computing the likelihood of position i, we usually do not know the actual
value of ri, and we thus need to consider all possible rate assignments:

P(Di | T, t, M, θ) =
K∑

k=1

p(k)P(Di | T, t, M, r(k)). (11.10)

Recall that in the homogenous rate model, we normalized Q so that the average num-
ber of substitutions along a branch of length t equals t (see Eq. (11.5)). This equality
still holds for heterogeneous rate models, but now, the average number of substitu-
tions along a branch of length t equals

∑K
k=1

∑
i

∑
i /= j πiqijr

(k)tp(k). Equating this
expression to t, we obtain:

K∑
k=1

∑
i

∑
i /= j

πiqijtr
(k)p(k) = t ⇒ (11.11)

K∑
k=1

r(k)p(k)
∑

i

∑
i /= j

πiqij = 1 ⇒
K∑

k=1

r(k)p(k) = 1.
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The third line is obtained from the second line because Q is normalized. We
conclude that in order for the branch lengths to indicate the average number of substi-
tutions per site, the weighted average over all rates, that is, the expected rate, must be 1.

11.4 DISTRIBUTION OF RATES ACROSS SITES

The model described above assumes that each site is assigned a specific rate from
a predefined rate distribution. The challenge is to find a distribution that balances
between the number of free parameters and its flexibility to model a range of datasets
that differ in their among-site rate variation pattern. One option is to assign each site
its own rate (r1, . . . , rN ). This model requires N − 1 parameters to be inferred (since
the average rate is constrained to equal 1). This is, however, a model very rich in
parameters. When so many parameters are inferred, there is a high probability that
the model overfits the data, unless a very large number of sequences are available
[30]. The error associated with each parameter is also very large in such cases.
Thus, it is desirable to search for a model with significantly less parameters, which
still captures the inherent variability of rates among sites. For example, one can a
priori assume the existence of three rate categories {r(1), r(2), r(3)} with associated
probabilities {p(1), p(2), p(3)}. In this case, θ = {r(1), r(2), r(3), p(1), p(2), p(3)}, and
the likelihood of the data can be computed using Eq. (11.10). In most cases, the
parameters are unknown and can be inferred using ML: θ = argmaxP(Di | T, t, M, θ).
Since

∑
i p

(i) = 1 and
∑

k p(k)r(k) = 1 , this requires optimizing four parameters
(or in general 2K − 2; K being the number of categories). While significantly fewer
parameters are inferred in this model, for small values of K, the model tends not to
represent the entire repertoire of rates, while for large values of K, there are many
parameters and the model tends to overfit the data. It is possible to reduce the number
of parameters by approximately half, by either fixing all rate probabilities to be
equal or to set the rates to fixed values and optimize only their probabilities. Susko
et al. [31] applied the latter with 101 rates in the range of [0, 10]. This variant still
estimates dozens of free parameters, which is usually justified only for extremely
large datasets. Fortunately, models were suggested in which a large repertoire of rates
are allowed, yet the number of parameters is relatively very small. These models
take advantage of classical continuous distributions.

11.4.1 The Gamma Distribution

Yang [32] suggested using the continuous gamma distribution to model among-site
rate variation. In this model, it is assumed that the rate at each site is independently
sampled from a gamma distribution. This distribution has two parameters: a shape
parameter, α, and a scale parameter, β. A variable R is gamma distributed, denoted
by R ∼ �(α, β), if its density function is

g(r; α, β) = βα

�(α)
e−βrrα−1. (11.12)
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Figure 11.3 The gamma distribution. The ˛ parameter specifies the distribution shape. When ˛
is close to zero, the distribution is L-shaped, whereas high ˛ values correspond to a bell-shaped
distribution.

