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Abstract

Motivation: Type-III secretion systems are utilized by many Gram-negative bacteria to inject type-3 effectors (T3Es)
to eukaryotic cells. These effectors manipulate host processes for the benefit of the bacteria and thus promote
disease. They can also function as host-specificity determinants through their recognition as avirulence proteins
that elicit immune response. Identifying the full effector repertoire within a set of bacterial genomes is of great
importance to develop appropriate treatments against the associated pathogens.

Results: We present Effectidor, a user-friendly web server that harnesses several machine-learning techniques to
predict T3Es within bacterial genomes. We compared the performance of Effectidor to other available tools for the
same task on three pathogenic bacteria. Effectidor outperformed these tools in terms of classification accuracy (area
under the precision–recall curve above 0.98 in all cases).

Availability and implementation: Effectidor is available at: https://effectidor.tau.ac.il, and the source code is
available at: https://github.com/naamawagner/Effectidor.

Contact: talp@tauex.tau.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Many Gram-negative pathogenic bacteria use Type-III secretion sys-
tems (T3SSs) to inject type-3 effector (T3E) proteins to eukaryotic
hosts and thus promote disease (Pinaud et al., 2018; Wagner et al.,
2018). In addition to their contribution to pathogenicity, some T3Es
can be recognized as avirulence proteins (Khan et al., 2016).
Therefore, T3Es harbor a dual function as host-specificity determi-
nants by contributing to virulence in susceptible hosts and restricting
the bacteria in resistant hosts (Bent and Mackey, 2007).

While the T3SSs are conserved across species (Burkinshaw and
Strynadka, 2014), the effectors arsenal varies even between different
strains of the same species (Jalan et al., 2013; Jim�enez-Guerrero
et al., 2020). Therefore, traditional homology-based annotation is
usually insufficient to unmask the full effectors repertoire of a specif-
ic bacterial strain.

Here, we present Effectidor: a computational pipeline designed
for the prediction of unknown effectors within bacterial genomes.

This work was motivated by our previous experience applying
machine-learning (ML) algorithms for the task of predicting effec-
tors (Burstein et al., 2015; Jim�enez-Guerrero et al., 2020; Nissan
et al., 2018; Ruano-Gallego et al., 2021; Teper et al., 2016). While
other methods for effectors prediction exist (Arnold et al., 2009;
Dong et al., 2015; Goldberg et al., 2016; Hobbs et al., 2016; Hui
et al., 2020), our approach differs in various key aspects. The main
aspect is that when training the ML classifiers, our training data are
extracted only from the genomic sequence of a strain in question.
Thus, separate classifiers are trained for different species. In add-
ition, we perform the analysis on full genomes, rather than on
selected proteins, which allows us to include features related to gen-
omic organization and regulatory regions. Lastly, we train several
ML classifiers, combining dozens of different features unique to our
approach, and select the optimal one using cross validation. Of
note, the average running time of Effectidor is <20 min, during
which a full genome analysis is performed.
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2 Materials and methods

Effectidor is written in Python 3.7, and the ML procedures are per-
formed using the Scikit-Learn package (Pedregosa et al., 2012).
Effectidor can be divided to the following steps: (i) establishing the
list of positive and negative samples; (ii) extracting features; (iii)
training an ML classifier; and (iv) executing the trained classifier for
all open reading frames (ORFs) in the analyzed genome.

2.1 Establishing the positive and negative samples
A DNA FASTA file with all ORFs of a given genome must be pro-
vided. An additional ‘effectors file’ listing known effector-coding
ORFs in that genome (the positive-labeled samples) may be pro-
vided. If such a file is not provided, the list of positive samples is
computed based on sequence similarity to previously validated effec-
tors. Negative samples are computed based on sequence similarity
to proteins of bacteria that do not encode a T3SS (see
Supplementary Data S1 for a detailed description of this step).

