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ABSTRACT

Inference of multiple sequence alignments (MSAs) is
a critical part of phylogenetic and comparative ge-
nomics studies. However, from the same set of se-
quences different MSAs are often inferred, depend-
ing on the methodologies used and the assumed pa-
rameters. Much effort has recently been devoted to
improving the ability to identify unreliable alignment
regions. Detecting such unreliable regions was pre-
viously shown to be important for downstream anal-
yses relying on MSAs, such as the detection of posi-
tive selection. Here we developed GUIDANCE2, a new
integrative methodology that accounts for: (i) uncer-
tainty in the process of indel formation, (ii) uncer-
tainty in the assumed guide tree and (iii) co-optimal
solutions in the pairwise alignments, used as build-
ing blocks in progressive alignment algorithms. We
compared GUIDANCE2 with seven methodologies to
detect unreliable MSA regions using extensive sim-
ulations and empirical benchmarks. We show that
GUIDANCE2 outperforms all previously developed
methodologies. Furthermore, GUIDANCE2 also pro-
vides a set of alternative MSAs which can be use-
ful for downstream analyses. The novel algorithm
is implemented as a web-server, available at: http:
//guidance.tau.ac.il.

INTRODUCTION

Multiple sequence alignment (MSA) is a key component in
almost every comparative analysis of biological sequences
(DNA or proteins). Moreover, MSA reconstruction is of-
ten the first step in bioinformatic pipelines, where MSA is
later used for further analyses. Over the years, many algo-

rithms and approaches aiming at constructing such align-
ments have been developed, showing a steady improvement
in the accuracy of the resulting MSA (1–10). However, stud-
ies that aimed to objectively evaluate the accuracy of several
MSA algorithms have shown that even the most accurate
alignment algorithms available today are still subject to a
substantial amount of errors (11–13).

Alignment inference is a complicated statistical estima-
tion problem, in which alignment uncertainty originates
from both the stochastic nature of the evolutionary pro-
cess and computational limitations of current evolutionary
models and alignment methodologies. The substantial un-
certainty when inferring optimal MSAs is manifested by the
large differences in the resulting alignments among existing
alignment algorithms (14). Thus, it appears that not any in-
ferred alignment should be used as granted for downstream
analyses in a bioinformatic pipeline, as any specific MSA is
likely to contain wrongly aligned regions. Indeed, errors in
the MSA may bias downstream analyses, such as the detec-
tion of positive selection (15,16), and likelihood-based tests
for comparing phylogenetic tree topologies (17).

Several methods aimed at estimating unreliable align-
ment regions were previously developed (18–31). Among
these methodologies, ZORRO (29) and PSAR (27) use hid-
den Markov models to detect uncertainty in pairwise align-
ments, which are the building blocks of the MSA in progres-
sive alignment algorithms. Unreliable alignment regions are
often associated with high sequence variability, both in
terms of the number of amino-acid replacements and in the
number and lengths of indels (gaps). Several methodolo-
gies utilize this association to detect unreliable alignment
regions. For example, trimAl and ALISCORE consider re-
gions with low sequence identity and similarity as unreli-
able (22–24). Gblocks scores as reliable only blocks in the
alignment that have a low number of gaps (18). The Noisy
algorithm associates unreliability with regions suspected as
homoplasious positions (20). Finally, the TCS methodol-
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ogy uses a library of pairwise alignments to score positions
in the evaluated MSA (31).

Another class of alignment reliability methods is based
on a consistency principle: alignment regions that are
shared among a large number of alternative MSAs built
from the same sequence data are considered to be more re-
liable. Such consistency-based approaches differ in the way
these alternative MSAs are generated. The heads or tails
(HoT) methodology (19,21) generates alternative align-
ments by utilizing the fact that when aligning a pair of
sequences, often more than one optimal solution exists.
HoT specifically detects two extreme co-optimal solutions
for each pair of sequences aligned by a progressive align-
ment approach. This is achieved by aligning the two se-
quences twice: once in their original order of characters
(‘the head’) and once with the characters in reverse order
(‘the tail’). HoT then combinatorially propagates the un-
certainty when joining sequences or partial alignments to
the growing MSA, thus generating a large set of alternative
MSAs. The GUIDANCE algorithm (25,26) generates alter-
native MSAs by utilizing the observation that alignments
substantially vary when given alternative tree topologies to
guide the progressive alignment. Specifically, GUIDANCE
first constructs a large number of alternative tree topologies
by bootstrapping the MSA generated by the alignment pro-
gram. Each such bootstrap tree is next used as a guide tree
to re-align the original sequences. The number of alterna-
tive alignments is thus dictated by the number of alternative
trees and, in theory, some of these alignments can appear
more than once.