The mean of the gamma distribution is α/β and the variance is α/β2. Since the mean
of the rate distribution should equal 1, β is fixed so that β = α. Hence, the shape
of the gamma distribution is determined by a single positive parameter, α, which
is indicative of rate variation. When α = 1, the gamma distribution reduces to the
exponential distribution with parameter 1. When α is higher than 1, the distribution is
bell-shaped suggesting little rate heterogeneity. In the case of α < 1, the distribution
is highly skewed and is L-shaped, which indicates high levels of rate variation. This
flexibility makes the distribution suitable for accommodating different levels of rate
variation in different datasets (Figure 11.3). To compute the likelihood of site i, Li,
under a continuous gamma distribution, the following expression is computed:

Li =
∫ ∞

0
P(Di | T × r)g(r; α, α)dr (11.13)

Here, T × r indicates a tree topology as in T , in which all branches are multiplied by
the factor r. The α parameter is optimized by maximizing the likelihood of the entire
dataset:

α = argmax
N∏

i=1

Li (11.14)

While it is possible to compute the likelihood under this continuous gamma distri-
bution for pairwise sequences [33], no polynomial algorithm is available to compute
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the likelihood of a tree (three or more sequences). In order to avoid this computa-
tional difficulty, the continuous gamma distribution is approximated by a discrete one.
Accordingly, the actual range of r(0, ∞) is divided into C rate categories, such that the
integral in Eq. (11.13) is approximated by a weighted sum over a set of discrete rates:

Li �
C∑

j=1

P(Di | T, t, M, r(j))p(j), (11.15)

where (r(1), . . . , r(C)) are representative rates and (p(1), . . . , p(C)) are the correspond-
ing rate probabilities. These rates and probabilities should be chosen so as to approx-
imate the desired gamma distribution most accurately. Naturally, the more discrete
categories are used, the better the approximation will be. However, the computation
time increases linearly with the number of categories. The challenge is thus to use a
method that approximates the continuous distribution most accurately, yet uses as few
rate categories as possible. Several alternatives for this task are possible. We note that
in all approximations described below, only a single parameter, α, is optimized from
the data. Once α is set, the rates and their associated probabilities are determined
according to the numerical approximation procedure. The various approximation
techniques differ in this numerical procedure.

11.4.2 Numerical Approximation of the Continuous
Gamma Distribution

The discrete gamma distribution, as suggested by Yang [34], is by far the most widely
used method to account for among-site rate variation and is implemented in most
available phylogenetic programs. In this “Quantile” method, the rates are chosen
such that all categories have an equal weight of 1/K. Two alternatives for such a
discritization of the gamma distribution were suggested in Yang [34]. In the first
alternative, the mean of each category is used to represent all the rates within that
category. For a category i with boundaries a and b, the average rate is:

r(i) = K

∫ b

a

rg(r; α, α)dr. (11.16)

The inner boundaries (the boundaries besides 0 and ∞) are calculated as the
(1/K, 2/K , . . . , K − 1/K) quantiles of the gamma distribution. In the second alterna-
tive, the medians are used to represent each discrete rate category. In this case, the rep-
resentative rates, (r(1), . . . , r(K)) are calculated as the (1/2K, 3/2K, . . . , 2K − 1/2K)
quantiles of the gamma distribution. In this case, the rates have to be normalized so
that the average over all rates is 1. We note that Yang [34] recommended using the
mean rather than the median discretization method.

A second approximation was suggested by Felsenstein [30] and is based on the
generalized Laguerre quadrature technique. In this approach, both the rates and their
associated probabilities that give the best fit to the continuous distribution are searched
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for (unlike the quantile approximation, in which only optimal rates are determined).
For implementation details, see Mayrose et al. [35]. The quadrature method seems
to better approximate the continuous gamma distribution compared to the quantile
approximation, since the likelihood of the tree is less sensitive to the exact number
of rate categories. It, thus, seems that using the quadrature method can be more eco-
nomical in terms of the number of discrete categories used, which results in reduced
computation time.

