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Abstract

Antibodies provide a comprehensive record of the encounters with threats and insults to the immune
system. The ability to examine the repertoire of antibodies in serum and discover those that best represent
“discriminating features” characteristic of various clinical situations, is potentially very useful. Recently,
phage display technologies combined with Next-Generation Sequencing (NGS) produced a powerful
experimental methodology, coined “Deep-Panning”, in which the spectrum of serum antibodies is probed.
In order to extract meaningful biological insights from the tens of millions of affinity-selected peptides
generated by Deep-Panning, advanced bioinformatics algorithms are a must. In this study, we describe
Motifier, a computational pipeline comprised of a set of algorithms that systematically generates discrim-
inatory peptide motifs based on the affinity-selected peptides identified by Deep-Panning. These motifs
are shown to effectively characterize antibody binding activities and through the implementation of
machine-learning protocols are shown to accurately classify complex antibody mixtures representing
various biological conditions.

� 2021 Elsevier Ltd. All rights reserved.
Introduction

“Filamentous Fusion Phages” are described in
the seminal article published by George Smith in
1985, laying the foundations of what in the
fullness of time has become known as “phage
display”.1 The essence of this platform is that
foreignDNA is cloned into the genome of a bacterio-
phage that consequently expresses and displays
the corresponding peptide on its surface. This
affords affinity purification of that phage by an anti-
body that specifically binds the displayed peptide in
a procedure now referred to as “bio-panning”. The
impact of these innovations has been enormous,
td. All rights reserved.
and as a result has led to the 2018 Nobel Prize in
Chemistry.
Today, phage display is widely used to interrogate

protein–protein interactions.2–6 Most commonly,
random peptide libraries displayed on filamentous
bacteriophages are screened with antibodies. Next,
the foreign DNA inserts in the affinity-selected bac-
teriophages are sequenced, thus revealing panels
of their corresponding peptides.3,5 In theory, each
monoclonal antibody (mAb) is associated with a
specific set of peptides it is able to bind.7,8 It is gen-
erally assumed that these peptides collectively
reflect the epitope naturally recognized by the
mAb being studied.
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This assumption, however, is only partially
correct, as the situation is markedly more
complex. Antibody binding sites are comprised of
six “complementarity determining regions” (CDR
loops); three of the heavy chain and three of the
light chain. The surface of the binding site, i.e., the
antibody’s paratope, is comprised of some 50
amino acid residues, however, only some of these
actually participate in antigen recognition and
physically contact the epitope.9 In fact, much of
the antibody’s paratope surface remains unoccu-
pied as is readily observed when one examines
antibody–antigen co-crystals.10

When we interrogate an antibody with short
random peptides (e.g., 6–12 amino acids), the
entire surface of the paratope is free to interact
with the vast collection of different peptides. Some
peptides can associate with aspects of the
paratope that are directly involved in epitope
binding. Other peptides, however, might associate
with paratope surfaces that have nothing to do
with epitope recognition per se. In theory, affinity-
selected peptides can be highly epitope-specific
while others might be more related to irrelevant
aspects of the paratope.
Studying affinity-selected peptides can be

informative about an antibody’s corresponding
epitope.11,12 Indeed, we and others developed com-
putational algorithms to predict an antibody’s epi-
tope, based on a panel of phage-displayed
affinity-selected peptides along with the atomic
structure of the antigen as input.13–19 Furthermore,
affinity-selected peptides can be informative for
characterizing more biologically complex situations,
such as changes in the antibody repertoire following
the exposure to a specific pathogen.20,21

While not all peptides are directly informative for
epitope discovery per se, the collective panel of
affinity-selected peptides can be taken as a
detailed surrogate molecular signature for a given
antibody and a reflection of its binding capacity. In
this study we use the affinity-selected peptides to
critically investigate the antibodies themselves.
Studying the comprehensive collection of antibody
affinity-selected peptides offers a systematic
approach to profiling mixtures of antibodies such
as those present in an individual’s serum.22,23 To
that end, we have introduced a number of modifica-
tions to the bio-panning platform in the analysis of
serum antibodies. A major adaptation, coined
“Deep-Panning”, has been to merge phage display
with Next-Generation Sequencing (NGS).19,24,25

This Deep-Panning method has enabled the
sequencing of tens of millions of affinity-selected
peptides that correspond to the antibodies used to
screen phage display peptide libraries. The analysis
of the phage displayed peptides has revealed some
aberrations in the composition of the libraries used,
showing biases in peptide representation and devi-
ations from bona fide randomness.26 These distor-
tions have been addressed and corrected.27 The
2

application of such Deep-Panning systems has pro-
ven useful in addressing a variety of biological ques-
tions. For example, Qi et al. have devised a
combined phage display/NGS high throughput sys-
tem to map hundreds of linear epitopes,19 Liu et al.
combined NGSwith phage display to detect peptide
ligands that target murine M2 macrophages,28

Ernst et al. applied NGS combined with phage dis-
play to study the evolution of protein recognition,29

and Lövgren et al. used a similar approach for rais-
ing antibodies against high-density lipoprotein parti-
cles.30 Combining NGSwith phage display has also
opened the way to sample the entire set of peptides
that can be recognized by the serum of an individual
at a specific time point (profiling the IgOme,24).
Characterizing such peptides has many applica-
tions, e.g., it can be used to classify individuals as
either sick or healthy, to discriminate between vari-
ants of a specific disease, and to evaluate a
patient’s prognosis.12 For example, such analyses
were recently used to study tumor-associated anti-
gens in ovarian cancer,31 identify antibodies associ-
ated with autoimmune Celiac disease,32 to
determine peptides that can be used to diagnose
norovirus infections,33 and to identify HIV specific
epitopes in vaccinated rhesus macaques.23 Impor-
tantly, while classic diagnostic tests are based on
a single marker, analyzing the entire set of peptides
that can be recognized by the serum of an individual
at a specific time point can be informative regarding
an array of diseases using a single blood test. Ana-
lyzing such large datasets comprised of millions of
peptides and extracting the most informative and
discriminatory markers is computationally inten-
sive.34,35. As a result, most previous analyses were
focused only on a relatively small subset of peptides
(e.g., those that are most amplified) while largely
ignoring information captured by the vast majority
of the peptides.11,22

In the present study we describe “Motifier”, a
computational methodology, designed to analyze,
profile, and classify different biological conditions,
based on the collections of affinity-selected
peptides obtained through Deep-Panning of
random peptide libraries. We show how peptide-
motif representation, inferred from the numerous
affinity-selected peptides, is an efficient and
informative approach for analyzing Deep-Panning
data. Next, we demonstrate how these motifs can
be utilized to accurately classify biological
conditions. We start with the analysis of four
mAbs and then, we demonstrate the power of
Motifier by comparing the serum profile of
antibodies in HIV-1 positive vs. negative individuals.