2.2 Extracting features
A total of 51 obligatory features are extracted from a mandatory in-
put file, which includes all the DNA ORF sequences of the bacter-
ium in a FASTA format. A ZIP archive with multiple FASTA files is
also allowed, e.g. for including plasmid sequences or if the user pre-
fers to upload each contig in a separate file (all contigs may also be
uploaded as a single FASTA file). These features include, for ex-
ample, the GC-content, protein length, relative frequencies of amino
acids in the full protein and in the N-terminal region, homology to
known T3Es in other bacteria and in the analyzed strain, and exist-
ence of SecYEG secretion signal, computed using SignalP 4.1
(Petersen et al., 2011). Additional 19 optional features can be
extracted if relevant input information is supplied by the user
(Supplementary Data S2 provides a full list of all features and their
extraction): (i) if one or more protein FASTA files with protein
records of the eukaryotic host are provided, they are used to search
for eukaryotic motifs using BLASTp (Altschul et al., 1990); (ii) if a
ZIP archive with protein FASTA file(s) containing protein records of
closely related bacteria that do not encode a T3SS is provided, it is
used to identify ORFs that are unlikely to be T3Es; and (iii) one or
more full genome FASTA files and corresponding GFF3 features
files can be provided. The GFF3 file contains information regarding
the starting and ending point of each ORF and is used to compute
genomic-organization features. Together with the full genomic se-
quence, they are used to search for regulatory motifs in the ORFs’
promoters. Specifically, Effectidor can search for the following regu-
latory motifs: PIP-box (Koebnik et al., 2006), which is relevant for
Xanthomonas, Ralstonia and Acidovorax; hrp-box (Zwiesler-
Vollick et al., 2002), which is relevant for Pseudomonas syringae
and plant pathogens of the family of Enterobacteria; mxiE-box
(Bongrand et al., 2012; Mavris et al., 2002), which is relevant for
Shigella; exs-box (Brutinel et al., 2009), which is relevant for
Pseudomonas aeruginosa; and tts-box (Krause et al., 2002), which is
relevant for rhizobia. These files can be provided both for fully
assembled genomes and for draft genomes that are composed of sev-
eral contigs. While for a fully assembled genome these features will
be computed in full, for a draft genome these features will be missing
for ORFs at the edges of the contigs.

2.3 Training an ML classifier
Several classification algorithms are evaluated, including Linear
Discriminant Analysis, Naı̈ve Bayes, K-Nearest Neighbors, Logistic
Regression, Support Vector Machine, and Random Forest (RDF).
To select the best performing algorithm, 20% of the labeled data
(stratified sampled) are kept as a test set. The classifiers are trained
on the remaining 80% (including feature selection). This training is
done using stratified tenfold cross validation. The trained classifiers
are then evaluated on the test data. This procedure minimizes the
probability of overfitting the classifiers to the training data. We use
the area under the precision–recall curve (AUPRC) as a scoring
method since unbalanced labeled data are typically provided.

Additional details regarding the ML procedures we use are provided
in Supplementary Data S3.

2.4 Output
The main output of Effectidor is a downloadable Excel file with the
full predictions for all the ORFs in the genome, sorted in a descend-

ing order by their likelihood to encode effectors. The 10 best predic-
tions of unlabeled samples, as well as the scores of the positive
samples are displayed in two tables on the screen. The 10 most con-

tributing features, as evaluated using RDF, are displayed as a bar
plot and comparisons between effectors and non-effectors for each

of these features are displayed in violin plots. The full list of features
and their contribution to the classification are available to download
as a csv file, and so is the raw features file. Genomic ORFs with sig-

nificant sequence similarity to T3SS proteins are displayed in a sep-
arate table on the screen along with their amino-acid sequence.

3 Results

3.1 Effectidor’s predictions evaluation
We first evaluated Effectidor on Xanthomonas citri subsp. citri 306
(X.citri 306). To demonstrate the utility of Effectidor for identifying

effectors in a newly sequenced genome, we did not provide the algo-
rithm with a positive set of known effectors. Instead, we ran the al-

gorithm without a known T3Es file. In such a case, the first step of
the algorithm is to query each ORF against a dataset we established
of previously published T3Es. This step identified 31 effector homo-

logs in X.citri 306. These ORFs were subsequently considered as the
positive set and were used as input to the ML algorithms imple-

mented within Effectidor. A literature survey and a manual curation
revealed that there are 34 known effectors in X.citri 306 (the full list
of these effectors is provided in Supplementary Data S4). Following

the ML step, Effectidor was able to discover all the X.citri effectors.
The known effectors scores ranged from 0.998 to 0.534 while all the
non-effectors had scores lower than 0.390, i.e. the algorithm could

separate with confidence the known effectors from the rest of the
ORFs and had neither false-positive predictions (non-effectors erro-

neously identified as effectors) nor false-negative predictions (effec-
tors erroneously identified as non-effectors). These results were
obtained using 0.5 as a threshold for identifying effectors (changing

this threshold can affect classification results). The AUPRC score
reflects inference precision averaging over all possible cutoffs. The

