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ABSTRACT 

In the last decade, advances in sequencing technol-
ogy have led to an exponential increase in genomic
data. These new data have dramatically changed our
understanding of the evolution and function of genes
and genomes. Despite impr o vements in sequenc-
ing technologies, identifying contaminated reads re-
mains a complex task for many research groups.
Here, we introduce GenomeFLTR, a new web server
to filter contaminated reads. Reads are compared
against existing sequence databases from various
representative organisms to detect potential contam-
inants. The main features implemented in Genome-
FLTR are: (i) automated updating of the relevant
databases; (ii) fast comparison of each read against
the database; (iii) the ability to create user-specified
databases; (iv) a user-friendly interactive dashboard
to investigate the origin and frequency of the contam-
inations; (v) the generation of a contamination-free
file. Availability: https:// genomefltr.tau.ac.il/ . 
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GRAPHICAL ABSTRACT 

INTRODUCTION 

Sequencing costs are constantly decreasing ( 1 ). Research
groups are now able to generate large sequence datasets
from various organisms, and hence the size of GenBank
doub les e v ery fe w months ( 2 ). These data dri v e discov er-
ies in ecology, evolution, molecular biology, and medicine
( 3–5 ). Detecting and filtering contaminant DNA is a
main challenge when processing next-generation sequenc-
ing (NGS) data. Contaminant reads are defined as reads
tha t origina ted from an organism different from the one
that the r esear chers aimed at sequencing. Read contami-
nation can have a significant effect on downstream analy-
ses, such as false positi v e single-nucleotide polymorphisms
(SNP) identification ( 6 ), incorrect labels on sequences
in metagenomic studies ( 7 ) and inaccurate phylogenetic
inference ( 8 ). 

Pre vious studies hav e shown that some of the most
used biological datasets contain a large proportion of
contaminated sequences. For e xample, ov er two billion
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ontaminated sequences were detected in RefSeq and over 
4,000 putati v e contaminants were identified in the non- 
edundant (NR) database ( 9 ). Moreover, repeated elements 
haracterizing human cells were found in a quarter of non- 
rimate genomes available in NCBI (the National Center 
 or Biotechnology Inf orma tion) ( 10 ). As these da tasets are
ften taken as ‘ground truth’, filtering contaminated se- 
uences is of high importance prior to most bioinformatic 
nalyses ( 11 , 12 ). 

Previous contaminant-detection algorithms can be clas- 
ified b y v arious criteria ( 13 ). One main criterion is the
resence or absence of reference databases to detect con- 
amina tions. Methodologies tha t do not rely on r efer ence 
atabases, sear ch for r ead-specific featur es such as low- 
omplexity and low-quality scores ( 14 ). When searching 

or bacterial contaminants, the following features were 
ear ched for: atypical GC content, pr esence of intron-less 
enes, and small scaffolds ( 15 , 16 ). Regarding algorithms 
hat rely on reference databases for detecting contamina- 
ions, se v eral search for the presence of a few single-copy 

ene markers [e.g. ( 17 , 18 )]. These methods are aimed to 

etect the presence of additional copies of these mark- 
rs indicating the presence of contaminations and pos- 
ibly identify their sources. However, these gene marker- 
ased methods aim at detecting contaminations and not 
t filtering a dataset from contaminants. Other algorithms, 
sing r efer ence databases take a genome-wide approach 

o detect contaminations. With these algorithms, filtration 

ay take place pre- or post-assembly ( 13 ). One advan- 
age of post-assembly methods is that they can take syn- 
eny into account to detect contaminant sequences ( 12 ). 
owe v er, it is likely that the assembly itself can be im-

roved by removing contaminated reads prior to the assem- 
ly. Contamination-detection algorithms are often tuned 

o specific taxa, e.g. the tool GUNC searches for lack of 
hylo genetic homo geneity acr oss pr okaryotic contigs ( 19 ). 
e v eral pre-assemb l y methods rel y on splitting the reads 

nto small fragments and finding similarities against specific 
atasets using BLAST ( 20 ). Great progress was achie v ed by 

he de v elopment of efficient algorithms for mapping short 
NA segments to genomes, which allows classifying reads 

o taxonomic units ( 21–24 ). Such fast approaches are a 

r er equisite for the de v elopment of efficient w e b servers
or the detection and filtering of contaminated reads and 

ontigs. 
The above algorithms, as well as additional tools de- 

eloped by specific r esear ch groups ( 21 , 25 ), r equir e down-
oading the pipeline components (e.g. scripts, programs), 
ownloading and maintaining databases, and may r equir e 
eavy computer clusters (i.e. multi-CPUs) and technologi- 
al skills. Here we present GenomeFLTR, a w e b server that 
asily filters genomic reads. No technical skill, download- 
ng, or computational power is needed. Raw r eads ar e up- 
oaded to the server and contaminated reads are removed, 
ased on similarity to databases that are periodically and 

