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Abstract

Estimating phylogenetic trees from sequence data is an extremely challenging and important statistical task. Within the
maximum-likelihood paradigm, the best tree is a point estimate. To determine how strongly the data support such an
evolutionary scenario, a hypothesis testing methodology is required. To this end, the Kishino–Hasegawa (KH) test was
developed to determine whether one topology is significantly more supported by the sequence data than another one.
This test and its derivatives are widely used in phylogenetics and phylogenomics. Here, we show that the KH test is biased
in the presence of alignment error and can lead to erroneous conclusions. Using simulations we demonstrated that due to
alignment errors the KH test often rejects one of the competing topologies, even though both topologies are equally
supported by the data. Specifically, we show that the KH test favors the guide tree used to align the analyzed sequences.
Further, branch length optimization renders the test too conservative. We propose two possible corrections for these
biases. First, we evaluated the impact of removing unreliable alignment columns and found out that it decreases the bias
at the cost of substantially reducing the test’s power. Second, we developed a parametric test that entirely abolishes the
biases without data filtering. This test incorporates the alignment construction step into the test’s hypothesis, thus
removing the above guide tree effect. We extend this methodology for the case of multiple-topology comparisons and
demonstrate the applicability of the new methodology on an exemplary data set.

Key words: alignment, alignment uncertainty, KH test, SOWH test, phylogeny, likelihood, tree comparisons, branch length
optimization.

Introduction
The Kishino–Hasegawa (KH) test (Kishino and Hasegawa
1989) is one of the most commonly used likelihood-based
statistical tests of competing evolutionary hypotheses (tree
topologies). It has been broadly used in thousands of evolu-
tionary studies. For example, Teeling et al. (2000) used it to
show Microchiroptera are not a monophyletic group, Lister
et al. (2005) used it to determine the position of the giant deer
(Megaloceros giganteus) among other deer species, and
Daubin et al. (2003) used it to investigate lateral gene acqui-
sition events in bacteria. Moreover, various popular imple-
mentations for the KH test are available: TREE-PUZZLE
(Schmidt et al. 2002), PAML (Yang 2007), and CONSEL
(Shimodaira and Hasegawa 2001).

The KH test is designed to compare two a-priori specified
trees with respect to a multiple sequence alignment (MSA).
Its null hypothesis states that the two trees are equally sup-
ported by the MSA data. The alternative hypothesis, in the
one-sided version of the test, states that T1 is better sup-
ported. The P value computed by the test represents the
probability of seeing, under null conditions, a difference in
the log-likelihoods of the two trees which is at least as big as
the observed difference.

In order to compute this P value, the KH test
receives as input two vectors: LL(T1) and LL(T2), such that

LLh(T1) is the log-likelihood score of T1 based on position
h in the MSA. The log-likelihoods of each tree, S(T1) and
S(T2), are simply the sum of the values in each of the LL
vectors. Let d be the difference in the log-likelihood values
of the two trees (d = S(T1) � S(T2)). Under the null hypoth-
esis, E(d) = 0. In order to estimate whether the observed value
of d is significantly greater than 0, independence between
sites is assumed which allows estimating the variance of d
in the following way:
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The KH test next makes use of the central limit theorem
to note that S(T1) and S(T2) approximately follow a normal
distribution and therefore the difference between them, d, is
also approximately normally distributed. A standardized test
statistic z is then calculated as follows:

z ¼
d� 0ffiffiffiffiffi
�2
d

i

q :

For which a P value can then be calculated:

P value ¼ 1� �ðzÞ:
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The RELL variation of the KH test replaces the normal
approximation by a bootstrap resampling method (Kishino
et al. 1990). In this approach, the position-based likelihood
scores are resampled and a distribution of log-likelihood dif-
ferences is obtained. A P value is computed based on the
proportion of time the bootstrap log-likelihood difference is
greater than the observed log-likelihood difference.

Shimodaira and Hasegawa (1999) and Goldman et al.
(2000) discuss the limitations of applying the KH test.
Specifically, they emphasize that the KH test is only valid
for comparing two a-priori specified topologies (i.e., it is
sensitive to selection bias). These limitations motivated the
development of a new generation of tests for phylogeny
comparison, such as the nonparametric Shimodaira–
Hasegawa test (Shimodaira and Hasegawa 1999) and the
Approximately Unbiased (AU) test (Shimodaira 2002),
which adjust for the selection bias. While offering improve-
ments to the original KH test, these more recent tests still rely
on the KH test principles: A nonparametric bootstrapping of
a single MSA. These principles form the very foundations for
likelihood-based hypotheses testing in phylogeny. Alternative
to the nonparametric tests, the SOWH test (Swofford et al.
1996; Goldman et al. 2000) is a parametric bootstrap
approach that adjusts for the selection bias.