Results and Discussion

A combined experimental-computational
approach

The Motifier algorithm relies on affinity-selection
of peptides generated by Deep-Panning a phage
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display random peptide library against monoclonal
or polyclonal antibodies that represent various
biological conditions, such as diseased versus
healthy individuals. The algorithm aims to
discriminate between different conditions, based
on comparative analysis of the affinity-selected
peptides. For this, we first infer peptide motifs that
characterize each specific biological condition and
then utilize these motifs to build models for
classifying new samples with respect to their
(unknown) biological condition. The combined
experimental-computational platform is illustrated
in Figure 1.
Motifier is comprised of three main modules: (I)

NGS quality assurance; (II) motif inference from
affinity-selected peptides; (III) machine-learning
model training for accurate classification of
unseen samples based on their affinity-selected
peptides (see Steps 4–6, respectively, in
Figure 1). The application of Motifier is described
Figure 1. A schematic depiction of the combined expe
and classification. The experimental part (Steps 1–3) en
more) biological conditions. In this case, sera from infected
combinatorial phage display peptide library (Step 1). Sample
green “barcodes”). Then, the affinity-selected phage-displa
followed by computational analysis using the “Motifier” pipeli
First, reads undergo quality filtering, de-multiplexation, and
affinity-selected peptides for each sample. Then, (Step 5)
inferred using a clustering algorithm (for each biological con
repeats or multiple samples representing the same biolog
learning modeling and classification. Each motif dictates a
feature measures the congruence between a set of peptides
for which there are different levels of congruency between
trained, to classify unlabeled sera based on their peptide
discriminatory motifs that can be used for further experiment
classify new unseen samples of affinity-selected peptides. F

3

in detail for the analysis of four example mAbs
and subsequently for the discrimination of human
polyclonal serum representing two biological
conditions.
Discrimination of four biological conditions:
analysis of four mAbs

As a first simple example of the Motifier
methodology, four mAbs were analyzed, each
taken to represent a different “biological
condition”. The specific four mAbs were selected
as they have been extensively studied and their
epitopes have been determined at the atomic level
by X-ray diffraction analyses of antibody-antigen
co-crystals. The four mAbs bind highly
conformational discontinuous epitopes and thus
the affinity selected peptides, albeit informative,
were not expected to simply correspond to linear
segments of the antigens. The four mAbs were
rimental-computational platform for IgOme profiling
tails the screening of the samples representing two (or
(+) vs. non-infected (�) individuals are used to screen a
-index barcodes are introduced by PCR (Step 2, pink and
yed peptides are sequenced by NGS (Step 3). This is
ne. Motifier consists of three main modules (Steps 4–6).
in-silico translation (Step 4) yielding a curated set of
peptide motifs (position-specific scoring matrices) are
dition), followed by the unification of similar motifs, from
ical condition. The third module implements machine-
feature for machine learning, in which the value for the
in a sample to that motif. Discriminatory motifs are those
biological conditions. A random-forest classifier is then
s (Step 6). The output of the platform is: (I) a set of
al analysis; and (II) a random-forest model that is able to
or further details see Methods and Results.
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b12,36 17b,37 21c,38,39 and Herceptin.40 Herceptin
binds the human HER2/neu receptor, while the
other three antibodies target overlapping, yet differ-
ent, epitopes on the HIV-1 envelope protein
gp12039,41 (Supplementary Figure S1) and thus
pose a challenge forMotifier, in its ability to discrim-
inate between mAbs that recognize some common
surfaces of the same antigen (HIV-1 gp120). Each
mAbwas used to Deep-Pan the phage random pep-
tide library five independent times, resulting in a
total of 20 index-barcoded samples. The total reads
for each of the 20 samples are given in the Supple-
mentary Table S1A. In the following experiment,
Motifier was applied to four of the five repeats of
each mAb, which served as a training set for
machine learning. The machine-learning algorithm
resulted in a set of discriminatory features (motifs),
which were then used to classify the fifth sample of
each mAb to determine the accuracy of classifica-
tion of the four “unseen” samples (one for each
mAb), based on their affinity-selected peptides.
NGS quality assurance

Motifier first de-multiplexes the NGS reads
according to sample indexing-barcodes. For the
four mAbs, we de-multiplexed the NGS data into
20 different barcodes (five replication samples for
each of the four mAbs). Reads with erroneous
barcodes were filtered out. Next, DNA reads that
deviated from the expected sequence
configuration were removed from the data set (see
Methods). Then, the inserts within each DNA read
(corresponding to the affinity-selected peptides)
were translated to amino acid sequences. The
copy number for each unique peptide within a
sample was normalized by the sample total
number of peptides, to balance differences in
sample sizes (see Methods). The average
percentage of peptides filtered out among the five
samples was 13.48% and the total number of
unique peptides for each sample ranged from
values 18,284 to 269,430 (the total number of
filtered peptides and the number of unique
peptides for the 20 samples are given in
Supplementary Table S1A).
Motif inference