utoma tically upda ted. A user can also provide a tailored 

ataset to compare against. The contaminated reads are 
nalyzed, e.g. the reads tax onom y distribution is provided. 
ur server provides a simple and interacti v e graphical user 

nterface (GUI) that allows controlling the filtering process 
Video 1, Supplementary data). 
ATERIALS AND METHODS 

nput 

he sole mandatory input for the GenomeFLTR w e b server 
s a file (or two files for pair ed r eads, see below), contain-
ng the reads to be filtered. Standard formats such as Fastq 

nd Fasta are accepted. In addition, a user has to select a 

atabase against which the r eads ar e queried (e.g. to de- 
ect bacterial contaminants, a user can choose a bacterial 
atabase containing multiple genomes from a di v erse set of 
acteria). A user may also input a custom database (see be- 

ow). Finally, a user may specify an email to which the re- 
ults link will be sent. 

atabase 

he entire set of sequence data bases availa ble in Genome- 
LTR is automa tically upda ted monthly from NCBI. These 
atabases are processed for the Kraken search engine for- 
at ( 21 ). We also allow users to choose the database against 
hich to compare their read da ta. Default da tabases are 
acteria, human, fungi, protozoa, uni v ec (i.e. a dataset of 
ector sequences), plasmid, archaea, vir al, Kr aken standard 

i.e. all complete bacterial, archeal, and viral genomes in 

efseq), and custom. For the custom database, a user in- 
erts the NCBI tax onom y identifiers of the species included 

n RefSeq (NCBI Reference Sequence Database) to com- 
are against and may choose specific accession numbers of 
enomes from this species to analyze. If accession numbers 
re not provided, the first three genomes from RefSeq are 
ownloaded for each species. To download the genomes 

or the custom database we use a script available at https: 
/github.com/kblin/ncbi- genome- download . 

earch engine 

ach read is first split into k -mers ( k -mers are substrings 
f the read with length k ; for example, 3-mer for the read: 
 ATGG’ will be: ‘ AT G’ and ‘T GG’). To maximize both 

peed and accuracy, we use the Kraken 2 search engine 
 21 ) to query each k -mer (with k = 35) against the selected
atabase. A phylogenetic tree representing the evolution- 
ry relationships within the taxon included in each Kraken 

atabase is used to classify hits to either species or ances- 
ral nodes. If a k -mer only matches a single species, it will 
e assigned to it. If a k -mer matches multiple species, it will 
e assigned to the most recent common ancestral node of 
ll these species. Note that different k -mers within the same 
ead might be assigned to different nodes of the phyloge- 
etic tree. The output of this step is a file containing, for 
ach of the reads, a list of species or ancestral nodes and the 
umber of k -mers matched to each node. 

ead classification 

he output of the previous step is further processed in or- 
er to classify each read to a specific node in the tree. To 

his end, for each read and for each node we define a read- 
ode score, which is the number of k -mers mapped to this 
ode divided by the total number of k -mers possible for that 
ead ( l – k + 1, where l is the read length). For each read, we

https://github.com/kblin/ncbi-genome-download
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Figure 1. GenomeFLTR dashboard. The dashboard contains the following interactive panels: ( A ) a tabular description of the nodes and their correspond- 
ing number of reads. Species can be included or excluded from the list of contaminated species by marking a checkbox; ( B ) a pie chart r epr esenting the 
per cent of curr ent contaminated and r etained r eads; ( C ) a histogram showing the number of reads for each of the read-contamination scores. Low values 
corr espond to r eads with low similarity to the selected database. The r ed line r epr esents the curr ently selected thr eshold to filter by. Pr essing on the graph 
will update the threshold. The dashboard is interactive, i.e. the different panels are updated according to the user’s actions. 
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identify the node that maximizes the read-node score and
assign the read to this node. A tabular description (Figure
1 A) of the number of contaminated reads from each node
is provided as interacti v e visual output by GenomeFLTR
as well as a pie chart indicating the percentage of contami-
nated reads (Figure 1 B). 

Determining which reads to filter 

We also define a read-contamination score, which is the
sum, over all nodes of the tree, of the read-node score. This
score quantifies the percent of k -mers that were mapped
to the contamina ted da tabase out of the l – k + 1 total k -
mers. The higher the read-contamination score, the more
likely it is that the read is a contamination and hence should
be filtered. A histogram illustrating the distribution of the
r ead-contamination scor e is gi v en as an interacti v e graphi-
cal output by GenomeFLTR (Figure 1 C). The user specifies
a threshold cutoff that determines which reads will be la-
beled as contamination and which will be retained in the
‘clean’ data. By default, this threshold is set to 0.5. This
threshold can be set interacti v ely by clicking on the bars of
the histogram. Reads with a score lower than the thresh-
old (this threshold is marked by a red line in the graphical
plot) are colored blue and will be retained, while reads col-
ored orange will be filtered once the user presses the ‘Get fil-
ter ed r esults’ button. Of note, r eads tha t do not ma tch any
of the genomes in the database are also part of the clean
data. 

