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1 Introduction

Evolutionary data can often supplement our incomplete
understanding of structure-function relationships in pro-
teins, DNA and RNA. For example, methods of protein
structure prediction that make use of existing structures,
either in the form of full protein templates or short frag-
ments, are generally more accurate than current molecu-
lar dynamics simulations and other methods that are
based on first principles (perhaps due to limited computer
capacity). Evolutionary data are also useful for highlight-
ing important positions in the protein (or nucleic acid):
slowly evolving, (i.e., evolutionarily conserved) amino
acids in proteins are often important (e.g., reference [1]).
Why else would they be conserved if not for maintaining
the structure and function, be it catalysis or interaction
with ligands, cofactors, DNA/RNA or other proteins?
Rapidly evolving amino acids may also be crucial to func-
tion. For example, microbial surfaces evolve rapidly to
evade host immune defenses, while host defense mole-
cules such as antibody recognition sequences change rap-
idly in order to keep pace with microbial evasion. Thus,
accurate estimates of the evolutionary rate can be very
informative to the biologist. The ConSurf methodology
and web server provide just that.[2] In the following sec-
tions we survey the methodology and review applications
within the context of the prediction of protein structure

and function and the effect of mutations, as well as sys-
tems biology and structural genomics. The term “protein”
is used for convenience but the methodology is also appli-
cable to nucleic acids.
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Abstract : Many mutations disappear from the population
because they impair protein function and/or stability. Thus,
amino acid positions that are essential for proper function
evolve more slowly than others, or in other words, the slow
evolutionary rate of a position reflects its importance. Con-
Surf (http://consurf.tau.ac.il), reviewed in this manuscript,
exploits this to reveal key amino acid positions that are im-
portant for maintaining the native conformation(s) of the
protein and its function, be it binding, catalysis, transport,
etc. Given the sequence or 3D structure of the query protein
as input, a search for similar sequences is conducted and
the sequences are aligned. The multiple sequence alignment
is subsequently used to calculate the evolutionary rates of

each amino acid site, using Bayesian or maximum-likelihood
algorithms. Both algorithms take into account the evolution-
ary relationships between the sequences, reflected in phylo-
genetic trees, to alleviate problems due to uneven (biased)
sampling in sequence space. This is particularly important
when the number of sequences is low. The ConSurf-DB,
a new release of which is presented here, provides precalcu-
lated ConSurf conservation analysis of nearly all available
structures in the Protein DataBank (PDB). The usefulness of
ConSurf for the study of individual proteins and mutations,
as well as a range of large-scale, genome-wide applications,
is reviewed.
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2 Methodology

ConSurf�s estimate of evolutionary conservation is based
on sequence alone, but the input can be the sequence or
3D structure of the query protein. When the latter is used
as input, ConSurf parses the PDB entry to extract the se-
quence that corresponds to the structure. A detailed de-
scription of the methodology is provided in the “Over-
view” section of the ConSurf web server (http://consurf
.tau.ac.il). Given a sequence, ConSurf searches for closely
related sequences. Detection of homologous sequences
and their alignment is key for accurate estimation of evo-
lutionary conservation. Because no single procedure guar-
antees success in all cases, ConSurf offers the user a selec-
tion of search methods and databases, and the ability to
specify criteria for defining similarity. The defaults reflect

our experience. Thus, the user may search for related pro-
teins using CSI-BLAST[3] (default) or PSI-BLAST.[4] The
user may also manually select the desired sequences from
the collected hits, for example to limit the sequences to
proteins whose function is identical to the query protein.
The hits are clustered, and highly similar sequences are
removed using CD-HIT.[5] A multiple sequence alignment
(MSA) of the related sequences is constructed using
MAFFT (default),[6] PRANK,[7] T-COFFEE,[8]

MUSCLE,[9] or CLUSTALW.[10] A phylogenetic tree, re-
flecting the inferred evolutionary history, is built using
the MSA and the neighbor-joining algorithm[11] as imple-
mented in the Rate4Site program.[2a] Position-specific
conservation scores are computed using the empirical
Bayesian[12] or maximum-likelihood (ML)[13] paradigms.
The inference of evolutionary conservation relies on
a specified probabilistic model, either for amino acid re-
placements or nucleic acid substitutions. The server offers
a selection of several such models, thus allowing the accu-
rate description of the evolutionary dynamics of both
coding and non-coding sequences. The continuous conser-
vation scores are divided into a discrete scale of nine
grades, each mapped to a color for visualization. The
colors are projected on the MSA and the query sequence/
structure. When the query is provided as a sequence,
ConSurf outlines a list of related proteins of known struc-
ture (sharing at least 35% sequence identity with the
query and 50% coverage), if available in the PDB. The
user may select one of these, and the conservation grades
are presented on the structure. Coloring a 3D structure
by conservation is particularly powerful, because it ena-
bles identification of clusters of highly conserved (or
highly variable) residues in the natively folded protein.
Such clusters are more significant than are isolated resi-
dues.