Antibody recognition of a given peptide is
mediated through its ability to associate with a
defined set of chemical moieties satisfied by the
specific amino acid sequence of the peptide.
Surprisingly however, comparing the sets of
peptides selected for the four training repeats of
each of the mAbs tested, revealed that, on
average, less than 3% of the unique peptides were
shared by all four mAb-specific samples and more
than 91% of the unique peptides were exclusively
found in only one of the repeats (Figure 2(A)). This
result could be explained due to: (I) the vastness of
4

the peptide library and hence the probability of
ever selecting identical peptides with each
sampling of the library is extremely low, and (II) the
strict definition of peptide uniqueness, even
conservative exchanges, e.g., leucine for
isoleucine, are taken as categorically different.
Consequently, we conclude that a unique peptide
sequence was not necessarily an effective mAb-
defining discriminating feature. We therefore
postulated that mAb recognition of short peptides
is less amino-acid sequence specific but rather
more dependent on a chemical “motif” that might
be represented by a large collection of different
member peptides affinity selected and sequenced
in the Deep-Panning procedure. Hence for
example, an antibody may require a positive
charge in close proximity to aliphatic methyl groups
situated near an aromatic residue. These
functional groups need to be oriented in space so
to complement the shape and chemistry of the
binding surface of the paratope. Obviously, these
physico-chemical constraints can be satisfied by
many combinations of amino acids present in the
affinity-selected peptides. Valine, leucine,
isoleucine and alanine can all provide a required
methyl group, and lysine might easily replace an
arginine where a positive charge is sought. Thus,
one expects that even a highly specific mAb
should be able to cross react and bind a diversity
of different peptides that all fulfill the generic
pattern of functional groups and their spatial
orientation by a “motif”.
Discovering and constructing a sequence-motif

based on a set of millions of different sequences
is computationally challenging, and currently none
of the developed methods can efficiently handle
such large datasets of bio-panned peptides. For
example, it is impractical to analyze large amounts
of peptides with the widely used MEME tool34 due
to computational limitations. In addition, MEME is
restricted to peptides of at least eight amino acid
residues, while in our methodology, shorter pep-
tides are often affinity-selected. The MUSI algo-
rithm was suggested as a more efficient algorithm
for motif inference.35 The first step of MUSI involves
the alignment of all sequences. Due to running-time
constraints, multiple sequence alignment is limited
to only a few thousand sequences, thus making
the application of MUSI to analyze Deep-Panning
data impractical. An alternative approach would be
to construct motifs using only the most abundant
affinity-selected peptides.11,22 However, such an
approach would be at the expense of considerable
information loss, even when analyzing a single
mAb. This becomes markedly more problematic
when studying polyclonal sera that contain dozens
to hundreds of distinct antibodies, each with unique
specificities and present at different titers.42–47

In view of the above, we devised a multistep
procedure in order to effectively cluster the
affinity-selected peptides into sample defining



Figure 2. Comparison of unique peptides and the motifs they support among different samples. All the
unique peptides for each repeat were listed. For each peptide, we counted how many replicates share it, and recorded
the percentage of peptides sharing 1, 2, 3, or 4 samples (Panel A). It is clear that there is very weak overlap between
the replicates as the percentage of peptides shared among 2, 3, or 4 different replicates (Y axis) is less than 5% for
mAbs b12 and 17b, and no more than 10% for mAbs 21c and Herceptin. The vast majority of (unique) peptides were
found in only one out of the four replicates. We also computed the percentage of motifs that are highly similar among
different samples. To this end, we clustered similar motifs to a united motif (see Methods). A united motif is
considered to be supported by a sample if it includes motifs from that sample. Shown in panel B is the distribution of
(united) motifs supported by i different samples (i = 1, 2, 3, 4). In contrast to Panel A, there is a strong motif-overlap
among the different sample replicates (Panel B).
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motifs (see Methods). Briefly, peptides from each
sample were first clustered using CD-HIT48 and
each cluster was aligned using MAFFT.49 Then,
from each set of aligned peptides we computed a
corresponding Position-Specific Scoring Matrix
(PSSM).50,51 Comparing the motifs generated for
each of the four “training” repeats for a given
mAb, we observed that a large number of motifs
were highly similar among samples of the same “bi-
ological condition”: on average, more than 46% of
the peptides could be associated to motifs in all
samples while less than 25% of the motifs were
exclusive to one sample of a kind (Figure 2(B)).
The high prevalence of motifs showing high similar-
ity among samples representing a given biological
condition, stood in marked contrast to the relatively
low overlap of individual affinity-selected peptides
described above. Therefore, we united similar
motifs within a biological condition, resulting in a
consolidated list of motifs that characterized each
condition (see Methods). Intuitively, such a consol-
idated list, recapitulates information on most of the
peptides that are able to interact with the antibodies
of a specific biological condition, in our case a speci-
fic mAb. An example demonstrating the unification
of similar motifs recognized by mAb 21c is shown
in Figure 3. Note that in the fifth position of the motif,
both D and E are allowed, but there is a very strong
preference for D in that position. Following numer-
ous similar observations, we decided not to a-
priori group together amino acids with similar
physicochemical characteristics. Nevertheless,
5

similarity in the physicochemical characteristics of
amino-acids are implicitly accounted for when con-
structing the motifs, e.g., in the BLOSSUM matrix
used for motif construction (see Methods). Follow-
ing motif unification of a given mAb, we used its
set of motifs as input for machine-learning classifi-
cation and identification of the most discriminating
features (i.e., motifs). To this end, each motif con-
tributed a feature to a Random-Forest classifier,
as detailed below.
The machine-learning approach for
classification

In the four mAbs experiment, we produced four
sets of consolidated motifs. The ultimate objective
of the machine-learning classification was to
determine the identity of unseen samples (test
data) using the discriminating features inferred
above for any given condition (mAb). In this
experiment four different classifiers were
independently trained, one for each mAb. Thus, for
the classification of the biological condition, b12
mAb for example, we aimed to determine whether
peptides from an unseen sample were congruent
with b12 motifs.
To that end, the above motif analysis procedure

was applied to positive training samples only (i.e.,
motifs were not inferred for the negative samples
nor for the test data). Each such inferred motif
contributed a feature for the machine-learning
algorithm. Consider a single motif out of m motifs.



