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Abstract

A large number of highly pathogenic bacteria utilize secretion systems to translocate effector proteins into host cells. Using
these effectors, the bacteria subvert host cell processes during infection. Legionella pneumophila translocates effectors via
the Icm/Dot type-IV secretion system and to date, approximately 100 effectors have been identified by various experimental
and computational techniques. Effector identification is a critical first step towards the understanding of the pathogenesis
system in L. pneumophila as well as in other bacterial pathogens. Here, we formulate the task of effector identification as a
classification problem: each L. pneumophila open reading frame (ORF) was classified as either effector or not. We
computationally defined a set of features that best distinguish effectors from non-effectors. These features cover a wide
range of characteristics including taxonomical dispersion, regulatory data, genomic organization, similarity to eukaryotic
proteomes and more. Machine learning algorithms utilizing these features were then applied to classify all the ORFs within
the L. pneumophila genome. Using this approach we were able to predict and experimentally validate 40 new effectors,
reaching a success rate of above 90%. Increasing the number of validated effectors to around 140, we were able to gain
novel insights into their characteristics. Effectors were found to have low G+C content, supporting the hypothesis that a
large number of effectors originate via horizontal gene transfer, probably from their protozoan host. In addition, effectors
were found to cluster in specific genomic regions. Finally, we were able to provide a novel description of the C-terminal
translocation signal required for effector translocation by the Icm/Dot secretion system. To conclude, we have discovered 40
novel L. pneumophila effectors, predicted over a hundred additional highly probable effectors, and shown the applicability
of machine learning algorithms for the identification and characterization of bacterial pathogenesis determinants.
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Introduction

A large number of bacterial pathogens utilize secretion systems

for pathogenesis. In these systems, a multi-protein complex is used

to translocate a repertoire of proteins, termed effectors, into host

cells during infection. These effector proteins were found to be

critical for the pathogenicity of numerous pathogens, such as

Salmonella enterica, Yersinia pestis, Pseudomonas syringae (utilizing a type-

III secretion system) [1–3], Legionella pneumophila, Coxiella burnetii

Helicobacter pylori, Bordetella pertussis, Agrobacterium tumefaciens, Barton-

ella henselae (utilizing a type-IV secretion system) [4–6], Vibrio

cholerae, Mycobacterium tuberculosis, and Pseudomonas aeruginosa (utiliz-

ing other secretion systems) [7,8], making them prime targets for

research of bacterial virulence systems.

L. pneumophila is an intracellular c-proteobacteria, which is the

causative agent of Legionnaires’ disease: a severe pneumonia-like

disease in which the bacteria infect and replicate in human

alveolar macrophages [9]. L. pneumophila also infects a wide range

of protozoan hosts, which serve as their environmental reservoir

[10,11]. After internalization by their natural protozoan hosts or

by alveolar macrophages, the bacteria are confined to a

phagosome and utilize the Icm/Dot type IVb secretion system

to subvert host cellular processes [12,13]. A large number of L.

pneumophila encoded proteins were found to be translocated into

the host cell in an Icm/Dot dependent manner [6,14–16]. Some of

the translocated substrates were shown to manipulate host cellular

activities, and it is believed that the vast majority of translocated

proteins have a functional role during infection.

The first L. pneumophila effector, RalF, was identified based on

sequence homology to an eukaryotic Guanine Exchange Factor

(GEF) domain [17]. Since then, a total of 105 genes were identified

as effectors using various approaches such as sequence homology to

eukaryotic domains and markers for horizontal gene transfer [17–

21], interactions with Icm/Dot components [22], transfer of proteins

between bacteria [23], genetic assays in yeast [24–26], similar

regulatory elements [27–29], and a predicted secretion signal [30].

Importantly, the cellular function of most effectors is still unknown,

and for most of the effectors examined, their knockout failed to

reveal an intracellular growth phenotype [20,22,26,29,31]. More-

over, in some cases, knocking-out a family of paralogous effector-

encoding genes simultaneously produced no significant growth

defect [23,32]. These observations suggest the existence of

redundancy in terms of effector functionality, or alternatively, some

effectors may function only in specific hosts, showing no intracellular

growth defect when absent during infection of other hosts.

The L. pneumophila Philadelphia-1 genome harbors 3,005 open

reading frames (ORFs) [31]. Identifying ORFs that encode for

effector proteins is critical for the understanding of the cellular
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processes involved in L. pneumophila pathogenesis. In this study, we

developed a novel machine learning approach for the identifica-

tion of effectors. To the best of our knowledge, this is the first

attempt to present the task of effector identification as a

computational classification problem. Our approach aims to

extract features that distinguish effectors from non-effectors. These

features are based, in part, on a systematic review of known

characteristics of effectors and in part, on the discovery of novel

features. These extracted features were then used to train a variety

of machine learning algorithms, which produced a list of predicted

effectors sorted by their likelihood. We followed up our predictions

with experimental validations, using the CyaA reporter system,

which led to the discovery of 40 novel L. pneumophila effectors.

Results

In this work, we formulated the task of identifying new L.

pneumophila effectors as a machine learning classification problem.

The classification and validation outline is schematically illustrated

in Figure 1.