Without exception, all these tests rely on an MSA as input.
Currently, all available test procedures do not account for
alignment uncertainty; treating the input MSA as free from
errors and unbiased. Likelihood-based tests for topology
comparison are one of many downstream biological analyses
for which an MSA is a prerequisite. Such downstream analyses
include the inference of positive selection, phylogeny recon-
struction, and the detection of lateral gene transfer events. It
has been recently shown that errors in the MSA can lead to
erroneous phylogenetic inference (Ogden and Rosenberg
2006; Talavera and Castresana 2007; Wang et al. 2011) and
may affect the inference of positive selection (Fletcher and
Yang 2010; Jordan and Goldman 2012; Privman et al. 2012).
Notably, the guide tree used in progressive alignment meth-
ods has been shown to have a strong impact on the resulting
alignments (Nelesen et al. 2008; Landan and Graur 2009;
Penn, Privman, Landan, et al. 2010; Capella-Gutierrez and
Gabaldon 2013; Toth et al. 2013).

In this study, we characterize the bias introduced by align-
ment errors to the KH test. In addition, we present the effect
of branch length optimizations on the test. We then propose
a nonparametric method to reduce this bias as well as a novel
parametric methodology that takes into account the impact
of the guide tree on the alignment as well as branch length
optimization.

Results

Sensitivity to Branch Length Optimization and
Alignment Errors

We first tested whether the KH test is biased under “ideal”
null conditions, in which the two tested topologies are equally
supported by the data. To assure such ideal conditions of no
alignment errors, the “true” MSA as generated by the

simulation program was used for computing the site-specific
log-likelihood scores used by the KH test. Moreover, the two
topologies to be compared were given a priori with their
associated branch lengths (fig. 1). Here, as is conventional,
we use the one-sided version of the KH test, such that the
alternative hypothesis (H1) to the null hypothesis (H0) is that
a prespecified topology (T1) is better supported by the data
than an alternative topology (T2). Under these conditions, as
expected, the obtained P values are uniformly distributed
between 0 and 1 (turquoise columns in fig. 2 for phylogeny
set A and supplementary fig. S1, Supplementary Material
online, for phylogeny sets B and C). The null hypothesis of a
Kolmogorov–Smirnov test (P values derived from a uniform
distribution) could not be rejected for all three topology sets.

In reality, both the MSA and the branch lengths of the two
competing tree topologies are unknown and are inferred
from the data (the set of unaligned homologous sequences).
We first tested the impact of optimizing branch lengths on
the KH test. We repeated the above simulations, optimizing
the branch lengths of the two alternative topologies from the
MSA. The distribution of P values substantially deviates from
the expected uniform distribution (Kolmogorov–Smirnov
test; P< 10�15; fig. 3). The obtained distribution is centered
around 0.5 and has less mass near 0.05. Thus the test is more
conservative than it should be, a consequence of additional
variability in log likelihoods due to the addition of branch
length optimization.

We next tested the impact of alignment errors on the KH
test. To this end, we repeated the above simulations, only this
time the simulated sequences were aligned by MAFFT.
Examining the P-value distribution revealed a deviation
from the uniform distribution for the MAFFT alignment
(Kolmogorov–Smirnov test; P< 10�4 for all three phylogeny
sets; pink columns in fig. 2 for phylogeny set A and supple-
mentary fig. S1, Supplementary Material online, for phylogeny
sets B and C). The proportion of P values smaller than 0.05
was found to be higher than 0.07 in each of the three phy-
logeny sets. This deviation from 0.05 is statistically significant
(Binomial test; P< 0.0001). The meaning of this deviation is
that alignment errors render the KH test too permissive, that
is, it has a 40% higher-than-acceptable probability to reject
the null hypothesis, wrongly preferring one topology over the
other, even though there is no significant difference between
the topologies. Notably, when we performed this analysis
using PRANK as the alignment program, similar results
were obtained (supplementary fig. S2, Supplementary
Material online). We thus chose to focus on MAFFT in our
analyses as it is more computationally efficient than PRANK.