Figure 3. Motif inference. Shown is an example for the motif inference process, from a set of peptide clusters in
different mAb 21c replicates. A motif is generated from clustered peptides in each sample. A final united motif is
inferred from the sample-derived motifs through the process of motif unification as described in the Methods.
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Intuitively, a sample is congruent with this motif if
many peptides in the sample “fit” this motif. To
test this, we first quantified how well each peptide
“fits” a given motif (see Methods). Next, we
counted the total number of peptides in the
sample that fit this motif and determined whether
this value was higher than the value expected by
chance (see Methods). This provided a p-value for
the motif in question. The lower the p-value, the
stronger the fit is between the peptides in a
sample and this specific motif. This procedure was
repeated for each motif, resulting in an m-
dimensional vector containing m p-values (one for
each motif), per sample (both positive and
negative). Thus, for a dataset containing n
samples, an n X m table was generated and
provided to the machine-learning algorithm for
training. A toy example of such a table is
demonstrated in Supplementary Table S2. For the
training datasets analyzed in this experiment, the
corresponding tables are given as heat-maps in
Figure 4. Next, using Random-Forest machine-
learning training and classification (see Methods),
motifs were identified as discriminatory (i.e.,
informative) or not. Given n p-value vectors
corresponding to n training samples and their true
labels (positive or negative), we trained a
Random-Forest model that would be able to
classify a set of new unknown samples based on
their cognate p-value vectors (see Supplementary
Table S2). For the mAbs analyzed in this
experiment, we trained four classifiers: one that
could classify whether a sample was b12 positive
or not, and similarly for 17b, 21c, and Herceptin.
6

Experimental testing of the machine-learning
output by ELISA

In this experiment, discriminating features for
each mAb were identified by machine learning.
However, it should be emphasized that these
features were inferred in silico. In order to confirm
that they indeed represent biologically relevant
antigenic features recognized by their
corresponding mAb, we conducted ELISA tests
using selected representative peptides. For this,
we chose three representative motifs, one for
each of the three gp120-specific mAbs, b12, 17b,
and 21c. Three member-peptides for each motif
were cloned and expressed as Protein VIII fusions
displayed via the fth1 phage. Note, that both high
and low copy number peptides were tested
(Figure 5).
The ELISA results demonstrate the specific

binding of all nine peptides tested, suggesting
that the inference of motifs was biologically
relevant. As illustrated in Supplementary
Figure S1, there is some overlap between the
epitopes of the three gp120-specific mAbs.
Whereas eight of the peptides proved highly
specific for their cognate mAb, the 21c peptide,
MIYDDLFK, did cross react with 17b slightly and
with b12 considerably more, which concurs with
the overlap of the 21c epitope with those of b12
and 17b. No cross reactivity at all was detected
with Herceptin (not shown). Taken together, the
ELISA results suggest that our methodology was
able to correctly detect both discriminatory and
biologically meaningful motifs.
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Machine-learning classification using
discriminatory motifs

Our next goal was to determine whether the
machine-learning classification model could be
used to classify an unseen dataset. For this, at the
start, one sample from each mAb was set aside
and treated as an unknown label (i.e., these
samples were not used for motif inference nor for
model training). Given a machine-learning model
trained for a specific mAb, e.g., Herceptin, there
are four possible outcomes (binary classification):
(1) the model successfully classifies a sample
obtained by panning against Herceptin as
“Herceptin positive” (a true positive prediction); (2)
the sample is misclassified as “Herceptin negative”
(false negative); (3) the model erroneously
classifies a sample of peptides, obtained by
panning against another antibody (e.g., 17b), as
“Herceptin positive” (false positive); (4) the
machine learning classifier successfully recognizes
a sample originating from a different antibody as
“Herceptin negative” (true negative). We trained a
classifier for each mAb, and evaluated it on the test
set comprised of four unseen samples (see
Methods). Using a Random-Forest classifier, we
obtained perfect classification (100%) on the test
datasets for all mAbs, i.e., there were neither false
negative nor false positive predictions. Of note,
Random Forest was selected based on its
performance for the learning data, as it
outperformed several other classification
algorithms, including KNN, LDA, SVM with several
kernels, Naı̈ve Bayes, and logistic regression, with
mean accuracy ranging from 0.562 to 1.0
(Supplementary Table S3)
Ourmachine-learning algorithm allows combining

signals from many peptide motifs in order to obtain
optimal classification. However, we can also train a
model based on a single motif and determine its
classification accuracy (single-feature analysis).
We applied this single-feature analysis for each
motif in each of the four mAbs. There were 14, 19,
26, and 48 motifs for b12, 17b, 21c, and
Herceptin, respectively, which perfectly
discriminated their corresponding mAbs from the
other three (Figure 4(B)).
Encouraged by these results, and by the strength

of the “signal” in the mAbs data (see Figure 4(A)),
we next aimed to test the sensitivity of the
analysis. For this, we diluted each sample, in-
Figure 4. Four mAbs experiment: motif significance r
learning. Four mAbs were used to affinity-select peptides an
for each sample. Each column corresponds to a motif, repres
sample, and the i,j entry is a p-value quantifying the congr
significant motifs that were used as input to the machine lear
of which classifies the samples with 100% accuracy in 4-fold
motifs are shown.
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silico, in a ratio of 25% drawn from the original
sample and 75% of unrelated peptides. In total we
had 16 diluted samples, four per each mAb. Here
too, we obtained perfect classification. We
repeated this analysis with increasing levels of
dilution (10%, 1%, and 0.1% drawn from the
original sample, again 16 diluted samples for each
dilution level). We obtained perfect classification
for the 10% and the 1% dilutions. For the 0.1%
dilution we were unable to detect sufficient signal
for training (as the training error of each classifier
was high), nor for testing.
To test the sensitivity of our approach in a more

challenging setup, we repeated the dilution
experiments, this time, mixing two mAbs in each
case. The rationale was that for the three gp120
specific mAbs, there may be some degree of
peptide cross reactivity and thus the question was
whether the classifiers would be able to
discriminate and identify signals derived from both
similar and distinct mAbs. Both the training and
test datasets were set by mixing, in-silico, 25% of
peptides selected by one mAb (e.g., Herceptin)
with 25% of peptides derived from a second mAb
(e.g., b12) with 50% irrelevant peptides. As before,
for the test set we used peptides from the (unseen)
fifth sample of each mAb. This test was repeated
twelve times to cover all six possible pairs of mAbs
and test whether we were able to correctly classify
each of the two mAbs represented in each peptide
mixture. We repeated this with 10%, 1%, and 0.1%
dilutions for each of the test mAbs (i.e., 80%, 98%,
and 99.8% irrelevant peptides, respectively). Once
again, we obtained perfect classification for all
dilution levels except for the 0.1%.
Motifier analysis of polyclonal serum