A successful classification is highly dependent on the set of

features provided to the learning algorithms. The features we

measured cover various attributes that could potentially differen-

tiate effectors from non-effectors. These include genomic attri-

butes, evolutionary based attributes, regulatory network attributes,

and attributes specific to the L. pneumophila pathogenesis system

(Table 1). These features were fed into various machine learning

algorithms: support vector machine (SVM), neural network, naı̈ve

Bayes, Bayesian networks, and a Voting classifier, which considers

all these four classifiers. A feature selection step was applied to

each classifier and all classifiers were trained to achieve maximal

area under the curve (AUC) based on 10-fold cross validation (as

described in Materials and Methods).

The output of the best performing classifier is a ranked list of

putative effectors, from which we experimentally validated high

ranking candidates. Validations were performed by constructing

fusion proteins between the putative effector and the catalytic

domain of the Bordetella pertussis calmodulin dependent CyaA toxin,

which converts ATP to cyclic AMP (cAMP). These constructs were

expressed in an L. pneumophila wild-type strain and in an icm/dot

mutant, and used for infection of HL-60-derived human macro-

phages. We consider an effector to be validated if translocation, as

determined by the levels of cAMP produced, was observed only in

the wild-type strain (see Materials and Methods).

Effector prediction and validation
We conducted three phases of learning and validation. In each

learning phase, we included all the validated effectors known at

that time. Specifically, in the second and third phases we added

effectors validated in previous phases as well as validated effectors

published during the course of this study. Furthermore, the

features were updated to reflect the increase in our understanding

of effector characteristics and to maximize the information

extracted from validated effectors. The effectors discovered in

each learning and validation phase are described below.

Learning and validation phase 1. The training set of the

first learning phase included 53 known effectors (a list of all the

effectors used in each phase appears in Table S1). The Voting

classifier outperformed the other learning schemes in cross

validation tests, and was hence used to predict novel effectors

(see details in Materials and Methods). We decided to focus on the

15 highest ranking predictions. This number was chosen in order

to obtain an initial indication regarding the accuracy of the

learning scheme. These 15 genes included two leg genes that were

previously suggested to encode for effectors [20] and the lirC gene,

which we studied in a parallel project [29]. Table S2 includes the

list of the top ranking predictions in each phase, the genes

excluded from the analysis, as well as the exact parameters of the

best performing classifier. We cloned and expressed the remaining

12 genes and were able to obtain fusion proteins of proper size for

11 of them (Table 2). Next, these 11 fusion proteins were tested for

translocation using the CyaA reporter system and were all proven

to be genuine effectors (Figure 2 and Table 2).

Learning and validation phase 2. The 11 newly validated

effectors were added to the training set for the second learning

phase and 18 additional effectors, reported during our work [30],

were also included. Moreover, a new feature was introduced in this

learning phase, which is based on a suggested C-terminal secretion

signal [30]. The best performing classifier in this phase was found

to be Bayesian networks. Encouraged by the results of the previous

phase, we decided to significantly enlarge the number of examined

predictions, focusing on the 50 top ranking predictions. These 50

genes included eight leg genes, the lirC gene, and the lgt1 gene,

which were excluded as they were previously suggested to be

effector proteins (see above). Out of the remaining 40 genes, we

experimentally examined 25 predictions (Table S2). Twenty three

out of these 25 genes were successfully cloned and expressed in L.

pneumophila. Of these 23 genes, all but two were validated as

effectors (Figure 2 and Table 2).

Learning and validation phase 3. In the third learning

phase we added the above newly validated 21 effectors as well as

31 recently published ones, including the leg, ank, ceg, and lir genes

[19,21,29]. Similar to the second phase, the Bayesian networks

classifier achieved the best performance. Fifty top ranking

predictions obtained the highest possible score of 1, and we next

experimentally tested eight of which in order to obtain a total of 40

new validated effectors. All eight candidates were successfully

cloned and proven to be genuine effectors (Figure 2 and Table 2).

Summary of validated effectors. In total, we discovered 40

new effectors, which is an addition of 37% to the set of all known

L. pneumophila effectors. These novel effectors were termed lem for

Legionella effector identified by machine learning. These effectors

Author Summary

Many pathogenic bacteria exert their function by translo-
cating a set of proteins, termed effectors, into the
cytoplasm of their host cell. These effectors subvert
various host cell processes for the benefit of the bacteria.
Our goal in this study was to identify novel effectors in a
genomic scale, towards a better understanding of the
molecular mechanisms of bacterial pathogenesis. We
developed a computational approach for the detection
of new effectors in the intracellular pathogen Legionella
pneumophila, the causative agent of the Legionnaires’
disease, a severe pneumonia-like disease. The novelty of
our approach for detecting effectors is the combination of
state-of-the-art machine learning classification algorithms
with broad biological knowledge on effector biology in a
genomic scale. Applying this method, we detected and
experimentally validated dozens of new effectors. Notably,
our computational predictions had an exceedingly high
accuracy of over 90%. In analyzing these effectors we were
able to obtain new insights into the molecular mechanism
of the pathogenesis system. Our results suggest, for the
first time, that over 10% of the Legionella genome is
dedicated to pathogenesis. Finally, our approach is general
and can be utilized to study effectors in many other
human pathogens.

Legionella Effectors Identified by Machine Learning
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are listed in Table 3, which additionally includes information

regarding homologs in other L. pneumophila strains, paralogs within

L. pneumophila Philadelphia-1, putative regulatory elements,

neighboring effectors, and protein sequence motifs.