Many of the above described methods were only recently
developed and most were shown to outperform Gblocks,
the classic and most commonly used alignment reliability
methodology. In this study, we aimed to systematically com-
pare seven of the more recent algorithms to detect unreliable
regions, GUIDANCE (26), HoT (21), ALISCORE (24), tri-
mAl (22), TCS (31), ZORRO (29) and Noisy (20), on a wide
range of both simulated and structure-based alignments.
Following the comparison among the different methodolo-
gies, we realized the importance of modeling uncertainty
in the propensity to open gap characters (32) as well as
the uncertainty of the guide tree and co-optimal pairwise
alignment solutions. We integrated all these insights into a
new version of the GUIDANCE algorithm and showed that
the new integrated version (GUIDANCE2) outperforms
all previously developed methods. Furthermore, GUID-
ANCE2 produces a set of alternative alignments, which can
be valuable in downstream analyses.

MATERIALS AND METHODS

Data sets

The performance of various MSA reliability assessment
methodologies was tested on empirical benchmarks as well
as on simulated data, which differ in various parameters
such as number and length of sequences and average se-
quence identity (Supplementary Table S1). Two empiri-
cal benchmark data sets were used: BAliBASE 3 (33) and
HOMSTRAD (34). For HOMSTRAD we used the 232
MSAs with more than three sequences. For BAliBASE we

used reference sets 1–5 and evaluations were performed us-
ing core blocks columns only. Core blocks are defined for
the true alignments. For assessment, not only core block
residues are aligned and hence, when comparing the in-
ferred alignment with the true alignment, one has to de-
fine which columns in the inferred alignment correspond to
core blocks. Here, columns in the inferred alignment were
compared to core block columns only if they contained two
or more residues that belong to the core blocks in the true
alignment.

Sequences were simulated using INDELible (35). In or-
der to have realistic parameters for the simulations, we
first selected 541 MSAs from the OrthoMaM (version 8)
database (36), for which coding sequences (CDS) are avail-
able for all 40 mammals included in the database. Each such
MSA is associated with a tree (and branch lengths), shape
parameter of the gamma distribution (alpha) and propor-
tion of invariant positions (pinv). We simulated 541 MSAs
based on these parameters, with amino-acid replacements
following the LG matrix (37). INDELible parameter for
max indel length was set to be the minimum between 10%
of the alignment length and 25. The length of the root se-
quence was arbitrarily chosen to be 66% of the OrthoMaM
alignment length. All other parameters were set to the de-
fault. This parameter setup resulted in MSAs similar to Or-
thoMaM alignments (based on visual comparison of the
alignments’ total length, number and length of indels). Fol-
lowing, we refer to this data set as ‘OrthoMaM simulations’.

We used two additional simulated data sets previously
generated to evaluate MSA reliability methods. Specifically,
we simulated sequences using ROSE (38), according to the
simulation scheme provided in the ZORRO paper (29). The
second data set was part of the data set used in the trimAl
study (22). We used asymmetric trees with 32 and 64 species
and divergence of x0.5, x1 and x2. Using these trimAl data
sets it was previously shown that MSA uncertainty impacts
phylogeny inference (31).

Alignment programs

MAFFT version 7.123b (39), PRANK version 140110 (7),
ClustalW version 2.0.10 (6) and T-Coffee version 10.00
(40) were used as alignment algorithms. MAFFT, ClustalW
and T-Coffee were used with default parameters. PRANK
was used with the +F argument for higher accuracy of in-
del placement. T-Coffee, PRANK, MAFFT and ClustalW
were used to show that all alignment methods have high
error rates on both simulated and empirical data sets.
MAFFT was used for all subsequent analyses as it is both
computationally efficient and has relatively high perfor-
mance on both simulated and empirical data sets. ClustalW
was also used when comparing the performance of the var-
ious alignment reliability methods.