In both discretization techniques detailed above, because the gamma distribution
depends on the α parameter, different values of α specify a different set of discretized
rates. Thus, the terms P(Di | T, t, M, r(j)) are recomputed over and over during the
process of α optimization, thus rendering it computationally expensive. Susko et al.
[31] devised an alternative procedure, in which the rate categories (r(1), . . . , r(K))
are set to predefined fixed values, and only their associated probabilities are
allowed to vary when different α values are considered during optimization. In this
approximation, the expensive computations of P(Di | T, t, M, r(j)) are computed
only once during optimization for all α values considered. Thus, for a fixed tree and
a fixed Q matrix, a larger number of rate categories can practically be used, resulting
in more accurate approximations.

Using the techniques to model rate variation described above, we can now evaluate,
using simulations, the fit of among-site rate variation models to the observed number
of character states observed in each position for the lysozyme c data. As can be seen in
Table 11.1, using a discrete gamma model provides a significant better fit to the data
compared with the homogeneous model. Moreover, to statistically compare between
the fits of the two models to the lysozyme c data, the corresponding log-likelihoods
are compared using the likelihood ratio test statistic (for details about model selection,
see Yang [3]). Using this test, the among-site rate variation model fits the lysozyme
c data significantly better than the homogeneous model (P value <10−4).

11.4.3 Alternative Rate Distributions

In a multiple sequence alignment, some sites are extremely conserved, showing no
variation across the entire set of sequences analyzed. If these sites are abundant, it
might be that the gamma distribution will either capture the rate of these slowly
evolving sites or the fast evolving sites, but not both. In other words, the gamma
distribution might not be flexible enough to capture the distribution of evolutionary
rates in real sequences. Susko et al. [31] devised a statistical test that evaluates the
fit of the gamma distribution to real sequence data. In five out of the 13 datasets
tested, the gamma distribution was rejected. Their analysis showed that the gamma
distribution mainly failed to fit positions evolving with high rates.

Inching toward more flexible rate distributions, Gu et al. [36] suggested the gamma
+ invariant model. In this model, the rate distribution is composed of a gamma
distribution, which is augmented with an additional rate category in which the rate
equals zero. The probability of this category is an additional free parameter estimated
from the data. Adding this parameter often significantly increases the fit of the model
to the data. Although the gamma + invariant model is intuitively very appealing, the
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estimates of the model parameters are highly sensitive to taxon sampling [37, 38]. In
addition, the high correlation between the proportion of the invariable sites and the
gamma shape parameter indicates model inadequacy [37].

Kosakovsky Pond and Frost [39] developed a hierarchical approach, which allows
generating rate distributions based on three parameters. In their method, a beta dis-
tribution (with two parameters) determines the quantiles (the boundaries of the rate
categories) of an underlying distribution (e.g., a one parameter gamma distribution).
The representative rate of each category is then computed as the posterior expecta-
tion of the underlying rate distribution in that interval. Notably, the two parameters
of the beta distribution only define the form of the discretization, while the form of
the underlying continuous distribution stays the same. This technique significantly
increases the flexibility of the underlying rate distribution, resulting in a better fit of
the model to real datasets.

We have previously suggested modeling the distribution of evolutionary rates by
a mixture of gamma distributions [35]. The models assume the existence of a few
gamma distributions, each with its own set of parameters. These parameters, as well
as the probability of each gamma distribution, are estimated using ML from the
data. By choosing the number of gamma components, a range of distributions with
growing expressiveness with corresponding increase in the number of parameters is
considered. The model can thus accommodate a multimodal rate distribution unlike
the gamma and the log-normal distributions that are always unimodal. The strength
in this approach is that when more data are available, more flexible rate distributions
can easily be obtained.

While the gamma distribution is by far the most commonly used, several other rate
distributions were suggested. The log-normal rate distribution was first suggested by
Olsen [40] for pairwise distances and was discussed in Felsenstein [30]. No large-
scale comparison was performed to test which of these two distributions better reflect
rate variation in sequence data. As stated in Felsenstein [30], in essence, any contin-
uous distribution on the interval (0, ∞) may be appropriate to model among-site rate
variation, and the log normal and the gamma distributions are simply the two best
known distributions on this interval.