Predicted effectors. The high accuracy of our predictions

(above 90%) suggests that a large number of the top ranking

predictions of the third learning phase that were not

experimentally tested are effectors. Specifically, the 126 highest

ranking predictions, for which the confidence score is higher than

0.995, are listed in Table S3.

The ability of each feature group to distinguish effectors

from non-effectors. The features used as input to the machine

learning classifiers described above are divided into seven groups

(as described in Table 1). We have tested the classification

Figure 1. Schematic representation of the computation and experimental steps used for the discovery of novel effectors. A machine
learning approach was utilized, in which validated effectors and non-effectors were used as input. Various features expected to separate these two
groups were extracted, filtered, and fed into various classifiers. Ten-fold cross validation was used to train the classifiers. The trained classifiers were
used to classify the remaining ORFs as either putative effectors or not. High ranking predictions were experimentally validated and the newly
validated effectors were used, iteratively, to refine the learning scheme. NN stands for Neural networks and Bayesian Net stands for Bayesian
networks.
doi:10.1371/journal.ppat.1000508.g001

Legionella Effectors Identified by Machine Learning
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performance, when the learning was limited to a single group at a

time in order to underline the features that best characterize

effectors (Table 4). The feature group with the highest

classification performance was found to be ‘‘Taxonomic

distribution among Bacteria and Metazoa’’, which correctly

classified 89.9% of the ORFs (Table 4). The second and third

top ranking feature groups are based on homology to known

effector proteins and to eukaryotic proteins, with correct

classification rates of 80.2% and 78.7%, respectively. Notably,

these three top ranking feature groups are all based on protein

sequence similarity. Also noteworthy is the ability of the C-

terminal signal feature group to correctly classify only 60.1% of the

ORFs. This indicates the importance of a more detailed

understanding of this signal (see below). Importantly, combining

all feature groups together resulted in prediction accuracy of above

95% on the training set, indicating that combining various sources

of information enables maximal accuracy.

Computational characterization of 145 L. pneumophila
effectors

Thus far, analyses of attributes characterizing effectors were based

on a limited set of a few dozens of validated effectors [20,23,28–30].

The availability of 145 validated effectors motivated us to perform an

in-depth analysis of effector characteristics. Interesting observations

were obtained regarding three such characteristics – distribution of

effectors in the genome, G+C content of effector encoding genes, and

the C-terminal secretion signal.

Distribution of effectors in the genome. Previous studies

have discovered genomic regions that are enriched with effector

encoding genes [23,29,33]. These observations suggest that

effectors cluster in the genome non-randomly. Figure 3 presents

the distribution of all validated effectors (in red) as well as the

distribution of the 126 top ranking predicted effectors (in yellow).

This spatial distribution of effector-encoding genes significantly

differs from a uniform one (Wald-Wolfowitz test of randomness; p-

value,10223). Interestingly, including the 126 putative effectors

increases the clustering signal, providing an additional support for

the clustering of effectors (Wald-Wolfowitz; p-value,10245). Our

analysis suggests four genomic regions (I–IV) highly enriched with

effector encoding genes (Figure 3; Table 5). The observed effector

clusters defined by us match genomic regions previously described:

region I includes lir genes and several other effectors [29], regions

II and IV include numerous sid genes [23,33], and region III was

described before as a hyper-variable region [29].

G+C content of effector encoding genes. It was previously

suggested that a large number of effectors are of eukaryotic origin

[19,20,34,35]. Such putative horizontally transferred genes are

often characterized by atypical G+C content. Here, we

statistically compared the G+C content of effector encoding

genes to the remaining ORFs. Effectors were found to have a

relatively low G+C content: the average G+C content of effector

Table 1. Features used in the machine learning algorithms.

Features Rationale References

Sequence similarity to known effector proteins Effectors were shown to share local sequence similarity [15,18,22–24]

Sequence similarity to eukaryotic proteomes A high number of effectors were shown to contain eukaryotic-like domains [19,20,34,35]

Taxonomic distribution among Bacteria and Metazoa Effectors are unlikely to be house keeping genes, which have homologs in
numerous other bacteria

Genome organization Effector genes cluster in specific genomic regions, possibly as a result of
horizontal gene transfer (HGT) events

[23,29,32,33]

G+C content Effectors were reported to have atypical G+C content, possibly as a result
of HGT events

[20]

C-terminal signal Effectors have a C-terminal secretion signal. Two putative signals were
previously suggested

[30,37,44]

Regulatory elements The PmrA and CpxR response regulators regulate numerous effectors [27,28]

doi:10.1371/journal.ppat.1000508.t001

Table 2. L. pneumophila putative effectors that were experimentally examined.