Reliability methods

Eight reliability evaluation methods were tested. ALIS-
CORE version 2.0, TCS and ZORRO were applied with
default parameters. Noisy release 1.5.12 was run with op-
tion ‘–seqtype P’ to indicate protein sequences. trimAl ver-
sion 1.2 was run with options ‘-sgc’ and ‘-scc’ to print gap
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percentage count for columns in the input alignment and
conservation values for columns in the input alignment, re-
spectively. trimAl, by default, outputs filtered MSA. How-
ever, here all MSA reliability algorithms were compared
by testing the agreement between the reliability score of
each position and whether this position is ‘true’ or not. tri-
mAl decides whether or not to filter a position based on
a gap percentage count or based on a conservation value.
When we compared trimAl to other methods we used the
conservation values rather than the gap percentage count
as the trimAl’s reliability score for each position, as it re-
sulted in more accurate inference. GUIDANCE version 1.5;
HoT version 1.6 and GUIDANCE2 were run with default
parameters. Out of the possible scores calculated by TCS,
GUIDANCE, HoT and GUIDANCE2, the performance
was evaluated using the column score (CS).

Evaluation methods

The alignment quality was measured at the column level to
allow comparison of all reliability methodologies. To this
end, each column in the inferred alignment was labeled
as correctly aligned when it matched a column in the true
MSA; all other cases were labeled as incorrectly aligned
(this corresponds to a CS of 1 and 0, respectively). No-
tably, the matching between columns of any two alignments
(e.g. true and inferred MSAs) was computed by represent-
ing each MSA by a C matrix (the supplementary informa-
tion of (41)). Each reliability method provides a score for
each column in the MSA reflecting its predicted reliability.
In order to assign correct/incorrect labels to each column
according to the reliability score, it is necessary to define a
threshold: columns with scores above the threshold are pre-
dicted to be correctly aligned and vice versa. It is therefore
common to quantify a predictor quality by considering the
true positive rate and false positive rate over all thresholds.
This information is given in the receiver operating char-
acteristic (ROC) curves (42). ROC and the area under the
curve (AUC-ROC) were calculated using ROCR (43). The
area under the precision-recall curve (AUC-PR) was calcu-
lated using a java package (44).

Algorithm

To further improve the GUIDANCE methodology, we
carefully inspected erroneous columns in the MSA that
were ranked as reliable when using GUIDANCE. The char-
acterization revealed that many errors occurred in regions
containing long stretches of gaps in a substantial num-
ber of sequences in the MSA. This observation suggested
that considering alternative alignments generated by vary-
ing the gap opening penalty in the alignment program can
be beneficial for estimating the MSA reliability. We hypoth-
esized that it will be beneficial to combine the three follow-
ing sources of uncertainty: co-optimal solutions (as used
to generate perturbed MSAs in HoT); guide tree instabil-
ity (GUIDANCE); and opening gap penalty (as described
above) and thus we incorporated these three components in
GUIDANCE2. Specifically, given a set of sequences, a ref-
erence MSA is built using default or user-defined parame-
ters. Next, a set of alternative alignments is created by in-
ducing perturbations using all the above three components.

Table 1. Alignment performance on BAliBASE and simulated data sets as
measured by CS, for MAFFT, PRANK, ClustalW and T-Coffee

BAliBASE OrthoMaM simulations

MAFFT 0.43 ± 0.29 0.56 ± 0.16
PRANK 0.34 ± 0.27 0.64 ± 0.15
ClustalW 0.34 ± 0.32 0.30 ± 0.15
T-Coffee 0.52 ± 0.32 0.48 ± 0.17

Scores are calculated by averaging over all MSAs; standard deviations are
also indicated.