The approaches described above assume a specific underlying rate distribution,
from which the rate at each site is sampled. A different approach for modeling rate
variation among sites was suggested in Huelsenbeck and Suchard [41]. They have
developed a Bayesian nonparametric method in which sites are partitioned to rate
classes, that is, some sites are assigned to rate class 1, some to rate class 2, and so
on. The novelty in their method is that the sites are partitioned to rate classes not in
a deterministic way, but rather many possible partitions are considered, that is, the
partitioning is itself a random variable with a Dirichlet process prior. The posterior
distribution of rates, partitions, and other parameters is then inferred using a Markov
chain Monte Carlo (MCMC) approach.

Morozov et al. [42] have also developed a method to model among-site rate
variation without assuming an underlying rate distribution. In their method, either
Fourier or wavelet models are applied to account for among-site rate variation. They
have shown that using such a modeling approach improved the fit of the model to
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the data compared with the standard gamma approach. Clearly, more studies are
needed to elucidate how such models influence tree reconstruction and site-specific
rate estimation (see Section 11.5).

11.5 SITE-SPECIFIC RATE ESTIMATION

The heterogeneous rate models described above aimed at presenting a better descrip-
tion of the evolutionary process. These models were found to be an important com-
ponent when predicting functional sites and regions in DNA and protein sequences.
This task is achieved by estimating site-specific evolutionary rates. The assumption
here is that the degree to which a site is free to vary depends on its functional (and
structural) importance; a site that plays an essential role, such as the one within the
active site of an enzyme, is unlikely to change over evolutionary time and will have
a low evolutionary rate.

Detecting conserved regions in DNA and protein sequences is of central impor-
tance to various bioinformatics methods and is widely used to direct molecular biol-
ogy experiments. Examples include the detection of active sites [43], the detection
of splicing regulatory elements [44] and of promoters [45], and the prediction of
three-dimensional structures [46]. Previous approaches for detecting conserved evo-
lutionary regions were not based on probabilistic models, but rather on counting or
entropy techniques (reviewed in Valdar [47]). Most of these methods ignore the phy-
logenetic tree and do not allow any parameters to be learnt from the data analyzed,
thus implicitly making the unrealistic assumption that all sequence data evolve under
the same stochastic process. Evolutionary biologists equate conservation and low rate
of evolution. It is this observation that places the problem of conservation estimation
in the realm of probabilistic evolutionary models. This placement benefits the field
of conservation inference with the set of built-in tools that come with evolutionary
models such as its statistical robust nature of inference.

Given a fixed phylogenetic tree and its associated branch lengths, site-specific rates
can be inferred based on the ML paradigm [10, 48]. The most likely rate of site i is the
one that maximizes the site’s likelihood: ri = argmaxP(Di | T, t, M, r). Pupko et al.
[10] have shown that the ML rate inference method outperforms the nonprobabilis-
tic maximum parsimony approach: It enabled detecting conserved protein–protein
interacting domains that were undetected by the parsimony approach.

Bayesian inference of site-specific evolutionary rates is an alternative to the ML
framework [49, 50]. In this case, a prior distribution over the rates is assumed. Using
Bayes theorem, we can calculate the posterior probability density of rate, r, at site i:

P(ri = r | Di, T, α) = P(Di | r, T )p(r | α)∫ ∞
r′=0 P(Di | r′, T )p(r′ | α)dr′ , (11.17)

where P(Di | r, T ) is computed as explained above. p(r | α) is the prior distribution
over the rates. As stated above, evaluating the denominator cannot be computed
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efficiently and so a discrete approximation is used:

P(ri = r(j) | Di, T, α) � P(Di | r(j), T )p(r(j) | α)∑K
k=1 P(Di | r(k), T )p(r(k) | α)

, (11.18)

p(r(j) | α) is the prior distribution of category j and K is the number of discrete
categories. The site-specific estimate in such a case is the expectation over the posterior
rate distribution:

E(ri | Di, T, α) �
K∑

j=1

r(j)P(r(j) | Di, T, α). (11.19)

Confidence intervals around estimated rates can also be extracted from the posterior
rate distribution [51]. Using simulations, we have previously shown that a discrete
gamma prior provides more accurate rate estimations compared to the ML approach
[49].