In the four mAbs experiment described above,
each mAb was tested separately. The dilution
experiment illustrated that a mixture of two
different peptide panels could be analyzed
successfully based on discriminating features
previously identified by machine learning. More
relevant however, is to test Motifier in a realistic
setting in which the signal-generating antibodies
are present among a vast collection of otherwise
irrelevant antibodies. Such is the case comparing
genuine serum samples taken from individuals
representing two distinct biological conditions. For
epresented as heat-maps, before and after machine
d motifs were inferred for which p-values were calculated
ented by its consensus, each row corresponds to a given
uence of sample i with motif j. (A) The 531 statistically
ning; (B) single-feature analysis yielded 107 motifs, each
cross validation. Selected consensus sequences of the



Figure 5. mAb binding to phage-displayed selected peptides. mAbs b12, 17b, and 21c bind different epitopes
on HIV-1 gp120 that partially overlap (Supplementary Figure S1). In order to confirm that member-peptides of the
clustered motifs for each mAb are actually recognized and bind their corresponding antibodies, three peptides from
each mAb-motif were cloned and expressed as Protein VIII fusions on filamentous phages using the fth1 vector. The
phage-displayed peptides were then used in ELISA tests (see Methods). The motifs and peptide sequences along
with their corresponding copy numbers (per million) are shown. The O.D. values for the nine peptides for the three
gp120 specific mAbs are given. Note that except for cross reactivity of the MIYDDLFK peptide of the mAb 21c, all
other peptides proved highly specific for their corresponding mAbs. A tenth peptide derived from a Herceptin motif
(YASTIVVDLDHT) as well as the fth1 vector alone served as negative controls and bound less than 0.1 O.D. The HIV-
1 envelope protein, gp120, served as the positive control for the three mAbs being studied and produced signals
greater than 2.5 O.D. for each mAb.
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this we Deep-Panned ten different serum samples,
five from HIV-1 positive individuals and five from
HIV-1 negative people. Each serum sample was
deep-panned in triplicate representing one of the
two biological conditions, namely HIV-1 positive
vs. negative. Four triplicates for each condition
were used for training while the fifth triplicate was
set aside as test data.
After panning and NGS a total of 89,226,224

sample-indexed barcoded peptides were
subjected to quality filtration during which a total of
10,527,727 peptides (11.8%) were discarded. The
total number of filtered peptides and unique
peptides for the 30 samples are given in
Supplementary Table S1B. Motifs were inferred for
the four HIV-1 positive triplicates. After motif
unification the input for the machine learning is a
set of p-values for each motif, which is
represented as a heat-map in Figure 6(A). There
were a total of 383 statistically significant HIV-1
defining motifs (p-value < 0.05, see Methods).
Careful examination of the data shows that the two
biological conditions can be separated, namely
HIV-1 positives (S1-S4) compared with HIV-1
negatives (S6-S9) (Figure 6(A)). Following training
of a machine-learning classifier on these data
yielded perfect classification on an unseen test
set, namely the fifth HIV-1 positive and negative
triplicates that were set aside. Figure 6(B) gives
the heat-map generated using nine features
9

selected by the single-feature analysis, in which
each of these features had accuracy greater than
90%. The crispness and contrast between the
heat-maps before and after the application of the
machine learning illustrates the improvement in
classification ability introduced by the learning
process.
We next repeated the noise analyses described

above for the mAbs for the polyclonal serum data.
For this, we diluted each sample, in-silico, in ratios
of 25, 10, 1, and 0.1 percent, drawn from the
original sample and the remaining peptides
sampled from unrelated peptide dataset. Similar to
the results above for the mAbs, the signal
deteriorates for high dilution ratios: for both the 1%
and the 0.1% dilutions, the accuracy obtained was
83.3% (with ROC AUC = 0.89 and ROC
AUC = 0.83, respectively). In contrast, a perfect
classification was obtained for the 25% and 10%
dilutions (ROC AUC = 1 for both). These results
suggest that one of the factors contributing to the
perfect performance is the high number of relevant
peptides.
Machine-learning characteristics and potential
limitations

Each machine-learning algorithm could suffer
from over-fitting (when the trained model fits the
analyzed data but fails to generalize to
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independent unseen datasets). This is especially
true when the number of observations is relatively
small. In our analyses, special care was taken to
avoid over-fitting: all training and model-selection
procedures were conducted on the training data
using cross validation and the test data were only
used to evaluate the performance of the selected
model. Within the cross-validation scheme, over-
fitting was controlled for by a feature-selection
procedure (on the training data), in which we
iteratively reduced the number of features to the
minimum number of features required to
accurately classify the data. Finally, we tested
several machine-learning classifiers and
performed noise analyses. When using these
classifiers, or when substantial noise was
introduced, performance accuracy declined. This
suggests that the high accuracy obtained on the
test data is a combination of using the Random-
Forest classifier that fits well for the type of data
analyzed here as well as the large number of
peptides available for analysis. We also note that
the noise analysis suggests that the high
performance is partially due to the large number of
relevant peptides available for analysis. This is a
direct result of the incorporation of NGS following
the panning procedure as well as our ability to
incorporate the signal in these peptides into
motifs, rather than discarding large numbers of
peptides. Nevertheless, the performance of the
algorithm should be better estimated in the future
when data with more observations are available.
Conclusions

In this work we developed a computational
framework to analyze Deep-Panning experimental
data. Our computational pipeline can be divided
into three stages: NGS data quality control and
translation, biological condition profiling (motifs
inference), and predictive model construction to
classify new unseen samples. We demonstrated
the application of the algorithm to distinguish
between peptide data panned against four
different mAbs and sera of HIV-1 infected and
non-infected individuals. We provided
experimental data (ELISA tests) to validate the
results of our analyses and have shown the
capability to uncover biologically meaningful
features of the biological condition being profiled.
Figure 6. HIV-1 positive vs. negative sera: motif signi
machine learning. HIV-1 positive (S1-S5) and negative
peptides. Motifs were inferred for the HIV-1 positive samples
and p-values were calculated for all samples. Heat-maps w
motif, each row corresponds to a given sample, and the i,j e
with motif j. (A) The 383 statistically significant motifs that
feature analysis yielded nine motifs, each of which classifies
validation. Consensus sequences of the motifs are shown.