Uncertainty in the guide tree is generated by computing 100
bootstrap trees (45) using NJ (46) as described in the orig-
inal GUIDANCE method (26). For each tree, a gap open-
ing penalty is sampled from a uniform distribution between
1–3 for MAFFT and 4–16 for ClustalW. Finally, four co-
optimal solutions were sampled for each guide-tree and gap
opening combination, using the HoT methodology (21). As
in GUIDANCE, given a set of perturbed alignments (the
default in GUIDANCE2 is 400) we computed a reliability
score for each column, residue pairs, residue and sequence
in the reference alignment. For example, the CS is the fre-
quency of the column among the perturbed alignments (see
(26)).

RESULTS

Alignment methods are prone to error

It was previously shown that alignment programs often
err (12). Here, we compared the accuracy of MAFFT,
PRANK, ClustalW and T-Coffee on the BAliBASE bench-
mark (33) and on simulated sequences. For MAFFT,
PRANK, ClustalW and T-Coffee, the average CS was 0.43,
0.34, 0.34 and 0.52, respectively, for the empirical data, and
0.56, 0.64, 0.30 and 0.48, respectively, for the simulated data
set (Table 1). These results suggest that less than 45 and 65%
of the columns in difficult alignment problems for the em-
pirical data and for the simulated data, respectively, are cor-
rectly aligned. This high error rate demonstrates the high
uncertainty associated with MSA inference. This together
with previous results showing that generated MSAs sub-
stantially differ among MSA methodologies motivated us
to quantify this uncertainty for each column and for each
pair of residues, so that poorly aligned regions can be iden-
tified and accounted for in downstream analyses.

Comparing currently available MSA reliability methods

We systematically compared the performance of various
MSA reliability methods: GUIDANCE2, GUIDANCE,
HoT, ALISCORE, trimAl, Noisy, TCS and ZORRO both
on empirical and simulated protein sequences. As can be
seen in Figure 1, GUIDANCE2 shows the best performance
on both simulated and empirical benchmarks. Similar re-
sults were obtained when using ClustalW as alignment al-
gorithm (Supplementary Figure S1). The high AUC-ROC
and AUC-PR scores suggest that current methods can ac-
curately detect erroneously aligned columns. For example,
allowing a false positive rate of 0.2 (methodologies erro-
neously classify 20% of the incorrectly aligned columns as
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Figure 1. Quantitative comparison of all MSA reliability algorithms for different data sets. (A) AUC-ROC and (B) AUC-PR. Performance curves of the
five leading methodologies over the BAliBASE data set. (C) ROC and (D) precision–recall.

reliable) all the five leading methodologies considered ob-
tain a true positive rate above 0.8 (the methods identify
more than 80% of the correctly aligned columns as re-
liable). Labeling each column as ‘true’ or ‘false’ accord-
ing to their CS, as done for the AUC-ROC and AUC-PR
analyses, quantifies the ability of each reliability method
to predict the accuracy of entire columns. This measure is
very strict––a column is either perfectly aligned or it is la-
beled as ‘false’. We thus also considered the sum-of-pairs
CS that quantifies the fraction of correctly aligned pairs in
each column. Specifically, we calculated the Pearson cor-
relation coefficient between each method’s reliability score
and the fraction of correctly aligned pairs in each column
(Supplementary Figure S2). For GUIDANCE2, GUID-
ANCE and HoT we used the SPC score. GUIDANCE2
showed the highest Pearson correlation coefficient for the
five tested data sets: BAliBASE 0.85, HOMSTARD 0.81,
OrthoMaM simulations 0.87, trimAl simulated data set
0.90 and ZORRO simulated data set 0.85.

Insights into the advantages of GUIDANCE2 over ZORRO

It seems that for ZORRO, TCS and ALISCORE the per-
formance drops for the OrthoMaM simulated data set,
when measured in terms of AUC-ROC. Carefully observ-
ing wrong positions that were scored as reliable showed
that such positions are usually ‘gappy’ positions. We thus
tested the performance of ZORRO, the best method among
those showing poor results on OrthoMaM simulations, and
of GUIDANCE2 on positions with various gap percent-
ages. Our results clearly show that on positions with ex-
tensive gappiness the performance of ZORRO is very poor
(Figure 2), suggesting that ZORRO tends to erroneously
favor over-aligned regions (7). This result also explains
why the performance of ZORRO drops so significantly
in OrthoMaM simulations compared to the performance
on HOMSTRAD: the empirical benchmark contains rela-
tively fewer positions with over 75% gaps compared with
those obtained in OrthoMaM simulations (42% such posi-
tions in OrthoMaM simulations versus only 14% in HOM-
STRAD).
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Figure 2. AUC ROC for columns as a function of gap percentage. (A) HOMSTRAD and (B) OrthoMaM simulations. MSAs were aligned using MAFFT.