Phase Lpg #a Classification cutoffb Summaryc

I lpg0240, lpg0437, lpg1426, lpg1484, lpg1496, lpg1625, lpg1933, lpg2216,
lpg2433, lpg2504, lpg2523, lpg2826

0.903 (15) 11/11/12

II lpg0090, lpg0191, lpg0196, lpg0285, lpg0502, lpg0519, lpg0696, lpg1101,
lpg1120, lpg1145, lpg1290, lpg1491, lpg1598, lpg1702, lpg1851, lpg1949,
lpg1969, lpg2206, lpg2248, lpg2328, lpg2411, lpg2422, lpg2507, lpg2603

0.998 (50) 21/23/25

III lpg0080, lpg0096, lpg1121, lpg1947, lpg2166, lpg2406, lpg2529, lpg2804 1 (50) 8/8/8

Total 103 40/42/45

aIn bold, genes that were validated to encode for effectors; in italics, genes that we failed to clone or express; in plain text, genes that encode proteins that failed to
translocate.

bThe machine learning cutoff of the classification score used for determining the list of highly confident effectors in each learning phase. In brackets is the number of
predicted effectors with equal or higher score than the cutoff value. In total 103 putative effectors had cutoff values similar to those experimentally tested (some of the
putative effectors overlap among phases).

cValidated effectors/successfully expressed genes/genes tested.
doi:10.1371/journal.ppat.1000508.t002

Legionella Effectors Identified by Machine Learning
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encoding genes was 36.9% compared with a 39.3% G+C content

of the rest of the coding sequence (two tailed t-test, p-

value,10215). These results were also found to be valid when

analyzing G+C content in other L. pneumophila strains. In the

Paris, Lens, and Corby coding sequences, the average G+C

content of effectors was 37.1%, 37.2%, and 37.2%, while the

G+C content of the rest of the coding sequence was 38.8%,

38.8%, and 38.6%, respectively. These results are all statistically

significant (p-value,10211, p-value,10210, and p-value,1027,

respectively). These results are in agreement with a previous

report, in which lower G+C content was found in the leg genes

[20]. Furthermore, the G+C content of the 126 putative effectors

was also significantly lower than the overall G+C content.

Notably, Tetrahymena thermophila, a known host of Legionella, has a

very low G+C content of 27% [36]. Taken together, our results

support the hypothesis that horizontal gene transfer (HGT) serves

as a major mechanism for acquiring effectors-encoding genes

probably from the protozoan hosts.

Figure 2. Icm/Dot-dependent translocation of top ranking putative effector proteins. Wild-type strain JR32 (gray bars) and icmT mutant
GS3011 (white bars) harboring the CyaA fusion proteins (indicated on the left side of the bars) were used to infect HL-60-derived human
macrophages, and the cAMP levels of the infected cells were determined (as described in Materials and Methods). The previously validated effector
protein LegA10 was used as a positive control [19,27]. The data are the means for the amount of cAMP per well and the error bars indicate standard
deviations of at least 3 independent experiments.
doi:10.1371/journal.ppat.1000508.g002

Legionella Effectors Identified by Machine Learning
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The C-terminal secretion signal. While it is evident that a

signal for effector translocation via the Icm/Dot secretion system

resides in the effectors’ C-terminal, the exact identity of this signal

remains an open question. It has been suggested that a

hydrophobic residue or a proline residue at the 23 or 24

position, relative to the C-terminal amino acid, is critical for

effector translocation [37]. The characterization of the C-terminal

signal was further extended suggesting that in addition to the

hydrophobic residue, the C-terminus of effectors is enriched with

tiny, polar, and charged amino acids [30]. However, these

analyses were based on a relatively limited set of validated

effectors.

Table 3. Information summary regarding the novel effectors discovered.

ORF Symbol

Paralogs in
L. pneumophila
Philadelphia-1

Most Proximate
effector PmrA/CpxRa

Paris
homolog
(lpp)

Corby
homolog
(lpc)

Lens
homolog
(lpl)