3
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Our ability to correctly classify the four mAbs
(even when the mAbs experimental data were
diluted 100-fold) and the HIV-1 positive vs.
negative samples demonstrates the benefits of
using peptide motifs when analyzing next-
generation phage-display data and suggests that
the platform developed here can extract
differentiating signals from polyclonal sera
obtained from different biological conditions. In our
case, we first developed the pipeline using model
“biological conditions” i.e., four distinct mAbs
probed in five repeats each. We then applied the
system to examine genuine separate biological
conditions, namely sera taken from HIV-1 positive
and negative individuals, five different people for
each biological condition. The same approach can
easily be generalized to other pathogens. In
addition, it is of interest to test the ability of the
methodology to distinguish between more subtle
biological conditions, such as response to a
treatment, age related immunological differences,
and disease progression. Further research is
needed to answer such questions as how many
samples are sufficient for accurate classification in
such cases and what will be the performance of
our approach on such challenging tasks.

Materials and Methods

Reagents

The combinatorial random peptide libraries used
in this study were produced in house at Tel Aviv
University using the fth1 filamentous
bacteriophage system.52,53 fth1 is an 8 + 8 filamen-
tous fd bacteriophage, harboring a second protein
VIII gene in which recombinant DNA oligonu-
cleotides are cloned into the Sfi1 sites flanking the
cloning cassette.52 The random peptide library used
in this study contained a mixture of peptides 6, 8,
10, and 12 amino acids long, with or without flanking
cysteine residues, thus displaying a vast collection
of linear and cysteine constrained loops (total com-
plexity > 1010 recombinant peptides) as Protein VIII
fusions. In order to ensure optimized peptide ran-
domness, the construction of the library was con-
ducted using preferred phosphoramidite ratios for
both the N and K positions (N = G:1.0, A:1.5,
T:1.5, C:1.6, and K =G:1.0, T:1.5, TheMidland Cer-
tifiedReagent Company, Inc.) and the libraries were
produced in SupE positive bacteria.27 Moreover,
ficance represented as heat-maps, before and after
(S6-S10) serum samples were used to affinity-select
(S5 was not used for motif inference and model training)
ere generated in which each column corresponds to a
ntry is a p-value quantifying the congruence of sample i
were used as input to the machine learning; (B) single-
the samples with at least 90% accuracy in 4-fold cross
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repeated NGS analysis of the optimized library
showed that no fortuitous “parasitic phages” were
present.26 See Ryvkin et al for complete details on
the library construction, characterization and use.27

The humanmonoclonal antibodies used as bait in
this study were Herceptin40 and three mAbs, b12,36

21c38,39 and 17b37 that have distinct epitopes within
HIV-1 gp120. Co-crystal analyses illustrate the rela-
tive overlap and proximities of the three epitopes
bound by these antibodies (see Supplementary
Figure S1).
All the serum samples were collected under

informed consent and by IRB approval. The HIV-1
positive sera were kindly provided by Dr. Bart
Haynes of Duke University and Dr. Dan Turner of
the Sourasky Medical Center, Israel. The HIV-1
negative serum samples were obtained from the
Rabin Medical Center, Petach Tikva, Israel or the
Israeli National Blood Bank, Tel Hashomer, Israel.
All other chemicals, kits and reagents used

throughout this study were of analytical grade and
purchased and used as indicated.

Experimental procedures
The “Deep Panning” of random peptide libraries.
The Deep-Panning procedure was essentially as
previously described.24 Shortly, ELISA 8 well strips
(Costar� Corning Incorporated, Corning, NY, USA)
were coated with protein G (70 mg/ml, Sigma-
Aldrich, P4689) diluted in TBS (50 mM Tris-HCl
pH 7.5, 150 mM NaCl) over night at 4 �C. The wells
were blocked with TBST-BSA (TBS completed with
0.5% of Tween20 and 0.5% BSA) for 1 hour at room
temperature. In parallel, 15 mg/ml of purified human
antibodies or 1:100 dilution of polyclonal sera were
incubated with 1011 phages of the optimized ran-
dom peptide fth1-phage display library, suspended
in TBST-BSA, for 1hr at room temperature. After
blocking, the wells were washed twice with TBST
(TBS completed with 0.5% of Tween20) and incu-
bated for 1 hour with the phage library-mAbs/sera
mixture, at room temperature. Subsequently, the
plate was washed ten times and the bound phages
were eluted (100 mM HCl-Glycine, 1 mg/ml BSA,
pH 2.2) and neutralized (1 M Tris-HCl-NaOH, pH
9.1) (capture #1). For captures #2 and #3 additional
rounds of amplification and biopanning were carried
out. In this study the analyses were performed on
elution #3, i.e., after capture #3. Finally, the eluted
phages were prepared for Illumina NGS.

