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ABSTRACT GRAPHICAL ABSTRACT

In the last decade, advances in sequencing technol-
ogy have led to an exponential increase in genomic
data. These new data have dramatically changed our
understanding of the evolution and function of genes z
and genomes. Despite improvements in sequenc- ‘ icwm

Download
ing technologies, identifying contaminated reads re- el k""::;:‘z:’“"
mains a complex task for many research groups. )
Here, we introduce GenomeFLTR, a new web server [[uer |
to filter contaminated reads. Reads are compared @ -----1-----------------p-----f-----1
against existing sequence databases from various [sene |
representative organisms to detect potential contam- v
inants. The main features implemented in Genome- very
FLTR are: (i) automated updating of the relevant o
databases; (ii) fast comparison of each read against
the database; (iii) the ability to create user-specified
databases; (iv) a user-friendly interactive dashboard
to investigate the origin and frequency of the contam- INTRODUCTION
inations; (v) the generation of a contamination-free

file. Availability: https:/genomefitr.tau.ac.il/. Sequencing costs are constantly decreasing (1). Research
groups are now able to generate large sequence datasets

from various organisms, and hence the size of GenBank
doubles every few months (2). These data drive discover-
ies in ecology, evolution, molecular biology, and medicine
(3-5). Detecting and filtering contaminant DNA is a
main challenge when processing next-generation sequenc-
ing (NGS) data. Contaminant reads are defined as reads
that originated from an organism different from the one
that the researchers aimed at sequencing. Read contami-
nation can have a significant effect on downstream analy-
ses, such as false positive single-nucleotide polymorphisms
(SNP) identification (6), incorrect labels on sequences
in metagenomic studies (7) and inaccurate phylogenetic
inference (8).

Previous studies have shown that some of the most
used biological datasets contain a large proportion of
contaminated sequences. For example, over two billion
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contaminated sequences were detected in RefSeq and over
14,000 putative contaminants were identified in the non-
redundant (NR) database (9). Moreover, repeated elements
characterizing human cells were found in a quarter of non-
primate genomes available in NCBI (the National Center
for Biotechnology Information) (10). As these datasets are
often taken as ‘ground truth’, filtering contaminated se-
quences is of high importance prior to most bioinformatic
analyses (11,12).

Previous contaminant-detection algorithms can be clas-
sified by various criteria (13). One main criterion is the
presence or absence of reference databases to detect con-
taminations. Methodologies that do not rely on reference
databases, search for read-specific features such as low-
complexity and low-quality scores (14). When searching
for bacterial contaminants, the following features were
searched for: atypical GC content, presence of intron-less
genes, and small scaffolds (15,16). Regarding algorithms
that rely on reference databases for detecting contamina-
tions, several search for the presence of a few single-copy
gene markers [e.g. (17,18)]. These methods are aimed to
detect the presence of additional copies of these mark-
ers indicating the presence of contaminations and pos-
sibly identify their sources. However, these gene marker-
based methods aim at detecting contaminations and not
at filtering a dataset from contaminants. Other algorithms,
using reference databases take a genome-wide approach
to detect contaminations. With these algorithms, filtration
may take place pre- or post-assembly (13). One advan-
tage of post-assembly methods is that they can take syn-
teny into account to detect contaminant sequences (12).
However, it is likely that the assembly itself can be im-
proved by removing contaminated reads prior to the assem-
bly. Contamination-detection algorithms are often tuned
to specific taxa, e.g. the tool GUNC searches for lack of
phylogenetic homogeneity across prokaryotic contigs (19).
Several pre-assembly methods rely on splitting the reads
into small fragments and finding similarities against specific
datasets using BLAST (20). Great progress was achieved by
the development of efficient algorithms for mapping short
DNA segments to genomes, which allows classifying reads
to taxonomic units (21-24). Such fast approaches are a
prerequisite for the development of efficient web servers
for the detection and filtering of contaminated reads and
contigs.