3 Conservation and Importance

Originally, ConSurf was developed as a quick means to
highlight functionally important regions on protein surfa-
ces, using the 3D structure of the protein and MSA of ho-
mologues.[2b] The correlation between evolutionary con-
servation and biological importance in biopolymers has
been well established in structural biology (e.g., reference
[1]). In particular, functional regions (i.e., clusters of
amino acids in spatial proximity to each other on the pro-
tein surface, which are involved in catalysis and interac-
tions) are often evolutionarily conserved.[15] The most
common approach for the detection of functional impor-
tance has been based on invariance, i.e. , positions that
feature the exact same amino (or nucleic) acid through-
out the MSA. While invariance is certainly indicative of
importance (provided that the list of similar sequences is
sufficiently diverse), this strict definition overlooks many
important positions. Another popular approach for the

Gershon Celniker was born in Russia
and raised in Israel, where he complet-
ed his undergraduate studies in molec-
ular biology and genetic engineering at
the Technion Institute and then a mas-
ter’s degree in bioinformatics and ge-
nomics at the Hebrew University of Jer-
usalem (supervisor: Prof. Amiram
Goldblum). His MSc. thesis focused
on the study of flexible protein-DNA in-
teractions, using computational meth-
ods to investigate DNA recognition
processes, docking, and protein flexibil-
ity in its encounter with DNA. Gershon participated in the Oscar
Getz research program at the Weizmann institute under the super-
vision of Prof. Doron Lancet and was part of the GeneCards (an in-
tegrated database of human genes) research team, focusing on ge-
nomics and the alternative splicing process. Currently, he is a bioin-
formatics developer in the Ben-Tal, Mayrose and Pupko groups at
Tel Aviv University, where he is working on the development of bio-
informatics tools for various research areas such as molecular evo-
lution and structural biology.

Nir Ben-Tal completed his bachelor’s
degree in Biology, Chemistry and Phys-
ics at the Hebrew University of Jerusa-
lem in 1988, and his DSc. in Chemistry
at the Technion in 1993 (advisor: Prof.
Nimrod Moiseyev). He later did his
postdoctoral training in biophysical
chemistry at Columbia University, New
York (Prof. Barry Honig’s lab). In 1997
he accepted a faculty position at the
Department of Biochemistry and Mo-
lecular Biology, Tel Aviv University, and
became full professor in 2008. Within
the area of computational structural biology he specializes in pro-
tein structure, function and dynamics, with special interest in mem-
brane proteins. He has coauthored over 110 peer-reviewed publica-
tions. In 2010 he jointly authored the textbook Introduction to Pro-
teins: Structure, Function, and Motion with Dr. Amit Kessel.

200 www.ijc.wiley-vch.de � 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Isr. J. Chem. 2013, 53, 199 – 206

Review G. Celniker, N. Ben-Tal et al.

http://www.ijc.wiley-vch.de


detection of functional importance has been based on the
degree of consensus amongst the similar sequences con-
cerning the identity of the dominant amino acid, e.g.,
80% consensus (invariance corresponds to a consensus of
100%). A more sophisticated approach to estimate con-
servation is based on the Shannon entropy as a measure
of the information content at each position in the homo-
logues.[16] Both approaches can be informative when
a large number of similar sequences are available, if they
sample sequence space evenly. But what if they do not?
For example, what if ninety of a hundred similar sequen-
ces are highly similar to each other and only the other
ten diverge? The common solution has been to delete all
but one of the close sequences and estimate consensus
(or entropy). However, this solution discards information,
and the result depends critically on the criteria used to
define closeness (e.g., sequence identity). In addition,
such an approach tends to ignore the physicochemical
similarity between different amino acids, as it focuses
mainly on searching for identity rather than similarity.

ConSurf alleviates the problem of uneven sampling in
sequence space by making explicit use of the evolutionary
relationships between the similar sequences, as reflected
in the phylogenetic tree, an approach that was first intro-
duced with the development of the evolutionary trace
method.[15c] The first ConSurf method, presented
a decade ago,[2b] was based on a single phylogenetic tree,
obtained by the parsimony principle;[17] the tree topology
and the ancestral sequences were reconstructed so as to

minimize the number of changes during evolution. The
more advanced ConSurf releases that followed have been
based on more accurate inference of phylogenies and on
explicit continuous-time Markov processes to model se-
quence evolution. In addition, it was realized that conser-
vation can be estimated by explicit modeling of site-spe-
cific evolutionary rate, and that the latter can be reliably
estimated using the maximum-likelihood[2a] and Baye-
sian[2d] paradigms. The statistical robustness of the Con-
Surf methodology provides not only accurate estimates of
the evolutionary rate at each position, but also confidence
intervals around these estimates. The server makes it easy
to disregard evolutionary rate results that are unreliable
(those with excessively large confidence intervals) by col-
oring them yellow (“caution”).