This Bayesian approach is an empirical one, since the prior is determined, in part,
by the data. Specifically, the α parameter of the gamma prior distribution is estimated
using ML based on the entire dataset and is considered as “true” for the rate estimation
step. The tree topology and its associated branch lengths are also assumed to be given
or inferred prior to the rate estimation. However, it is often the case that a large
uncertainty exists regarding the tree topology, branch lengths, and model parameters
(such as α). We have previously developed a full Bayesian approach that uses MCMC
methodology to integrate over the space of all possible trees and model parameters
[52]. This comprehensive evolutionary approach was shown to outperform methods
that are based only on a single tree. However, the increase in rate estimation accuracy
comes at the expense of running time.

11.6 TREE RECONSTRUCTION USING AMONG-SITE RATE
VARIATION MODELS

Estimating the phylogeny underlying the evolution of a set of sequences is the most
common use of probabilistic evolutionary models. Numerous studies (e.g., [53]) have
shown that tree reconstruction using either the ML or the closely related Bayesian
approach outperforms classical approaches such as the maximum parsimony [54]
or distance-based methods (e.g., neighbor joining [17]). When reconstructing
the tree using either the ML or the Bayesian paradigms, an underlying model of
sequence evolution is always assumed, and all early models shared the assumption
of homogeneous rate across sites. Following the realization that the homogeneous
rate assumption is unrealistic, the impact of this oversimplified assumption on tree
reconstruction accuracy was evaluated.

The importance of accounting for among-site rate variation in tree reconstruction
was demonstrated in Sullivan and Swofford [55]. They have shown that ignoring
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rate variation can lead to systematic errors in tree inference. For example, rodent
monophyly is rejected with a high bootstrap value when rate variation among sites is
ignored, while the opposite is concluded when among-site rate variation is integrated.
Supporting the observation that ignoring among-site rate variation can mislead phy-
logeny inference, Silberman et al. [56] found that deep branching position of rapidly
evolving lineages might be an artifact of long branch attraction, especially when
among-site rate heterogeneity is ignored.

Sullivan and Swofford [57] have conducted a simulation study to evaluate the
impact of ignoring among-site rate variation on tree reconstruction. They showed that
when data are simulated under among-site rate variation and analyzed using models
that assume rate homogeneity, not only is the performance of the reconstruction
algorithms poor, but also, for some tree topologies, the performance decrease in with
increase in sequence length. This indicates that ignoring among-site rate variation can
lead the reconstruction method to converge to the wrong tree topology, even when
ample data are available.

In tree reconstruction under the ML paradigm, one searches the tree topology and
its associated set of branch lengths that maximize the probability of the data given in
the model. However, as discussed above, the model includes various parameters that
should also be optimized. In an exhaustive search, it is required to find the most likely
set of tree topology, branch lengths, and model parameters. For example, when the
rate is assumed to be gamma distributed, the most likely estimate of alpha should be
evaluated for each tree topology, together with its most likely branch lengths. However,
optimizing alpha afresh for each tree topology is computationally expensive and
infeasible even when a moderate number of sequences are analyzed. This stems from
the exponential dependency between the number of sequences and the number of tree
topologies. Yang [34] suggested that for the gamma distribution, parameters would be
stable across tree topologies. This claim was refined in Sullivan et al. [58]. They have
shown that if the parameters are estimated from trees in which the bipartitions that
are strongly supported by the data are maintained, then the estimates are relatively
accurate. Thus, a successive-approximation approach was suggested in Sullivan et al.
[59]. In this approach, an initial tree is first reconstructed (e.g., using neighbor joining)
and the parameters are then estimated using this tree topology and remain fixed during
the next tree topology search. Once the best tree is found, model parameters are
estimated again and the search is repeated using these newly optimized parameters.
The search ends when the same tree topology is obtained in two successive iterations.
This approach was shown to perform well on both real and simulated data.