The above algorithms, as well as additional tools de-
veloped by specific research groups (21,25), require down-
loading the pipeline components (e.g. scripts, programs),
downloading and maintaining databases, and may require
heavy computer clusters (i.e. multi-CPUs) and technologi-
cal skills. Here we present GenomeFLTR, a web server that
easily filters genomic reads. No technical skill, download-
ing, or computational power is needed. Raw reads are up-
loaded to the server and contaminated reads are removed,
based on similarity to databases that are periodically and
automatically updated. A user can also provide a tailored
dataset to compare against. The contaminated reads are
analyzed, e.g. the reads taxonomy distribution is provided.
Our server provides a simple and interactive graphical user
interface (GUI) that allows controlling the filtering process
(Video 1, Supplementary data).
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MATERIALS AND METHODS
Input

The sole mandatory input for the GenomeFLTR web server
is a file (or two files for paired reads, see below), contain-
ing the reads to be filtered. Standard formats such as Fastq
and Fasta are accepted. In addition, a user has to select a
database against which the reads are queried (e.g. to de-
tect bacterial contaminants, a user can choose a bacterial
database containing multiple genomes from a diverse set of
bacteria). A user may also input a custom database (see be-
low). Finally, a user may specify an email to which the re-
sults link will be sent.

Database

The entire set of sequence databases available in Genome-
FLTR is automatically updated monthly from NCBI. These
databases are processed for the Kraken search engine for-
mat (21). We also allow users to choose the database against
which to compare their read data. Default databases are
bacteria, human, fungi, protozoa, univec (i.e. a dataset of
vector sequences), plasmid, archaea, viral, Kraken standard
(i.e. all complete bacterial, archeal, and viral genomes in
Refseq), and custom. For the custom database, a user in-
serts the NCBI taxonomy identifiers of the species included
in RefSeq (NCBI Reference Sequence Database) to com-
pare against and may choose specific accession numbers of
genomes from this species to analyze. If accession numbers
are not provided, the first three genomes from RefSeq are
downloaded for each species. To download the genomes
for the custom database we use a script available at https:
/Igithub.com/kblin/ncbi-genome-download.

Search engine

Each read is first split into k-mers (k-mers are substrings
of the read with length k; for example, 3-mer for the read:
‘ATGG’ will be: ‘ATG’ and ‘TGG’). To maximize both
speed and accuracy, we use the Kraken 2 search engine
(21) to query each k-mer (with k = 35) against the selected
database. A phylogenetic tree representing the evolution-
ary relationships within the taxon included in each Kraken
database is used to classify hits to either species or ances-
tral nodes. If a k-mer only matches a single species, it will
be assigned to it. If a k-mer matches multiple species, it will
be assigned to the most recent common ancestral node of
all these species. Note that different k-mers within the same
read might be assigned to different nodes of the phyloge-
netic tree. The output of this step is a file containing, for
each of the reads, a list of species or ancestral nodes and the
number of k-mers matched to each node.

Read classification

The output of the previous step is further processed in or-
der to classify each read to a specific node in the tree. To
this end, for each read and for each node we define a read-
node score, which is the number of k-mers mapped to this
node divided by the total number of k-mers possible for that
read (/- k + 1, where /is the read length). For each read, we
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Figure 1. GenomeFLTR dashboard. The dashboard contains the following interactive panels: (A) a tabular description of the nodes and their correspond-
ing number of reads. Species can be included or excluded from the list of contaminated species by marking a checkbox; (B) a pie chart representing the
percent of current contaminated and retained reads; (C) a histogram showing the number of reads for each of the read-contamination scores. Low values
correspond to reads with low similarity to the selected database. The red line represents the currently selected threshold to filter by. Pressing on the graph
will update the threshold. The dashboard is interactive, i.e. the different panels are updated according to the user’s actions.

identify the node that maximizes the read-node score and
assign the read to this node. A tabular description (Figure
1A) of the number of contaminated reads from each node
is provided as interactive visual output by GenomeFLTR
as well as a pie chart indicating the percentage of contami-
nated reads (Figure 1B).

Determining which reads to filter

We also define a read-contamination score, which is the
sum, over all nodes of the tree, of the read-node score. This
score quantifies the percent of k-mers that were mapped
to the contaminated database out of the / — k + 1 total k-
mers. The higher the read-contamination score, the more
likely it is that the read is a contamination and hence should
be filtered. A histogram illustrating the distribution of the
read-contamination score is given as an interactive graphi-
cal output by GenomeFLTR (Figure 1C). The user specifies
a threshold cutoff that determines which reads will be la-
beled as contamination and which will be retained in the
‘clean’ data. By default, this threshold is set to 0.5. This
threshold can be set interactively by clicking on the bars of
the histogram. Reads with a score lower than the thresh-
old (this threshold is marked by a red line in the graphical
plot) are colored blue and will be retained, while reads col-
ored orange will be filtered once the user presses the ‘Get fil-
tered results’ button. Of note, reads that do not match any
of the genomes in the database are also part of the clean
data.