It was previously shown that the guide tree used in pro-
gressive alignment methods, such as MAFFT, has a strong
impact on the resulting alignment (Nelesen et al. 2008;
Landan and Graur 2009; Penn, Privman, Landan, et al. 2010;
Capella-Gutierrez and Gabaldon 2013; Toth et al. 2013). We
hypothesized that the KH test’s sensitivity to alignment errors
demonstrated above may stem from the guide tree used to
direct the alignment. Specifically, we suspected that the test
would tend not to reject the topology of the tree used in
guiding the alignment and overreject the competing
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FIG. 1. A multifurcating topology T and two derived symmetric bifurcating options, T1 and T2. Three such sets were used in this study, which differ in
the length of the branch that separates the species 8, 9, and 10 to a pair and a singleton (this branch is colored red). A long red branch (set A, top)
corresponds to competing trees that are very different from the multifurcating tree, while shorter red branches (sets B and C, middle and bottom)
correspond to competing trees that are not very different from the multifurcating tree.
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topology. Our analysis clearly supports this hypothesis. The
average rejection rate for each of the competing topologies
(at the 5% level) was approximately 7% when no specific
guide tree was given as input to MAFFT (pink columns in
fig. 2 and supplementary fig. S1, Supplementary Material
online). In contrast, the proportion of tests in which the
null hypothesis was rejected (a = 0.05) ranged from 15% to
50% (depending on the phylogeny set) when H1 has T1 equal
to the guide tree. Moreover, when H1 has a T1 different from
the guide tree, the null hypothesis was almost never rejected
(ranging from 0.2% to 3.26%, depending on the phylogeny
set) (fig. 4). Although the result holds for the three phylogeny
sets examined, the bias is stronger when the two compared
topologies and their associated branch lengths are most dis-
similar (fig. 4). Taken together, the KH is highly biased, having
a large false positive rate when H1 has T1 equal to the guide
tree.

A Nonparametric Solution to Reduce Bias

Our results suggest that the guide tree has a strong impact on
the KH test. One possible solution is thus to remove any
alignment column that occurs according to one guide tree
but not according to the other. This is exactly the rationale of
GUIDANCE (Penn, Privman, Landan, et al. 2010), a tool for

detecting unreliable alignment regions. We thus next tested
whether filtering out all alignment columns that are unreli-
able according to GUIDANCE cancels the alignment bias. The
observed bias in the KH test (as measured by the proportion
of P values smaller than 0.05) was reduced from around 0.07
for the unfiltered MAFFT alignments to around 0.05 after
filtering out positions with GUIDANCE (turquoise columns
in fig. 5 for phylogeny set A and supplementary fig. S3,
Supplementary Material online, for phylogeny sets B and C).
This reduction is statistically significant (Fisher’s exact test;
P< 0.0001).

However, using GUIDANCE raises two major problems.
First, as can be seen in figure 5, the KH test with
GUIDANCE filtering is still biased: The distribution of P values
significantly deviates from the uniform distribution
(Kolmogorov–Smirnov test; P< 10�5 for all three phylogeny
sets). Secondly, removing positions from the alignment redu-
ces the signal. We examined the power of the KH test with
the true alignment, the unfiltered MAFFT alignment, and the
alignment filtered by GUIDANCE. This was done by simulat-
ing sequences by T1 and examining the proportion of KH tests
in which T2 was rejected (at a= 0.05). Our results clearly
indicate that GUIDANCE reduces the power of the KH test.
This reduction correlates with the similarity among the com-
pared trees (table 1).

FIG. 2. Testing the bias of the KH test under the null conditions—MSA effect. Sequences were simulated using INDELible based on the multifurcating
tree in set A of figure 1. Under these conditions, among the 5,000 simulations, 5% of the P values should fall in each of the 20 P value bins, as expected
from a uniform distribution. Shown is the deviation from expected, computed as the difference between the observed number of P values in each bin
minus the expected number (250), divided by the expected number times 100. For any given bin, a percent deviation of 12% or less is expected 95% of
the time. In turquoise, computations were based on the true MSA, whereas in pink the computations were based on the MSA inferred using MAFFT.
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A Parametric Solution to Reduce Bias

The strong impact of the guide tree on the KH test led us to
seek a solution in which the guide tree is integrated into the
test hypothesis. We thus present here a novel parametric test
scheme for comparing two topologies. Our test utilizes the
concept of parametric bootstrap, as suggested in the SOWH
test (Swofford et al. 1996; Goldman et al. 2000). However,
unlike the SOWH test, in this newly proposed test, alignment
aspects are explicitly accounted for, and the above described
biases due to guide tree and alignment uncertainty (and
branch length optimization) are removed.