%
G+C Motifb

lpg0080 ceg3 lpg0081 P 0094 38.3

lpg0090 lem1 0104 0106 0089 37.0

lpg0096 ceg4 P 0110 0115 0096 41.0

lpg0191 ceg5 P 0251 35.0

lpg0240 ceg8 P 0310 0316 0294 35.4

lpg0285 lem2 lpg0284 (ceg10) 0361 0362 0337 35.2

lpg0437 ceg14 lpg0436 (legA11) P+C 0504 2905 0480 36.5

lpg0519 ceg17 lpg0518 P 36.4

lpg0696 lem3 lpg0695 (legA8) C 0751 2598 0733 36.7

lpg1101 lem4 1101 2154 1100 34.3

lpg1110 lem5 1111 2142 1114 35.2

lpg1120 lem6 lpg2433 (ceg30) lpg1121 (ceg19) 2043 31.9

lpg1121 ceg19 lpg1120 (lem6) P 1121 0578 1126 38.0

lpg1145 lem7 lpg1144 (cegC3) 1147 0608 1151 36.1

lpg1290 lem8 1253 36.1

lpg1426 vpdC lpg2410 (vpdA) 1381 0842 1377 35.0 PL

lpg1491 lem9 lpg1488 (legC5) 1447 32.7

lpg1496 lem10 lpg1491 (lem10) 1453 0915 1530 36.4

lpg1598 lem11 lpg1602 (legL2) 1556 1025 1427 31.2

lpg1625 lem12 lpg1621 (ceg23) 1595 1052 1398 33.8

lpg1702 lem13 lpg1701 (legC3) 1667 1131 1661 37.5 CC

lpg1851 lem14 1818 1296 1817 36.2

lpg1933 lem15 lpg2400(legL7) 1914 1406 1903 35.9

lpg1947 lem16 lpg1948 (legLC4) 1930 32.1 CC

lpg1949 lem17 lpg1948 (legLC4) 1931 1422 1918 36.1

lpg1969 lem18 lpg1966 (lirF) 1952 1452 1941 37.2 CC

lpg2166 lem19 2104 1626 2093 35.5 CC

lpg2216 lem20 lpg2215 (legA2) P 2167 1681 2141 35.1 CC

lpg2248 lem21 2202 1717 2174 38.8

lpg2328 lem22 lpg2327 2276 1795 2248 38.0

lpg2406 lem23 lpg2407 2472 2070 2329 37.6

lpg2411 lem24 lpg2410 (vpdA) 2480 2064 2335 32.9

lpg2422 lem25 2487 2055 2345 37.9 CC

lpg2433 ceg30 lpg0126 (cegC2) P 2500 2043 2353 37.9

lpg2504 ceg32 lpg2508 (sdjA) P 2572 1967 2426 34.6

lpg2523 lem26 lpg2527 36.6

lpg2529 lem27 lpg2527 2594 1942 2449 38.0

lpg2603 lem28 2656 0539 2526 35.3

lpg2804 lem29 P+C 2850 3090 2719 38.2

lpg2826 ceg34 lpg2829 (sidH) P 3113 2741 34.3 ANK

aP: contains PmrA regulatory element; C: contains CpxR regulatory element.
bPL: Phospholipase; CC: Coiled-coil; ANK: Ankyrin-repeat.
doi:10.1371/journal.ppat.1000508.t003

Legionella Effectors Identified by Machine Learning
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We searched for the C-terminal signal across all the 145

validated effectors, focusing on the 20 C-terminal positions. First,

we analyzed for each position each of the 20 amino acids and

compared their frequencies in effectors to their frequencies in non-

effectors (altogether 20620 = 400 tests). Of these 400 tests, 17 were

significant (G-test; p-value,0.05, after Bonferroni correction; Table

S4). In 16 of these 17 significant tests, the amino acids were

aspartic acid, glutamic acid, serine, and threonine. This suggests

two groups with similar physicochemical properties: the first two

are negative amino acids and the latter two have aliphatic side

chains bearing a hydroxyl group. We thus repeated the

enrichment/depletion test with respect to physico-chemical groups

of amino acids: positively charged (lysine and arginine), negatively

charged (aspartic acid and glutamic acid), an aliphatic side-chain

bearing a hydroxyl group (serine and threonine), and hydrophobic

(leucine, isoleucine, valine, and phenylalanine). In addition, a

sliding window approach was used to allow flexibility in the

position of the signal with respect to the protein C-terminus. The

differences in abundance of these amino-acid groups between

effectors and non-effectors using a sliding window of three amino

acids are presented in Figure 4.

Our analyses suggest extensive depletion of negative amino

acids in positions 21 to 26 and considerable enrichment of these

amino acids in positions 28 to 218; serine and threonine are

enriched in positions 23 to 211; hydrophobic amino acids are

Table 4. Classification performance of each feature group
separately.

Feature group Correct rate AUC

Taxonomic distribution among Bacteria and
Metazoa

89.9% 0.96

Sequence similarity to known effector proteins 80.2% 0.78

Sequence similarity to eukaryotic proteomes 78.7% 0.78

G+C content 78.4% 0.78

Genome organization 74.3% 0.77

Regulatory elements 70.9% 0.71

C-terminal signal 60.1% 0.6

All features combined 95.9% 0.98

doi:10.1371/journal.ppat.1000508.t004

Figure 3. Schematic representation of the distribution of effectors and putative effectors in the L. pneumophila genome. Validated
effectors are in red and putative effectors are in yellow. Roman digits indicate genomic regions enriched with effector encoding genes (as described
in Table 5). Numbers represent lpg (L. pneumophila Philadelphia-1 gene) identifier. Notably, the units used for this schematic presentation are ORFs
rather than base-pairs.
doi:10.1371/journal.ppat.1000508.g003

Legionella Effectors Identified by Machine Learning
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Figure 4. The putative secretion signal at the C-terminus of effectors. The enrichment and depletion pattern of groups of amino acids within
the 20 C-terminal residues of effectors is shown. Amino acids with aliphatic side-chains bearing a hydroxyl group (S/T) are in red, hydrophobic amino
acids (I/L/V/F) in green, and negatively charged amino acids (E/D) in blue. Statistically significant enrichments or depletions (G-test; p-value,0.01 after
Bonferroni correction) are marked with asterisks.
doi:10.1371/journal.ppat.1000508.g004

Table 5. Genomic regions enriched with effector encoding genes.

Regiona Validated effectors Predicted effectors G+Cb

I
lpg1933–lpg1978 (46/16/7)

lpg1933 (lem15), lpg1947 (lem16), lpg1948 (legLC4), lpg1949 (lem17), lpg1950
(ralF), lpg1953 (legC4), lpg1958 (legL5), lpg1960 (lirA), lpg1962 (lirB), lpg1963
(lirC), lpg1964(lirD), lpg1965 (lirE), lpg1966 (lirF), lpg1969 (lem18), lpg1976 (legG1),
lpg1978 (setA)

lpg1952, lpg1957, lpg1959,
lpg1961, lpg1968, lpg1972,
lpg1975

36.8%

II
lpg2137–lpg2176 (40/9/8)

lpg2137 (legK2), lpg2144 (legAU13/ceg27/ankB), lpg2153 (sdeC), lpg2154 (sde),
lpg2155 (sidJ), lpg2156 (sdeB), lpg2157 (sdeA), lpg2166 (lem19), lpg2176 (legS2),