Sequencing. Preparations for NGS were
conducted as previously described.27 In short, fol-
lowing bio-panning, the eluted phages were directly
used as template (2 ll) for a 60 ll PCR reaction
using the Taq polymerase (Larova GmbH, cat. no.
PCR-108) and forward (AATGATACGGCGACCA
CCGAGATCTACACTCTTTCCCTACACGACGCTC
TTCCGATCTNNNNNCAACGTGGC) and reverse
(CAAGCAGAAGACGGCATACGAGCTCTTCCGA
12
TCTGGCCCCAGAGGC) primers. The thermal pro-
file was: (1) 94 �C, 5 min; (2) 94 �C, 30 sec; (3) 60 �
C, 30 sec; (4) 72 �C, 30 sec; (5) go back to step
2 � 34; (6) 72 �C, 5 min.
Adapters A and B for Illumina sequencing and five

nucleotide sample index-barcodes to allow
multiplexing (underlined NNNNN in the forward
primer) were introduced during PCR. The
amplified PCR products were validated for size by
running in 2% agarose gels. PCR samples were
purified by Agencourt AMPure XP - PCR
Purification (Beckman Coulter, A63881). The
concentration of the PCR cleaned products was
measured using a Qubit 2.0 fluorometer (Life
Technologies, Q32866), diluted to 2 nM and sent
for Illumina sequencing at the Technion Genome
Center, Haifa, Israel (Illumina HiSeq V4). The
NGS data generated as part of this study were
deposited at Dryad and are available at
https://datadryad.org/stash/share/FgZa1t2KuWn
8dM-BY99ArcL_T9vfgxI4Iy394dojdeU.

ELISA. Phages expressing specific peptides
were prepared by cloning DNA inserts
corresponding to selected peptides into
the Sfi1 cloning cassette of the fth1 phage display
vector.20 To test the binding of mAbs to these pep-
tides, ELISA was conducted as follows: wells of a
standard 96-well ELISA plate (Corning Inc. Life
Sciences, Tewksbury, MA) were coated with any
one of the four mAbs used in this study (7.5 lg/well)
in Phosphate-buffered saline (PBS). After washing
with PBS completed with 0.05% Tween 20 (PBST),
the wells were blocked with 5% skimmilk/PBST and
20% horse serum, 1� 1010 phages of each peptide
in blocking solution were added to the wells of all
four mAbs (for 1 hour at room temperature) to test
specific and non-specific binding to the mAbs. After
washing in PBST buffer, phage binding was
detected using a polyclonal rabbit anti-M13 anti-
body diluted 1:5,000, followed by incubation with
anti-rabbit HRP-conjugated antibody (Jackson,
West Grove, PA) diluted 1:5,000. Finally, the wells
were washed three times and reacted with TMB/E
ELISA substrate (Merck Millipore, Billerica, MA).
Absorbance was measured at 650 nm using a
micro-plate reader (BioTek, Winooski, VT, USA).
HIV-1 gp120 was captured as a positive control
for antibodies b12, 17b, and 21c. Wild type fth1
was used as a negative control for mAb detection.

Computational pipeline. The computational
pipeline was divided into three modules: (I) Quality
Control; (II) Motif Inference; (III) Machine Learning
(Steps 4–6 in Figure 1). The source code of
Motifier was written in Python and C++ and is
freely available at https://github.com/orenavram/
IgomeProfiling.

Quality control. The total number of reads was
133,080,430 and 89,226,224 for the mAb and

https://doi.org/10.5061/dryad.m63xsj41d
https://doi.org/10.5061/dryad.m63xsj41d
https://github.com/orenavram/IgomeProfiling
https://github.com/orenavram/IgomeProfiling
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HIV-1 experiments, respectively. Reads were de-
multiplexed into 20 (mAb) and 30 (HIV-1) different
samples according to their sample index barcodes
(Supplementary Tables S1A and S1B). Four
“Quality Control” criteria were applied as follows:
(1) the sample index barcodes must be 100%
correct; (2) the left and right constant regions
(upstream and downstream to the encoded
random peptide sequence and including the Sfi1
cloning sites) contain, in total, no more than k
mismatches (k = 1 by default); (3) the random
insert is consistent with the specification of the
random library (in our case, each codon is
sampled according to the NNK rule, i.e., any
nucleotide in the first and second positions and G
or T in the third position); (4) the total random
insert length ranges from 4 to 12 amino acids,
namely, 12 to 36 DNA base pairs, in addition to
the possibility of flanking cysteine residues.
Finally, all sequences that passed quality control
criteria were in-silico translated, collapsed into a
set of unique sequences, and normalized into
reads-per-million to balance the different number
of reads in each sample.
Motifs inference of a biological condition. The set of
peptides that were generated for each sample were
used as input for motif inference. For example, in
the “mAbs experiment”, each mAb was screened
against the phage display library five independent
times, thus five “samples”, each with its list of
peptides. The five samples of a given mAb,
together are taken to represent a single “biological
condition”. Hence, the total 20 samples represent
four biological conditions, which correspond to the
four different mAbs of the experiment.
Motif inference was conducted in two steps, first

motifs per individual sample were defined and
then, similar motifs of different samples within a
given biological condition were united as follows.
For each individual sample, peptides were first
clustered according to the pairwise sequence
identity using CD-HIT with 50% sequence identity
cutoff, i.e., all pairwise sequences with 50%
sequence identity or higher relative to a cluster’s
seed, were clustered together.48,54 For each cluster
of sequences, the amino-acid multiple sequence
alignment was then inferred using MAFFT (version
7.149).49,55 To reduce computational times, if a
cluster included more than p1 different peptides
(p1 = 1,000 by default), only the p1 unique peptides
that are most frequent were aligned. To further
reduce running times and to remove potential noise,
only the c1 (c1 = 100 by default) most abundant clus-
ters from each sample were retained. The abun-
dance of each motif was defined as the number of
peptides (not necessarily unique) from which it
was comprised. Finally, from each aligned cluster,
a Position-Specific Scoring Matrix (PSSM,51) was
computed.
13
Next, identical or similar motifs from samples of
the same biological condition were united. For
each sample, we collected the c1 most abundant
motifs and applied the following procedure to
determine which motifs should be united.
A pair of PSSMs (motifs) to be analyzed for