As in the SOWH test, the null hypothesis states that T2 is
the correct topology. Rejection of T2 suggests that T1 is better
supported by the data compared with T2.

The first step in the SOWH test is to infer the set of pa-
rameters under the null hypothesis. In the SOWH test, this is a
straightforward task because the same alignment is assumed
for both T1 and T2. However, as we have shown above, this is
problematic as tree comparison tests are sensitive depending
on which topology guided the alignment.

Our proposed one-sided test examines the possibility of
rejecting T2 while taking into account alignment uncertainty
and branch length optimization. Here, two alignments are
constructed, based on each of the competing topologies,
that is, two alignments obtained using the two different com-
peting phylogenies as guide trees. Branch lengths for each

topology are optimized with regards to its corresponding
MSA. Let T1, t1, and MSA1 be the topology, optimized
branch lengths, and MSA of topology 1, respectively (T2, t2,
and MSA2 for topology 2). As the components of such a
triplet are highly dependent on each other, we propose an
iterative procedure to estimate these components
simultaneously.

The Iterative Optimization Procedure

1. Start with two competing topologies: T1 and T2. For each
of the topologies, set arbitrary branch lengths to generate
initial branch length estimates: tð1Þ1 and tð1Þ2 .

2. Use tð1Þ1 and tð1Þ2 to guide the two alignments under each
topology. Denote the resulting alignments MSAð1Þ1 and
MSAð1Þ2 .

3. Optimize the branch lengths of T1 (T2) with regards to
MSAð1Þ1 (MSAð1Þ2 ) to obtain tð2Þ1 (tð2Þ2 ).

4. Use the obtained trees (topology and branch lengths) to
recompute the alignments.

5. Repeat steps 3–4 until no significant increase in log-like-
lihood is achieved.

The null hypothesis is then tested based on the obtained
triplets (T1, t1, MSA1) and (T2, t2, MSA2). Without loss of
generality, we assume that topology 1 has the higher log-
likelihood. Denote d as the log-likelihood difference between
T1 and T2 (each with regards to its own MSA). H0: T2 is better

FIG. 3. Testing the bias of the KH test under the null conditions—branch length optimization effect. Sequences were simulated similarly to figure 2. In
turquoise, deviations from expected (computed as in fig. 2) based on the true MSA, when the branch lengths of each of the competing topologies were
optimized, denoted True+BBL, where BBL stands for best branch lengths.
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or equally supported by the data (rejecting H0 would indicate
that T2 can be rejected).

The Test Procedure

1. Simulate N sequence data sets according to (T2, t2).
Repeat the iterative optimization procedure (steps 1–5
above) for each of the simulated data sets. Obtain the
empirical distribution of log-likelihood differences.

2. Calculate the P value: The proportion of simulations for
which the log-likelihood difference was greater than d.

3. Reject the null hypothesis if the obtained P< a.

Note that this procedure is computationally intensive and
thus, in practice we used N = 100 and the iterative procedure
was limited to constructing initial alignments, full optimiza-
tion of branch lengths, recomputing the alignments, and cal-
culating the log-likelihood of the topology and previously
obtained branch-lengths with respect to the recomputed
alignment.

Testing the Iterative Parametric Test

As a correct implementation of parametric bootstrapping
principles, the proposed iterative parametric test is guaran-
teed to have approximately correct type I error (i.e., for a
confidence level a= 0.05, the null hypothesis is wrongly re-
jected in 5% of the cases). In order to test the power of the

iterative parametric test, we examined the test’s ability to
reject T2 for data simulated by (T1, t1). To this end, we ran
the test 100 times on simulated sequence data and examined
the proportion of P values <0.05. This was performed three
times with increasing difficulty to reject the null hypothesis.
This was achieved by simulating the sequence data according
to T1 with different associated branch lengths (fig. 1). The
results suggest that at least for the topologies and branch
lengths tested here, the power ranges between 39% for the
most difficult case and 57% for the easiest case (table 2).
Comparing the results to the power analysis in table 1, it is
evident that removing the bias comes with decreased power.