lpg2143, lpg2147, lpg2148,
lpg2149, lpg2150, lpg2159,
lpg2160, lpg2170

38.1%

III
lpg2391–lpg2433 (43/9/8)

lpg2391 (sdbC), lpg2400 (legL7), lpg2406 (lem23), lpg2407, lpg2409 (ceg29),
lpg2410 (vpdA), lpg2411 (lem24), lpg2422 (lem25), lpg2433 (ceg30)

lpg2395, lpg2403, lpg2408,
lpg2413, lpg2414, lpg2416,
lpg2424, lpg2425

38.4%

IV
lpg2504–lpg2529 (26/8/6)

lpg2504 (ceg32), lpg2508 (sdjA), lpg2509 (sdeD), lpg2510 (sdcA), lpg2511 (sidC),
lpg2523 (lem26), lpg2527, lpg2529 (lem27)

lpg2505, lpg2518, lpg2519,
lpg2520, lpg2522, lpg2525

37.6%

aNumber of ORFs in region/validated effectors/predicted effectors.
bG+C content of coding regions.
doi:10.1371/journal.ppat.1000508.t005
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enriched in positions 21 to 23 and depleted in positions 28 to

212 (all these results are statistically significant using G-test with p-

values,0.01 after Bonferroni correction).

Discussion

In this study we have identified 40 new effectors, bringing the

total of known effectors to 145. The high rate of correct

predictions suggests that effectors can indeed be clearly distin-

guished from the remaining ORFs according to the features

described in this work. According to available expression array

data [38], these newly discovered effectors are expressed during

intracellular growth in amoeba. The expression of 18 effectors was

elevated post infection, the expression of 7 effectors was decreased,

and the remaining 15 did not change substantially (less than 1.5

fold change). The functional role of these effectors during infection

has yet to be determined.

Regarding the evolutionary origin of effectors, the low G+C

content and spatial clustering (Figure 3) support the hypothesis that

effectors are often transferred via HGT. These results are in

agreement with a recent publication showing that two L. pneumophila

effectors were most likely acquired from Protozoa [39], and with an

additional evolutionary study, in which HGT from an amoeba to

Legionella was demonstrated [40]. Regarding our 40 newly

discovered effectors, the homology to eukaryotes was found to be

restricted to specific domains, thus, it is currently impossible to

pinpoint the exact evolutionary origins for these genes.

The 145 currently validated effectors make L. pneumophila the

organism with the highest number of validated effectors. This can

provide a lower bound on the percentage of L. pneumophila ORFs

that encode for effector proteins – 5% of the total number of ORFs.

However, assuming that a large fraction of our predicted effectors

are genuine ones, the estimate becomes close to 10% (about 300

effectors), which constitutes an exceedingly large pool of effectors

relative to any other known pathogenesis related secretion systems.

An important result of our study is the list of additional 126

predicted effectors. Support for the validity of these putative

effectors comes from a recent study concerning yeast growth defect

of L. pneumophila ORFs [25]. In this study, three new effectors were

validated. One of them (ceg19) was independently validated in our

study, and an additional ORF (ceg9) is included in our list of

putative effectors (Table S2). In the same study, 12 additional

ORFs that showed yeast growth defects and were not experimen-

tally tested for translocation were included in our list of putative

effectors. Since effectors were shown to often confer a yeast growth

defect phenotype [41,42], this provides additional support for the

validity of these putative effectors. Notably, out of our list of 126

predicted effectors, an additional effector (legK1) was also recently

validated, see Table S2 [43].

Two previous studies characterized the secretion signal located

at the effector C-terminus [30,37]. We utilized the high number of

validated effectors to statistically analyze the abundance of amino-

acid groups at the C-terminus of effectors versus non-effectors and

suggested a detailed description of this signal (Figure 4). We further

computed the secretion signal among the 126 predicted effectors.

The resulting signal is essentially similar to the one inferred from

the list of validated effectors (Figure S1). This similarity supports

both the validity of the putative effectors as well as the biological

significance of the secretion signal. It should be noted that the

previously suggested secretion signals [30,44] were not retained by

the classification algorithms in the final learning phase and hence,

detecting the secretion signal defined in this work among the

putative effectors cannot be attributed to the inclusion of these

features when training the classifier.

Our machine learning approach is general and thus can be

applied to other pathogens. However, the applicability of this

approach to other bacteria requires a set of validated effectors,

adjustment of the features in order to optimally discriminate these

effectors from non-effectors, and an experimental system for

prediction validation. Nevertheless, we anticipate that the overall

scheme of effector identification will be useful for many

pathogenesis systems, when their effector research reaches a

proper stage. The pathogenesis system most resembling the one of

L. pneumophila is that of C. burnetii, an obligate intracellular

pathogen and a potential bioterrorism agent. These bacteria utilize

an Icm/Dot type-IVb secretion system and translocate effector

proteins in a mechanism similar to that of L. pneumophila, as

indicated by the ability of C. burnetii effectors to translocate via the

L. pneumophila translocation system [21]. Most of our features, the

learning algorithms, and the experimental validation experiments

used in this study to identify effectors are applicable with relatively

minor changes to the study of C. burnetii pathogenesis, while for

more distantly related pathogens (e.g., those using type-IVa

secretion systems) further adjustments are required.