It is possible that a user chooses to retain reads of specific
species. For example, if a user sequenced a metagenomic
sample containing multiple bacteria species, and would like
to retain only a subset of those bacteria, e.g. bacteria that
are known to exist in a specific niche. He can do so, by
choosing specific species to retain / filter from the inter-
acti v e tabular section of the GUI. The pie chart and the
histogram are updated accordingly in real-time. We note
that in this case, some blue reads (retained reads) could ap-
pear to the right of the red bar, which indicates the read-

contamination score threshold. 
Obtaining contamination-free data 

Pressing the ‘Get filtered results’ button initiates the post
process, which iterates over the reads and identifies the
‘cleaned’ from the contaminated ones. When the post pro-
cess is finished, a link to download a compressed file (i.e. a
‘.gz’ file) containing all the non-contaminated reads is pro-
vided on the screen and via email to the user. 

Implementation 

GenomeFLTR is implemented in Python using the Flask
frame wor k. The source code is available at: https://github.
com/michaelalb/GenomeFltr . The w e b server submits jobs
that are processed on ProLiant XL170r Gen9, equipped
with 128 GB RAM and 28 CPU cores per node. Back-
ground images were generated using Dall-E 2 ( 26 ). 

P air ed-end files 

Another feature implemented in the w e b server is the fil-
tering of paired-end reads. Each end is first processed inde-
pendently as described abov e. Ne xt, the node-score of the
pair-end read is the maximum over the two ends. For ex-
ample, if one end has a read-node score of 0.2 for species
X, and the other end the r ead-node scor e is 0.75 to species
Y, the result of the pair ed r ead is a read-node score of 0.75
to species Y. Based on the read scores, the paired reads are
either filtered or not, thus, if one end within a pair is con-
sidered to be a contamination, the entire paired-end read is
discarded. 

Data structure 

We transform the list of the reads (which contain millions of
reads) into a matrix, in which rows are bins of the read-node
score (101 bins: 0, 0.01, . . . , 1) and columns are nodes in the
tree. Each cell denotes the number of reads for that bin and
node. This data structure allows us to present interacti v e
graphs in real-time. 

art/gkad410_f1.eps
https://github.com/michaelalb/GenomeFltr
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ultiple filtration steps 

t may be beneficial to filter reads first against the uni- 
ec database and then to filter the obtained clean data 

gainst, e.g. bacterial contaminants. Iterati v e e xecutions al- 
o w breaking do wn the filtration procedure, thus cleaning 

he data against combinations of pre-existing categories. 
uch an approach is demonstrated in the case study below. 

ASE STUDY 

e present the GenomeFLTR output by analyzing the 
ranscriptome reads available under accession number 
RR1300899. This pair ed-r ead da taset origina ted from a 

 yx ozoan parasite ( Kudoa iwatai ). Myxozoans are micro- 
copic eukaryotic parasites of fish, with a large negati v e eco- 
omic impact ( 27 ). Because of their small size and their 
resence within fish tissues, we expected to find fish reads 
s well as some bacterial reads and possibly a small number 
f human reads in these NGS data. This parasitic dataset 
as published before the fish host genome was available and 

hus these data were not filtered before their submission to 

ublic repositories ( 28 ). We analyzed a total of 50 million 

air ed-end r eads (100 million reads in total) from these data 

n two steps. First, we excluded the fish reads by performing 

 custom filtering analysis in which we provided the tax- 
nomic id (taxid 8175) of the host fish as input. The pro- 
ram automatically downloaded the corresponding Refseq 

enome GCF 900880675.1 for this analysis. GenomeFLTR 

nferred that ∼17.3% of the reads (8,641,393 paired reads) 
ere of fish origin using a read similarity threshold above 
.75. We then downloaded the remaining uncontaminated 

eads and conducted a second filtering analyses against 
he Kraken standard database (again with a threshold of 
.75). The r emaining r ead data contained bacterial con- 
aminations from various sources, for example Proteobacte- 
ia (39,129 paired reads) and Staphylococcus (49,243 paired 

eads). It also contained a number of reads from human ori- 
in (107,658 paired reads). Using the w e b server option to 

ark nodes that should not be filtered, we decided not to fil- 
er cellular organisms and root (taxid 1), which reflect reads 
hat are potentially of eukaryotic origin and thus may be 
enuine m yx ozoan reads. In total, 1.22% of the r eads wer e
ltered, genera ting contamina tion-free da ta tha t ar e r eady 

or further analyses. 

A T A A V AILABILITY 

enomeFLTR is freely available without registration or lo- 
in r equir ements at https://genomefltr.tau.ac.il/ . 

UPPLEMENT ARY DA T A 

upplementary Data are available at NAR Online. 
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