The situation is more complicated when distance-based methods are used to infer
the tree topology. Distance methods are fast relative to either the ML or the maxi-
mum parsimony tree search criteria and are often used when the number of sequences
is in the order of hundreds or thousands. While it is clear that ignoring rate vari-
ation in distance-based methods is inadequate and can lead to erroneous inferred
trees, accounting for among-site rate variation in such methods is not trivial. One
approach would be to optimize rate variation parameters for each pair of sequences
independently. However, the variability of rates in a protein is generally common to
all sequences across a given multiple sequence alignment. Thus, there is no reason
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to estimate the rate parameters for each pair of sequences separately. Moreover, such
estimation of many parameters from scant data is likely to result in high errors. Thus,
a preferable approach would be to use all sequences simultaneously in order to esti-
mate the rate parameters globally. Such estimation, however, requires knowledge of
the tree topology and branch lengths, which are the target of the optimization rather
than its input. An iterative process of optimization, first suggested in Silberman [56],
is an obvious solution: First, distances are estimated assuming no rate variation (or
an arbitrary set of parameters, e.g., α = 1 for the gamma distribution). Following this
initial pairwise distance estimation, a tree is constructed, the parameters are reesti-
mated, and the process is repeated until convergence is obtained. We have shown
that such an approach outperforms tree reconstruction when either among-site rate
variation is ignored or when the α parameter of the gamma distribution is estimated
for each pair of sequences [60].

In Ninio et al. [60], we have suggested two alternatives for the iterative distance
approach described above. In the first, site-specific rates are estimated using the pos-
terior mean approach (Section 11.5 above). These site-specific rates are then used
when pairwise distances are computed. One potential problem with this alternative
is that a parameter is evaluated for each site, which can lead to high errors in rate
estimation that in turn can reduce the accuracy of distance estimation. To overcome
this potential problem, we suggested accounting for the uncertainties in site-specific
rate estimation. This is done by computing a posterior rate distribution for each site.
This posterior rate distribution (rather than the single rate estimate) is used when
computing the pairwise distances. We have shown that these alternatives significantly
increase the accuracy of distance estimation and the performance of distance-based
tree reconstruction.

11.7 DEPENDENCIES OF EVOLUTIONARY RATES AMONG SITES

All of the models described above share one recurrent shortcoming: They assume
that the rate at each site is independently drawn from the same rate distribution,
and thus no spatial correlation among rates exists. However, biological intuition
dictates that positions within the same sequence region evolve at similar rates, which
typify the structural and functional importance of the region as a whole. In other
words, it is unrealistic to assume that the posterior distribution of the rate at site i is
not influenced by the rate at site i − 1.

Spatial correlation can be accounted for simply by using a sliding window
approach [61]. Yang [29] and Felsenstein and Churchill [62] suggested model-based
approaches, which take into account a correlation between the evolutionary rates
at adjacent nucleotides by using a hidden Markov model (HMM). These models
have been shown to provide a better fit for DNA data and may improve site-specific
rate inference [62]. While some regions clearly display autocorrelation of rates, this
might not hold for all sequence regions. The protein’s three-dimensional structure
and function result from complex interactions between amino acids, which are not
linearly proximate. For instance, the catalytic site of an enzyme is often composed
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of sites that are distant in the linear sequence of the protein. Thus, the level of
correlation between the evolutionary rates of these linearly distant sites may be
stronger than the correlation between the linear adjacent sites. We have recently
proposed a model that allows adjacent rates to be correlated at certain regions of the
protein and independent at other regions. We have shown that such a model better
captures among-site rate variation than the standard HMM [63].

While HMMs impose a unidirectional flow of information (i.e., site n depends on
site n − 1), Markov random fields allow the rate at each site to depend on the rate of
the site before and after it simultaneously. Such a model was developed to account
for dependencies among codon positions [64, 65]. When the three-dimensional
structure of a protein is available, rate dependencies between amino acid sites that
are in close proximity in space should be taken into account. Such dependencies
can be incorporated into a graph, where an edge between two positions represents
dependency. The distance between each two vertices in the graph represents
the proximity of the corresponding residues in three-dimensional. This kind of
representation may facilitate the use of powerful computational tools from the field
of graph theory for inferring conserved regions in proteins.