The power analysis described above is based on a specific
set of parameters used for the simulations. For example, we
used root sequences of length 2,000 amino acids and a rela-
tively high indel rate of 0.1. As expected, reducing the se-
quence length decreases the test’s power (supplementary
table S1, Supplementary Material online). In addition, we
studied the effect of the indel rate parameter and the
number of sequences on the test’s power. In general, when
the number of sequences is increased, the alignment becomes
longer as a result of additional gaps being opened. We expect
that the test’s power in such cases will be reduced. Our sim-
ulations reveal that indeed, the addition of more sequences
decreases power for high indel rate values. However, when the
indel rate is low, the test’s power increases, reaching a power

FIG. 4. Testing the bias of KH test under the null conditions. Sequences were simulated using INDELible based on the multifurcating tree in each of the
three sets presented in figure 1. Under these conditions, 5% of the obtained P values should be smaller than 0.05. Shown here is the percent of P values
smaller than 0.05 obtained when computations were based on the MSA inferred using MAFFT with either of the competing topologies given as guide
tree. In pink, (T1, t1) was provided as guide tree; in turquoise, (T2, t2) was given as guide tree.

3062

Levy Karin et al. . doi:10.1093/molbev/msu231 MBE
 at T

E
L

 A
V

IV
 U

N
IV

E
R

SIT
Y

 on N
ovem

ber 3, 2014
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

T2
:
1.
T2
-
2.
p-
t
3.
p-
value
:
-
-
T2
T1
t1
p-
T1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu231/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu231/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu231/-/DC1
http://mbe.oxfordjournals.org/


of 100% for alignments without indels (supplementary table
S2, Supplementary Material online).

Multiple Topologies Iterative Parametric Test

The iterative parametric test presented above can be ex-
tended to deal with k topologies, one of which is the most
likely tree topology obtained through a search in the tree

topology space. Notably, this scenario is commonly used in
practice when constructing a confidence set of tree topolo-
gies and analyzing a set of sequences. The challenge in con-
structing tests for multiple topologies obtained in a tree
search procedure is to account for the selection bias
(Goldman et al. 2000; Shimodaira 2002): The observation
that the log-likelihood of the maximum-likelihood tree
topology will always be at least as large as that of a fixed T1

making larger KH test statistics likely, even under the null
hypothesis.

We propose the following parametric test procedure for
comparing k topologies:

1. The input to this test is a list of k candidate topologies,
with initial branch lengths, obtained through a tree
search procedure.

FIG. 5. Testing position filtering as a method for bias reduction in the KH test. Sequences were simulated using INDELible based on the multifurcating
tree in set A of figure 1. Under these conditions, among the 5,000 simulations, 5% of the P values should fall in each of the 20 P value bins, as expected
from a uniform distribution. Shown is the deviation from expected, computed as the difference between the observed number of P values in each bin
minus the expected number (250), divided by the expected number times 100. In turquoise, computations were based on the GUIDANCE filtered MSA,
whereas in pink the computations were based on the MSA inferred using MAFFT.

Table 1. Effect of Column Filtering on Power.

Set A B C

MSA True MAFFT GUIDANCE True MAFFT GUIDANCE True MAFFT GUIDANCE

Power (%) 100 100 99.58 99.94 99.20 71.82 89.20 75.22 34.62

NOTE.—Percent cases in which T2 was rejected in data sets simulated by T1.

Table 2. Parametric Test’s Power.

Data Simulated
by Set

A
(easy case)

B
(medium case)

C
(hard case)

Power (%) 57 41 39

NOTE.—Percent cases in which T2 was rejected in data sets simulated by T1.
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2. For each topology, perform the iterative optimization
procedure described above to get its associated align-
ment, its optimal branch lengths, and recompute the
log-likelihood score. Rank the tree topologies according
to their newly computed log-likelihood score and
for each topology, keep the difference between the
maximum-likelihood score and the topology’s score.
This value serves as the test statistic to determine
significance.

3. Based on each topology (and its associated optimal
branch lengths), simulate a set of sequences. Repeat
this simulation N times. For each set of simulated se-
quences, repeat step 2 above to obtain the empirical
distribution under the null (the data can be explained
by the current tested topology).