The contribution of the various components to the perfor-
mance of GUIDANCE2

As an improved combined method, GUIDANCE2 outper-
forms all its components when considered separately on
MAFFT alignments (Figure 3): relaying on uncertainty
in the guide trees (GUIDANCE), uncertainty over alter-
native co-optimal solutions (HoT) or uncertainty in gap
penalty values. This analysis suggests that in order to gener-
ate alternative MSAs for the purpose of detecting unreliable
alignment regions, for the BAliBASE data the most impor-
tant factor is the gap opening score, followed by the guide
tree, and the HoT component (sampling alternative MSAs
with the highest score) is the least important factor (Fig-
ure 3A). For the OrthoMaM simulations, the most impor-
tant factor was the guide tree uncertainty, the second was
the HoT component, and the gap opening score contributed
the least (Figure 3B). The contribution of each compo-
nent was calculated also for the ZORRO-simulated data set.
Here, the guide-tree uncertainty component (GUIDANCE)
contributed the most, followed by the gap opening score,
and the least was contributed by the HoT component (Fig-
ure 3C). This demonstrates that the contributions of the dif-
ferent components vary among data sets, further suggesting
the need to integrate them within a single methodology. No-
tably, the gap extension score was insignificant in its contri-
bution to the generation of alternative MSAs and was thus
not included in GUIDANCE2 (data not shown).

GUIDANCE2 as a tool to generate alternative MSAs

GUIDANCE2 (similar to GUIDANCE and HoT) is not
merely a filtering methodology, but rather, it allows obtain-
ing a set of alternative MSAs for the analyzed sequences.
Such alternative MSAs can be utilized to account for MSA
uncertainty in downstream analyses. We first tested whether
alternative MSAs generated by GUIDANCE2 have com-
parable average CS, as compared to the base MSA pro-
duced by the alignment program. For each alternative MSA

we computed the difference in average CS with the base
MSA, denoted as �CS. The distributions of these values
over all BAliBASE MSAs and OrthoMaM simulated data
are shown in Supplementary Figure S3. Notably, 40% of al-
ternative MSAs in BAliBASE and 25% of alternative MSAs
in the simulated data set showed higher average CS than
the corresponding base MSAs. This result suggests that
GUIDANCE2 produces biologically reasonable alternative
MSAs.

Web-server

To enhance the usability of the suggested GUIDANCE2
methodology, we added its implementation to the GUID-
ANCE web-server http://guidance.tau.ac.il. GUIDANCE
is a popular user friendly web-server, in which the user
can reconstruct an MSA for proteins, nucleic acids or cod-
ing sequences (25). Specifically, the user can select between
MAFFT, PRANK and ClustalW as the MSA construc-
tion methodology and employ GUIDANCE2 to assess the
resulting alignment reliability and to generate alternative
MSAs. The resulting alignment is color coded according to
its reliability, thus allowing easy identification of unreliably
aligned regions. Further, the user can easily mask or remove
unreliably aligned regions (i.e. residue-specific, columns or
sequences) from the alignment. The filtered alignment can
be used for downstream analyses. The web-server includes
the simulated data sets used for the performance evaluation
presented in this paper, information concerning the running
time on typical data sets and the stand-alone version of
GUIDANCE2. We note that GUIDANCE2 is highly paral-
lelizable and thus a significant reduction in running times is
possible using the stand-alone version, which supports par-
allel computing.