similarity was aligned using the consensus
sequence of each PSSM. The global alignment
between the two consensus sequences was
computed.56 This resulted in paired PSSMs of equal
lengths. Next, the Pearson Correlation Coefficient
(PCC) between a pair of aligned PSSMs was calcu-
lated (gapped positions were not included in the
computation), and was united when the PCC was
higher than 0.6 (see57,58). Pairwise unifications
started with the most abundant PSSM in the consol-
idated list of motifs of a given biological condition.
Hence, we computed the PCC between the most
abundant motif and each of the other motifs and
marked all those with a PCC value above the 0.6
threshold. Themost abundant motif and themarked
motifs (if any) were united and removed from the
list. This process was repeated until all motifs were
removed from the motif list. In case several motifs
were united, we realigned all the p2 (100 by default)
peptides within the united motif (most abundant
peptides within each united motif were aligned and
the others were discarded) and generated a new
united PSSM from these aligned peptides.
Assigning peptides to specific motifs – setting a motif-
specific threshold. We simulated 1,800,000 random
peptides, 200,000 for each peptide length
between 4 and 12 (total 9), half of which were
simulated with flanking cysteine residues. Each
peptide followed the frequency of codons in an
NNK codon table. The amino acid frequencies
dictated by the NNK codon table are: {A, G, P, Q,
T, V} = 0.0625; {C, D, E, F, H, I, K, M, N, W,
Y} = 0.03125 and {L, R, S} = 0.09375 (Q = 0.0625
is a result of SupE suppression of the UAG stop
codon59).
Next, we computed for each random peptide its

likelihood score for a given PSSM.50,51 This pro-
duced a distribution of scores for random peptides
for the given PSSM. This process was repeated
for all united PSSMs of a given biological condition.
Finally, we needed to set a discriminating

threshold-score for each PSSM, to be used for
determining whether a peptide is congruent with a
PSSM or not (score above or below the threshold,
respectively, see below). The threshold-score (X)
was set as the score for which a / M of the
peptides obtained a higher grade than X and the
remaining peptides obtained a lower grade (we
used a = 5% and divided by the total number of
motifs (M) in the sample, as a Bonferroni
correction). For example, in our Herceptin dataset,
we had 142 motifs, thus a / M � 0.035%. Hence,
~99.965% of the random peptides did not satisfy
membership for each motif.
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Associate peptides to motifs. In the first
experiment, four mAbs were used to screen the
library five times each, resulting in 20 samples,
representing the four biological conditions.
Consequently, four sets of united PSSMs were
inferred. Here we assigned the entire collection of
unique peptides from each of the 20 samples to
each and all possible PSSMs of the experiment
using the corresponding X threshold-scores
defined above. In this manner each PSSM, across
all the biological conditions, was assigned with a
discrete number of associated peptides for each
sample. In other words, a matrix was formed in
which the rows were the 20 samples and the
columns were all the possible PSSMs of the entire
experiment, and the i,j entry is the number of
peptides (not necessarily unique) from sample i
associated with motif j. Obviously, one expected
more peptides of a sample from a biological
condition to be associated with motifs defined for
that biological condition as opposed to motifs from
different biological conditions. Next the statistical
significance of the number of peptides associated
with a given PSSM was determined.
Calculate motif significance. The above procedure
allowed running a set of peptides against a given
motif, and detection of all the peptides associated
with that motif. Let np be the number of peptides
(as stated above, not necessarily unique)
associated with this motif. We would like to
determine if np is larger than the value expected
by chance. If so, this would allow determining
whether a given sample is enriched with peptides
associated with a specific motif. To this end, we
shuffled the motif’s PSSM N times (here, N = 100)
and recorded the number of associated peptides
N times, once for each shuffled PSSM, using the
same set of peptides and the same threshold-
score for the motif. This resulted in a distribution
of expected np values under a null model, in
which the association between the peptides and
the PSSM was due to chance alone. Next, we
determined an empirical p-value from the
observed np values and the null distribution. The
output of this stage was a p-value for each motif
for each biological condition. Intuitively, if for a
given sample a motif receives a low (significant) p-
value, we conclude that the sample contains
peptides characterized by this motif (see toy
example in Supplementary Table S2).
For the subsequent machine-learning step, the

features we collected were the p-values for each
motif. For a given biological condition, we were
only interested in positively discriminating
features. Thus, for the learning step, we kept only
motifs that had at least one significant p-value
(<=0.05) across all samples of the examined
biological condition. If for example, we had a motif
that was inferred for 17b but its p-value was
higher than 0.05, in all the 17b samples, it
14
indicated that this motif was as specific to 17b as
many random shuffles of that motif, and thus this
feature was excluded.

Machine-learning classification. In order to predict
the label (biological condition) of an unseen
sample, we built a binary Random-Forest
classifier60 for each biological condition. Random-
Forest algorithm holds a few advantages for the
task of identifying the most relevant motifs and cor-
rectly classifying unknown samples. Notably, it was
suggested to avoid over-fitting, especially when the
number of features (in our case motifs) are much
larger than the number of samples.61,62 This is
achieved by computing an ensemble of decision
trees models, each of them using a bootstrap sam-
ple of the data and a random set of features for each
tree-split.63 In turn, this allows us also to estimate
the importance of each variable (motif) and select
the most discriminatory motifs allowing for accurate
classification. These advantages made the
Random-Forest algorithm a useful tool for biomar-
ker discovery.63–66 Specifically, we used the
Random-Forest algorithm implemented as part of
the Python SciKit-learn package.67 To avoid over-
fitting, that is highly likely to occur when the number
of features is larger than the number of observa-
tions, we sampled 1,000 hyper-parameter configu-
rations (e.g., number of decision trees, trees
depth, etc.) from a hyper-parameters grid. For each
configuration, we trained a model using the feature-
selection procedure demonstrated in the study of
Svetnik et al.68 with 4-fold stratified cross validation,
i.e., the same fraction of positive and negative
cases in each fold (in the four mAbs experiment
each fold included one mAb sample representing
the biological condition and three other samples).
Briefly, the feature selection procedure sorts the
features (motifs) by their importance for correctly
classifying the sample, as determined by the
Random-Forest algorithm. Next, a model is trained
and evaluated for different subsets composed of
decreasing numbers out of the most important fea-
tures (here, in each iteration half of the features
were used). Eventually, we chose the model with
the lowest error rate, where ties were broken by
the lower number of features.
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