To summarize, in this work we have developed a combined

computational-experimental approach to identify and validate

pathogenesis determinants on a genomic scale. We have increased

the number of validated effectors by more than 37% and suggested

over a hundred putative ones. We have developed a general machine

learning scheme for the prediction of effectors, which can be updated

when new information becomes available. Finally, this work suggests

that our approach is applicable in the identification and character-

ization of effectors in other bacterial pathogenesis systems.

Materials and Methods

Sequences
The following genomes were acquired from the RefSeq database

at NCBI (http://www.ncbi.nlm.nih.gov/RefSeq/): L. pneumophila

Philadelphia-1 (NC_002942); L. pneumophila Lens (NC_006366 and

NC_006369); L. pneumophila Corby (NC_009494); L. pneumophila

Paris (NC_006365 and NC_006368); Escherichia coli strain K-12

DH10B (NC_010473), and Pseudomonas fluorescens Pf-5

(NC_004129). Two datasets of all human proteins were download-

ed from ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/protein/. The

first includes all the human annotated proteins and the second is

comprised of ab initio protein predictions of ‘‘Gnomon’’, an NCBI

eukaryotic gene prediction tool (http://www.ncbi.nlm.nih.gov/

genome/guide/gnomon.shtml). The genome of Dictyostelium dis-

coideum was downloaded from DictyBase (http://dictybase.org/).

The T. thermophila genome was acquired from the TIGR database

(http://www.tigr.org/tdb/e2k1/ttg/).

Effector and non-effector datasets
For each of the three learning phases (see Results), we

constructed a dataset of known effectors and a dataset of non-

effectors. The size of each non-effector dataset was five folds larger

than its corresponding effector dataset. For each learning phase

the effector dataset included all effectors known at that time

(published effectors and effectors we validated at previous learning

phases). Since a dataset of experimentally validated non-effectors is

unavailable, we searched for genes that are present in both L.

pneumophila and E. coli, under the premise that such genes are most

likely not related to the pathogenicity of L. pneumophila and are thus

expected to be non-effectors. Specifically, BLAST-P similarity

scores were computed for each L. pneumophila protein against the

proteins of E. coli. An L. pneumophila protein was defined as a non-

effector if it has a hit from E. coli with an E-value lower than 10220
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and sequence similarity higher than 50%. Additionally, the

proteins that constitute the Icm/Dot secretion system were

included in the non-effector datasets. A full list of all the effectors

and non-effectors used in each phase is given in Table S1.

Features and feature selection
Each ORF in the L. pneumophila Philadelphia-1 genome was

described using a vector of features. The features used for each

learning phase are detailed in Table S2 and are summarized in

Table 1.

Sequence similarity to known effector proteins. Two

features based on local sequence similarity to effector proteins

were measured. Both of these features rely on all-against-all

searches of L. pneumophila Philadelphia-1 proteins using local

BLAST-P [45]. The first is the BLAST bit score to the most

similar known effector. The second is the number of known

effectors that have significant similarity (with E-value,0.01) to the

ORF in question.

Sequence similarity to eukaryotic proteomes. For each

L. pneumophila’s ORF, four features based on sequence similarity to

host proteomes were defined. The proteomes analyzed for this task

were from two protozoans: T. thermophila and D. discoideum, from

Homo sapiens, and from a human protein dataset of NCBI’s

Gnomon ab initio protein predictions. Specifically, each of the four

features is defined as the highest BLAST-P bit score against each

of the abovementioned protein datasets.

Taxonomic distribution among Bacteria and

Metazoa. While the above features are based on sequence

similarity to specific genomes (hosts and L. pneumophila), two

additional features were based on the overall taxonomical

distribution of each ORF. The first feature counts the number of

homologous proteins in the entire bacterial domain. Similarly, the

second feature counts the number of homologs among Metazoa.

Specifically, the number of homologs is defined as the number of

hits with a bit score higher than 100 against NCBI’s protein non-

redundant (nr) database. These numbers were extracted from the

taxonomic grouping information of Blink (http://www.ncbi.nlm.

nih.gov/Web/Newsltr/Spring04/blink.html).

Genome organization. The genomic distance between a

given ORF and the closest effector in the genome was measured. A

distance of i indicates that the ORF and the closest known effector

are separated by i-1 ORFs that are not annotated as effectors. We

preferred to measure distance in ORF units, rather than in base-

pairs to eliminate bias of long genes and to focus on gene

organization. In addition, the number of effectors in the genomic

vicinity of each ORF was recorded. Specifically, for any x[ 1::30½ �,
the number of known effectors residing x ORFs upstream and

downstream was measured.

G+C content. The G+C content of each ORF was measured

as the fraction of G and C out of the ORF length in base pairs.

C-terminal signal. The number of occurrences of the motif

suggested as a secretion signal by Hohlfeld et al. [44] was used as a

feature. The motif, which resides in the 20 C-terminal amino-acid

positions, consists of two positively charged amino acids, separated

by three or four amino acids, out of which at least one is negatively

charged. An additional feature was based on the secretion signal

suggested by Kubori et al. [30], which includes frequent tiny

(alanine, glycine, serine, threonine) and polar (glutamine, aspartic

acid, glutamic acid, histidine, lysine, asparagine, arginine, serine,

threonine) amino acids in the C-terminal amino-acid positions of

the protein. The feature we considered is the fraction of tiny and

polar amino acids within the 14 C-terminal positions.