Conveniently, MAFFT web-server http://mafft.cbrc.jp/
alignment/server/ users are offered the option to evaluate
the quality of the resulting MAFFT MSA with GUID-
ANCE2 by a direct interface between the web-servers.
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Figure 3. ROC curve for the performance of each GUIDANCE2 component (gap opening penalty variation is denoted as gap penalty) in detecting
unreliably aligned regions for (A) BAliBASE, (B) OrthoMaM simulations and (C) simulations of the ZORRO paper (the ZORRO simulated data set) are
shown. AUC-ROC for each component is indicated in parentheses.

DISCUSSION

Ideally, phylogenetic trees and alignments should be co-
estimated. Within the maximum-likelihood framework, this
is feasible using programs such as SATe (47,48). However,
this methodology does not provide reliability scores. Recent
advances within the Bayesian framework allow integrating
over alignments when inferring trees (9,10,49). As part of
these methodologies alternative MSAs are computed, from
which MSA reliability scores can easily be obtained. How-
ever, Bayesian methodologies are currently limited to very
small data sets due to computational limitations. GUID-
ANCE2, developed here, can be viewed as a rough proxy to
sampling alignments from the posterior distribution. Alter-
native MSAs generated by GUIDANCE2 account for un-
certainty in the guide tree, in the gap opening probability
and the choice among equally likely solutions. More theo-
retical work is needed to characterize how to generate al-
ternative MSAs that adequately represent the MSA space.
However, at least for the task of quantifying the reliability
of alignment columns, we show here that using the sampled
set obtained by GUIDANCE2, we can reach very high ac-
curacy of detection: an AUC-ROC of 0.89 for OrthoMaM
simulations and 0.96 for BAliBASE.

GUIDANCE2 relies on previous observations and com-
putation achievements. For example, we show that at least
when performance is measured based on the BAliBASE
benchmark, considering uncertainty in the gap opening
probability is a major factor contributing to GUIDANCE2
accuracy. This concept was previously suggested in the
SOAP methodology (32). Unfortunately, SOAP was imple-
mented only for ClustalW alignments. Currently, GUID-
ANCE2 relies on the HoT methodology to generate alter-
native top scoring MSAs. GUIDANCE2 could be further
improved if not only top scoring alignments are consid-
ered, but instead, high scoring sub-optimal alignments are
considered as well. Although theory on how to generate
these sub-optimal alignments exists (50), current alignment
methodologies (such as MAFFT, PRANK and ClustalW)
do not provide an option to generate them as output.

A few approaches exist for taking into account uncer-
tainty in MSAs for downstream analyses: (i) relaying on a

single best alignment, (ii) relaying on a single best align-
ment after filtering, (iii) accounting for reliability by col-
umn weighting and (iv) weighting over multiple alternative
alignments. Specifically, GUIDANCE2 provides all these
options, including a set of alternative MSAs which can be
utilized to account for MSA uncertainty in downstream
analyses. Which is best depends on the specific applica-
tion and even for a specific application, debates exist, e.g.
whether or not to filter alignment columns prior to tree
search (29,51,52).

The MSAs reliability methodologies were tested on both
empirical and simulated data. There are conceptual differ-
ences between simulated and structural based data sets (53).
While the simulation data are absolutely reliable with re-
spect to the true MSA, it can be argued that they may
not fully capture the biological complexity involved in evo-
lutionary processes. In contrast, aligned positions based
on structural data sets, such as BAliBASE, may not re-
flect true homology in the evolutionary sense (54). Further-
more, the empirical data sets are biased toward conserved
regions among highly diverged sequences because only core
blocks are taken into account (other regions are usually dis-
regarded for benchmarking as they are considered unreli-
able). This bias is also reflected in the higher number of
columns that are mostly gaps in the simulated data sets com-
pared with the empirical data sets. Here, we found that dif-
ferent MSA reliability methodologies differ substantially in
their performance on these two types of data sets because of
their different gap distribution. Finally, we showed that the
contribution of different factors to the accuracy of GUID-
ANCE2 also differs between simulation and benchmark
data sets (Figure 3). This result highlights the importance
of extensive benchmarking on both types of data. In the fu-
ture it might be possible to generate a third type of bench-
mark alignments, using experimental evolution approaches
(55–57).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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