11.8 RELATED WORKS

The concepts and tools developed to account for among-site rate variation were ap-
plied, extended, and modified to fit a host of related data and computational tasks.
Here, we briefly review some of these extensions.

In a similar manner to the problem of tree reconstruction, among-site rate variation
was also shown to be important for reconstruction of ancestral sequences. In this
problem, one searches for the set of characters in the internal nodes of the tree that
maximizes the probability of the data. We note that while for phylogeny reconstruction
the likelihood is computed by summing over all possible character assignments to the
internal nodes, in ancestral sequence reconstruction, a single set of character states that
maximizes the probability of the data is searched for. Moreover, when reconstructing
ancestral states—the tree topology and branch lengths are first computed and are
then considered “fixed” for the character reconstruction step. The impact of model
assumptions, including among-site rate variation on ancestral state reconstruction,
was recently discussed in detail (see [66]) and hence will not be elaborated here. We
only note that among-site rate variation is critical for obtaining accurate estimates of
the probabilities of each ancestral character state, mainly in fast evolving sites.

While the approach presented in Section 11.5 allows determining site-specific
evolutionary rates, the obtained estimates are relative to the sequence being studied.
For example, a site-specific rate of 0.5 indicates a site twice as conserved relative to the
average conservation across all positions in that protein. When the goal is to compare
conservation scores across different sequences, or when one wishes to test if a specific
site evolves under purifying, neutral, or positive Darwinian selection, it is meaningless
to compare these relative rates. For such tasks, the most common approach is to
contrast the ratio of nonsynonymous (Ka) to synonymous (Ks) substitutions [67–72].
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Early probabilistic-based methods to compute Ka/Ks ratios were shown to be
superior to simple counting methods. However, these methods did not account for the
heterogeneity of the evolutionary selection pressure among protein sites. In Nielsen
and Yang [73] and in Yang et al. [72], Bayesian models were developed that account
for such selection heterogeneity. In these models, a prior distribution of the Ka/Ks
ratio is assumed. To this end, a similar methodology that was developed for among-
site rate variation is applied to model Ka/Ks variation. In the latter, codon sequences
are analyzed, while in the former nucleotides or amino acids are usually analyzed.

Similar to the development of models, which account for spatial correlation of
evolutionary rates in proteins, it was also recently recognized that better estimates
of Ka/Ks ratio can be obtained if spatial correlations in Ka rates are accounted for.
Furthermore, it was realized that Ks rates also vary substantially among sites [74].
This is explained, for example, by purifying selection exerted on some synonymous
sites in order to maintain mRNA stability. Indeed, Pond and Muse [75] have developed
a probabilistic model that takes Ks variation into account. In their model, the Ka and
the Ks rates are assumed to be sampled independently from an underlying distribution
such as gamma. We have extended this model to allow both the Ka and the Ks to vary
among sites and to correlate with the related Ka and Ks rates of adjacent sites. This
was achieved by assuming two independent HMMs across the sequence—one for Ka
and one for Ks. We have shown that such a model better fits biological data and is
more conservative in inferring positive Darwinian selection [76].

Finally, the methodology developed to account for among-site rate variation, while
describing the evolution of single characters such as amino acids and codons, was
extended to model rate variation of larger units, for example, genes and introns. In
such approaches, a site corresponds to a single genomic locus, and gene or intron
presence and absence are modeled by the characters “1” and “0,” respectively. Since
the evolutionary rate distribution over different loci is not homogeneous, a gamma
prior distribution over the locus rate is assumed. This approach was used in Cohen
et al. [77] to model the evolution of gene presence and absence across genomes, and in
Carmel et al. [78] to study the dynamics of intron gains and losses. These extensions
demonstrate the applicability and importance of rate variation models as a general
tool in bioinformatics and genome research.
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