It is possible that a user chooses to retain reads of specific
species. For example, if a user sequenced a metagenomic
sample containing multiple bacteria species, and would like
to retain only a subset of those bacteria, e.g. bacteria that
are known to exist in a specific niche. He can do so, by
choosing specific species to retain / filter from the inter-
active tabular section of the GUI. The pie chart and the
histogram are updated accordingly in real-time. We note
that in this case, some blue reads (retained reads) could ap-
pear to the right of the red bar, which indicates the read-
contamination score threshold.

Obtaining contamination-free data

Pressing the ‘Get filtered results’ button initiates the post
process, which iterates over the reads and identifies the
‘cleaned’ from the contaminated ones. When the post pro-
cess is finished, a link to download a compressed file (i.e. a
¢.gz’ file) containing all the non-contaminated reads is pro-
vided on the screen and via email to the user.

Implementation

GenomeFLTR is implemented in Python using the Flask
framework. The source code is available at: https://github.
com/michaelalb/GenomeFItr. The web server submits jobs
that are processed on ProLiant XL170r Gen9, equipped
with 128 GB RAM and 28 CPU cores per node. Back-
ground images were generated using Dall-E 2 (26).

Paired-end files

Another feature implemented in the web server is the fil-
tering of paired-end reads. Each end is first processed inde-
pendently as described above. Next, the node-score of the
pair-end read is the maximum over the two ends. For ex-
ample, if one end has a read-node score of 0.2 for species
X, and the other end the read-node score is 0.75 to species
Y, the result of the paired read is a read-node score of 0.75
to species Y. Based on the read scores, the paired reads are
either filtered or not, thus, if one end within a pair is con-
sidered to be a contamination, the entire paired-end read is
discarded.

Data structure

We transform the list of the reads (which contain millions of
reads) into a matrix, in which rows are bins of the read-node
score (101 bins: 0, 0.01, ..., 1) and columns are nodes in the
tree. Each cell denotes the number of reads for that bin and
node. This data structure allows us to present interactive
graphs in real-time.
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Multiple filtration steps

It may be beneficial to filter reads first against the uni-
vec database and then to filter the obtained clean data
against, e.g. bacterial contaminants. Iterative executions al-
low breaking down the filtration procedure, thus cleaning
the data against combinations of pre-existing categories.
Such an approach is demonstrated in the case study below.

CASE STUDY

We present the GenomeFLTR output by analyzing the
transcriptome reads available under accession number
SRR 1300899. This paired-read dataset originated from a
myxozoan parasite (Kudoa iwatai). Myxozoans are micro-
scopic eukaryotic parasites of fish, with a large negative eco-
nomic impact (27). Because of their small size and their
presence within fish tissues, we expected to find fish reads
as well as some bacterial reads and possibly a small number
of human reads in these NGS data. This parasitic dataset
was published before the fish host genome was available and
thus these data were not filtered before their submission to
public repositories (28). We analyzed a total of 50 million
paired-end reads (100 million reads in total) from these data
in two steps. First, we excluded the fish reads by performing
a custom filtering analysis in which we provided the tax-
onomic id (taxid 8175) of the host fish as input. The pro-
gram automatically downloaded the corresponding Refseq
genome GCF_900880675.1 for this analysis. GenomeFLTR
inferred that ~17.3% of the reads (8,641,393 paired reads)
were of fish origin using a read similarity threshold above
0.75. We then downloaded the remaining uncontaminated
reads and conducted a second filtering analyses against
the Kraken standard database (again with a threshold of
0.75). The remaining read data contained bacterial con-
taminations from various sources, for example Proteobacte-
ria (39,129 paired reads) and Staphylococcus (49,243 paired
reads). It also contained a number of reads from human ori-
gin (107,658 paired reads). Using the web server option to
mark nodes that should not be filtered, we decided not to fil-
ter cellular organisms and root (taxid 1), which reflect reads
that are potentially of eukaryotic origin and thus may be
genuine myxozoan reads. In total, 1.22% of the reads were
filtered, generating contamination-free data that are ready
for further analyses.

DATA AVAILABILITY

GenomeFLTR is freely available without registration or lo-
gin requirements at https:/genomefltr.tau.ac.il/.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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