AUPRC of Effectidor on these data was 1.0.
Several running configurations were tested to demonstrate the

utility of Effectidor (see Supplementary Data S5). The above results
were obtained using a fully assembled genome, which allows com-
puting genomic-organization features as well as features extracted

from the regulatory regions such as the existence of a PIP-box.
These features may be (partially) missing when only an incomplete

genome made of several contigs is available or when only cDNA
data are provided. Running Effectidor excluding these features again
yielded an AUPRC score of 1.0, albeit, with one effector scoring

below 0.5 (the lowest scoring effector had a score of 0.415). Finally,
we also excluded features that rely on comparisons to bacteria that
do not encode a T3SS. In this case, Effectidor accuracy deteriorated

with four false-negative and one false-positive predictions and an
AUPRC score of 0.996. The results demonstrate the importance of

including features reflecting similarity to bacteria that do not harbor
T3SS.

We repeated the above analyses for Ralstonia solanacearum
GMI1000 (R.solanacearun GMI1000) and Citrobacter rodentium
ICC168 (C.rodentium ICC168). For these genomes, as in the former

runs on X.citri 306, no T3Es input was provided for Effectidor. The
results of these runs showed similar patterns to those obtained for

X.citri 306 (all AUPRC scores above 0.98; see Supplementary Data
S6 for full details).

Of note, the full running time of each of these runs was <15 min.
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3.2 Comparisons with other web servers
Several web servers aiming to predict T3Es from bacterial genomic
sequences have been previously published. We were able to run pre-
dictions on six previously published methods: BEAN 2.0 (Dong
et al., 2015), pEffect (Goldberg et al., 2016), T3Sepp (Hui et al.,
2020), EffectiveT3 (Arnold et al., 2009), Bastion 3 (Wang et al.,
2019) and EP3 (which includes EP3_1 and EP3_2) (Li et al., 2021).
In Supplementary Data S7, we list additional tools which were not
functional during the work on this manuscript. Of note, the input to
all these web servers is a single FASTA file of protein sequences, i.e.
unlike Effectidor they cannot account for such features as regulatory
elements or genomic organization. In addition, some of these web
servers can only handle a limited number of input sequences: EP3
can handle up to 100 proteins, BEAN can handle up to 50 proteins,
and pEffect, in practice was limited to 25 proteins. Lastly, some of
these web servers yield only a binary classification without a confi-
dence score, so the AUPRC score could not be calculated. Instead,
we used the Matthews Correlation Coefficient (MCC) score.
Effectidor outperformed all these web servers on the X.citri data.
After Effectidor, the most accurate web server was Bastion 3
(AUPRC score of 0.938). The least accurate web server was
EffectiveT3 with an AUPRC score of 0.066. Similar results were
obtained for other bacteria. For R.solanacearum, the AUPRC of
Effectidor was 0.985, while the next best performing web server was
Bastion 3 with an AUPRC of 0.932. For C.rodentium, Effectidor
had an AUPRC of 1.0, while the next best performing web server
was T3Sepp with an AUPRC of 0.981 (see Supplementary Data S7,
Supplementary Table S7b, for detailed comparisons).

4 Discussion

We hereby present Effectidor, a user-friendly web server that applies
several ML algorithms to predict T3Es in bacterial genomes. It is the
only web server that trains a different classifier tailored for the analyzed
genome in every run. To our knowledge, Effectidor is the only web ser-
ver that combines features from the analyzed genomic sequence, includ-
ing both coding and non-coding regions. Moreover, it is the only web
server, to our knowledge, which provides the extracted features for fur-
ther analysis, in addition to the T3Es prediction. Lastly, the perform-
ance of Effectidor exceeds its competitors in prediction accuracy.
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