Regulatory elements. Two features were based on the

existence of conserved regulatory elements: one for the response

regulator PmrA and one for CpxR. Position specific score matrices

(PSSMs) [46] for each of these regulatory elements were

constructed, and a single pseudo-count was added to each

position. The PSSMs were based on a set of genes that were

shown to be regulated by these elements [27,28] and are given as

Table S4. These PSSMs were used to search for putative

regulatory elements between 2200 bp to +50 bp relative to the

first nucleotide of the start codon. The score of the best match to

each PSSM was recorded. Notably, since CpxR can recognize its

target sequence in the reverse strand as well, the highest score was

sought on both strands.

Machine learning algorithms
Machine learning algorithms were performed using the WEKA

package [47]. The following classification algorithms were tested:

Naı̈ve Bayes, Bayesian networks, SVM (SMO), Neural networks

(Multilayer perceptron), and a Voting algorithm that is based on

these four algorithms. Feature selection was performed using a

‘‘Wrapper’’ to find the best performing features for each one of the

algorithms, using hill-climbing search algorithms. The classifiers

were trained on datasets in which the ratio of effectors to non-

effectors was 1:5. Specifically, as more effectors were included in

the second and third phases, the number of non-effectors was

increased accordingly to maintain this ratio.

The classification performance was evaluated on the train

datasets for each classifier separately. Classification performance

for each classifier was evaluated using 10-fold cross validation, i.e.,

90% of the training data were randomly chosen and used to tune

the parameters of each classifier, and the remaining 10% were

used to evaluate the classifier performance [47]. The performance

score is measured in terms of AUC, which accounts for both the

fraction of true positives (correctly classified effectors) and false

positives (ORFs erroneously classified as effectors). Since the

performance depends on the division of the training data, the

procedure is repeated 10 times, so that each 10% is used once to

evaluate performance. Classifier accuracy is defined as the average

over these 10 repeats. The classifier with the highest average AUC

was used at each learning phase to predict effectors.

When we evaluated the classification performance of each

feature group separately, a dataset in which the ratio of 1:1

between effectors and non-effectors was used. This was done to

avoid artificial high performance stemming from the excess of

non-effectors in the training data.

The computer code used to implement the machine learning

scheme described here is available in http://www.tau.ac.il/,talp/

LegionellaMachineLearning.

Bacterial strains and media
The L. pneumophila strains used in this study were L. pneumophila

JR32, a streptomycin-resistant, restriction-negative mutant of L.

pneumophila Philadelphia-1, which is a wild-type strain in terms of

intracellular growth [48] and GS3011 an icmT deletion mutant

[49]. The E. coli strain used was MC1022 [50]. Bacterial media,

plates, and antibiotic concentrations were used as described

previously [51].

Construction of cyaA fusions
The plasmid pMMB-cyaA-C [28] was used for the cloning of all

the cyaA fusions constructed. All the genes examined were

amplified by PCR using a pair of primers containing suitable

restriction sites at the 59 end. The PCR products were

subsequently digested with the relevant enzymes, and cloned into

the pMMB-cyaA-C vector to generate plasmids. Table S5 includes

the pair of primers, the enzymes used for digestion, and the
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generated plasmids. The generated plasmids were sequenced to

verify that no mutations were introduced during the PCR.

Furthermore, the formation of a fusion protein with a proper size

was validated by Western analysis using the CyaA antibody 3D1

(Santa Cruz Biotechnology, Inc.).

CyaA translocation assay
Others and we have utilized the CyaA translocation assay to

validate effector proteins [17,27,28,30,33]. Specifically, differenti-

ated HL-60-derived human macrophages plated in 24-well tissue

culture dishes at a concentration of 2.56106 cells/well were used

for the assay. Bacteria were grown on ABCYE (ACES buffered

charcoal yeast extract) plates containing chloramphenicol (Cm) for

48 h. The bacteria were scraped off the plate, calibrated to OD600

of 0.2, and 20 ml of these bacteria were spotted on an ABCYE

plate containing Cm and 1 mM isopropyl-ß-D-thiogalactopyrano-

side (IPTG) and grown for 20 h. The bacteria were then scraped

off the plate and calibrated in order to result with a multiplicity of

infection (MOI) of 5 during infection. Cells were infected with

bacteria harboring the appropriate plasmids and the plates were

centrifuged at 180 g for 5 minutes followed by incubation at 37uC
under CO2 (5%) for 2 h. Cells were then washed twice with ice-

cold PBS buffer (1.4 M NaCl, 27 mM KCl, 100 mM Na2HPO4,

18 mM KH2PO4) and lysed with 200 ml of lysis buffer (50 mM

HCl and 0.1% Triton X-100) at 4uC for 30 minutes. Lysed

samples were boiled for 5 minutes, centrifuged for 10 minutes,

and the supernatants were neutralized with NaOH. The levels of

cAMP were determined using the cAMP Biotrak enzyme

immunoassay (EIA) system (GE-healthcare) according to the

manufacturer’s instructions. The presence of the CyaA fusion

proteins was detected by Western blot, using monoclonal antibody

anti-CyaA 3D1 (Santa Cruz Biotechnology, Inc.) diluted 1:500

and goat anti-mouse IgG conjugated to HRP (Jackson Immunor-

esearch Laboratories, Inc.) diluted 1:10,000.
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