4. Compare the difference calculated in step 2 with the
empirical distribution of differences obtained in step 3,
to compute a P value for each topology.

5. Reject all topologies whose P value is smaller than a.

As this test is extremely computationally intensive, we
implemented a few numerical approximations to reduce
run times. In addition to those described above for the pair-
wise test, we also determine the maximum-likelihood tree
topology (both on the real data and on each of the simulated
data sets) without the reranking stage.

Examining the Multiple Topologies Iterative
Parametric on BRCA2

To illustrate our procedure, we performed the test on ten
primate sequences for the BRCA2 gene. Although the primate
tree is considered to be known (Perelman et al. 2011), our
purpose is to demonstrate the application of our test in typ-
ical research scenarios in which the goal is to find the species
tree based on a small sample of sequences. Further, we show
how the test can be used to statistically determine which
topologies can be rejected and which cannot.

A bootstrap analysis suggested five candidate topologies
that are supported by the data to some extent (see Materials
and Methods). We next examined our proposed multiple
topologies iterative parametric test procedure on these
five topologies. Among these five topologies the maximum-
likelihood tree was indeed the known species tree. At a con-
fidence level a= 0.05, we were able to reject one of the four
incorrect topologies.

We next compared this performance with the popular
nonparametric AU test. To this end, we used PhyML to
optimize the branch lengths of each of the five competing
topologies with regards to the MAFFT alignment. Finally, we
used the CONSEL package to perform the AU test on these
data. Similarly to our proposed test, at a confidence level of
a= 0.05, the P values calculated by the AU test allowed the
rejection of one of the four incorrect topologies. It should be
noted, though, that the topology rejected by the two tests
was not the same one; using our proposed test topology 4
was rejected, whereas using the AU test topology 1 was
rejected (fig. 6).

Discussion
In this study, we have shown that alignment accuracy and
branch length optimization procedures have a major effect
on the KH test. These results indicate that much like other
downstream analyses, such as detecting positive selection and
ancestral sequence reconstruction, alignment reliability is an
aspect that should not be ignored when performing likeli-
hood-based tests for phylogeny comparisons.

We first proposed and examined a nonparametric solution
that uses GUIDANCE to filter unreliable alignment positions
before performing the KH test. Though this fast and simple
method reduces the bias significantly, it does not rid of it
altogether. In addition, alignment filtering causes a severe
loss in data, which was evident in the reduced power
observed when using GUIDANCE in our simulations.

As demonstrated in this article and in previous studies (Liu
et al. 2009), reconstructing the MSA and inferring the correct
phylogeny are two tasks which heavily depend on each other.
For this reason, our proposed parametric solution is designed
to break the linear pipeline in which the alignment is first
computed and only then the phylogeny is inferred. This is
achieved by treating the MSA and the phylogeny as two sides
of the same coin, optimizing them with regards to each other
in an iterative procedure, and obtaining alternative pairs of
phylogenies and MSAs. In addition to breaking this circularity,
the parametric procedure is free from the reported bias.

However, it should be noted that this procedure is com-
putationally intensive as it requires several stages of branch
length optimizations and alignment recalculations both on
the real data and on each of the simulated data sets. To
reduce the run time, we introduced several numerical approx-
imations to the general test scheme. Mainly, we performed a
single step of branch length optimization instead of waiting
for full convergence. As this approximation is performed for
all competing topologies, this approximation most likely does
not favor any specific topology and thus does not create a
bias in the test. Moreover, on a few test examples we exam-
ined, we found that full convergence was achieved after 3–4
steps (data not shown), suggesting that this approximation is
reasonable.

Naturally, an important aspect of the parametric test is the
parametric model and its assumptions. In this study, we used
INDELible as a tool to simulate the sequences. INDELible
offers control over many parameters by which the sequences
should be simulated. Among these parameters are the indel
rate and maximal length. Currently, there is no methodology
to properly estimate these parameters from the data. Such a
methodology will enable performing the parametric test with
accurate parameters, which we believe, will increase the
power of the parametric test.

Materials and Methods

Simulation Scheme
General Scheme
In each simulation, we generated sequence data, aligned the
generated set of sequences, and computed the log-likelihood
of each of two bifurcating trees with regards to each position
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FIG. 6. Competing primate topologies. Five competing topologies inferred based on the MAFFT MSA of the BRCA2 protein sequences. The ML
topology is the correct topology. The four alternative topologies were obtained by bootstrap analysis. Differences of each topology from the ML
topology are highlighted in pink.
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in the calculated alignment. We then either performed the
KH test on the calculated log-likelihoods to obtain a P value or
computed the difference in the total tree log-likelihoods.

Tree Sets
Three sets of trees were used in this study (fig. 1). Each of
these sets is composed of a multifurcating tree T and two
bifurcating trees, (T1, t1) and (T2, t2) which are symmetric with
regards to T. In set A, the branch that differs between T1 and
T2 is long (length = 0.3), thus T1 and T2 are very different from
each other in this set. In set B we have shortened the branch
that differs between T1 and T2 (length = 0.1), making T1 and
T2 resemble each other more. In set C, the differing branch is
the shortest (length = 0.05), which means that T1 and T2 are
most similar to each other in this set.

Sequence Generation
In each of the performed simulations, INDELible (Fletcher and
Yang 2009) was used to simulate the course of evolution
along a tree. When performing the KH test under the null
hypothesis conditions, the multifurcating topology T was
used with associated branch lengths. For the power calcula-
tions and for the parametric test, T1 and T2 were used to
simulate the course of evolution. An INDELible simulation
results in a set of simulated sequences, as well as in the correct
(true) MSA. Each INDELible simulation was performed with
the following parameters: 2,000 amino acid positions at the
root and the JTT substitution model (Jones et al. 1992). All
simulations except for the simulations designed to test the
bias in KH caused by optimizing branch lengths included the
following parameters as well: Gamma-distributed among-site
rate variation (proportion of invariant positions = 0,
alpha = 0.7, and 16 rate categories), power law model of
indel distribution (a = 1.7 and M = 30), and an indel rate of
0.1 (INDELible’s default parameters). Empirical distributions of
P values were obtained by repeating the simulation 5,000
times.

Alignments
In this study, we examined five methods to align the gener-
ated set of sequences:

1. INDELible true alignment.
2. MAFFT (Katoh and Standley 2013) alignment with the

following parameters: localpair, maxiterate = 1,000.
3. MAFFT alignment guided by T1 with following parame-

ters: localpair, maxiterate = 1,000 and treein = (T1, t1).
4. MAFFT alignment guided by T2 with following parame-

ters: localpair, maxiterate = 1,000 and treein = (T2, t2).
5. GUIDANCE (Penn, Privman, Ashkenazy, et al. 2010)

filtered alignment with following parameters:
msaProgram = MAFFT, localpair, maxiterate = 1,000;
with column filtering set to default (0.93).

Log-Likelihood Calculation
The log-likelihood for each of the two bifurcating topologies
with regards to each position in each of the alignments was
calculated using PhyML (Guindon et al. 2010). In addition, the
following parameters were used: Model = JTT, v = 0, a = 0.7,
and c = 16. The value of the “o” parameter was either set to

“n” (no optimizations) when testing for the impact of align-
ment errors (in this case the branch lengths presented in fig. 1
were used) or it was set to “l” (length optimization) when
examining the effect of branch length optimizations and for
the iterative parametric test simulations.

KH Test P Value Calculation
For a given MSA, the computed sitewise log-likelihoods for
each of the bifurcating trees were given as input to the KH
test as implemented in CONSEL (Shimodaira and Hasegawa
2001). Its P value output was obtained.

Biological Example: The BRCA2 Gene from Primates
We obtained the ENSG00000139618 BRCA2 sequences for
nine primates and Tupaia (outgroup) from OrthoMAM
(Ranwez et al. 2007). We unaligned the sequences, translated
them into amino acids, and realigned them using MAFFT (no
guide tree provided). We then ran PhyML on the alignment
with 100 bootstrap replicates to obtain a set of competing
topologies supported by the data. This resulted in five topol-
ogies (including the ML topology which, in this case, matched
the correct primate tree). Phylogenetic trees were visualized
using FigTree version 1.4 (http:/tree.bio.ed.ac.uk/software/fig
tree/, last accessed August 10, 2014).

Supplementary Material
Supplementary figures S1–S3 and tables S1 and S2 are avail-
able at Molecular Biology and Evolution online (http://www.
mbe.oxfordjournals.org/).
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