An example of the usefulness of ConSurf for highlight-
ing function is provided in Figure 1. The influenza virus
membrane includes two glycoproteins: hemagglutinin and
neuraminidase. The former mediates viral entry into the
host cell by binding sialic acid receptors, and the latter is
responsible for removing the sialic acid to facilitate virus
release.[18] The ConSurf calculations on neuraminidase
(PDB ID: 2HU4)[19] demonstrate that the functional re-
gions of this enzyme are indeed highly conserved. This is
particularly the case for residues that bind the sialic acid
substrate (ConSurf scores of 8 or 9): Arg118, Arg292,
Arg371, Arg152, His274 and Glu276. His274 is of particu-
lar interest because of the emergence of an oseltamivir-
resistant mutant, His274Tyr. The larger tyrosine causes

Figure 1. ConSurf analysis of the influenza neuraminidase protein. A) The 3D structure of the tetramer presented using a surface model.
Amino acids are colored by their conservation grades using the color-coding bar, with turquoise-through-maroon indicating variable-
through-conserved. The figure reveals the functionally important regions. B) A zoomed-in view of one of the monomers bound to the anti-
flu drug oseltamivir (trade name: Tamiflu), presenting (in red) the conserved patch of highest likelihood found by PatchFinder.[21] C) A
close-up view of the binding site. Highly conserved residues (ConSurf scores of 8 or 9) known to be crucial for binding the sialic acid sub-
strate: Arg118, Arg292 and Arg371 bind the carboxylate, Arg152 interacts with the acetamido substituent, and Glu276 forms hydrogen
bonds with the 8- and 9-hydroxyl groups of the substrate. PDB ID 2HU4 was used and the figure was generated using the PyMol[41] script
output generated by ConSurf.
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a displacement of Glu276, occluding the drug-binding
pocket and reducing oseltamivir�s binding affinity, render-
ing it ineffective against the mutant virus. Unfortunately,
the mutant enzyme is still functional because there is still
enough room for sialic acid binding.[20]

ConSurf analysis of a protein 3D structure makes it
easy to see clusters of highly conserved amino acids in
close proximity to each other on the surface. Such clusters
are likely to be functional (e.g., the substrate-binding
pocket in Figure 1 B). But what about more quantitative
predictions? For example, how likely is a cluster of, say,
five positions with a certain average conservation score,
to actually be a functional region? And what is the exact
boundary of the region, i.e., which positions are included
in the cluster? The PatchFinder methodology and web
server were designed in order to answer these questions
statistically.[21] Given the protein 3D structure and Con-
Surf scores, the conservation scores are reshuffled many
times and assigned to each position randomly. The results
are used to formulate a null hypothesis concerning the
likelihood of obtaining a cluster (patch) of a given aver-
age conservation. Following the maximum-likelihood ap-
proach, up to three clusters of spatially close and highly
conserved residues, which were assigned the highest like-
lihood, are reported. For example, Figure 1 B shows the
patch of highest likelihood obtained for neuraminidase.

ConSurf is commonly used by the structural community
to detect and present functional regions. A recent exam-
ple is a report of a new structure of the cytoplasmic mem-
brane protein TatC.[22] TatC is the central component of
the twin-arginine translocation (Tat) pathway, a prokary-
otic protein-transport system. Two evolutionarily con-
served regions were revealed at opposite ends of the
membrane, and it has been suggested that they mediate
TatC interaction with other proteins in the pathway.[22]

This is a good example of how ConSurf analysis often
succeeds in raising testable hypotheses about protein
function.

4 Mutation Design

ConSurf calculations may be used to design mutations in
biopolymers with several goals in mind. At a very basic
level, mutations in a highly conserved cluster could be de-
signed where the goal is to impede a particular function,
thereby attributing it to the cluster. In this context, the
amino acid frequencies amongst the related proteins may
be useful in designing mutations, as they represent the
amino acid repertoire that a certain position can tolerate.

ConSurf analysis may also be used to study specificity
within a family of homologous proteins. For example,
a subfamily may share a unique binding specificity in
a certain region. ConSurf analysis of the sequences in the
subfamily may reveal a highly conserved region that is
not shared by the rest of the family, suggesting that it is

associated with the unique binding specificity of the sub-
family. Mutations in members of the subfamily may be
used to examine this hypothesis. Again, the amino acid
profile in the family may guide the mutagenesis study. In
this case it is advisable to choose the type of mutation
based on the proteins that share the function versus those
that do not.

ConSurf could also be used in rational protein design,
for example by suggesting amino acid positions for muta-
tions that could alter an existing function, which is far
from trivial.[23] An easier task would be to point out
highly variable regions, which often are not important for
existing functionalities. These could be used for adding
new functions without interfering with existing ones, or
for the attachment of labels.[1]

5 Genetic Mutations and Single-Nucleotide
Polymorphism

Geneticists often encounter the need to assess the likeli-
hood of a mutation to be associated with a disease. This
is particularly difficult with missense mutations, which
change the nature of the amino acid leaving the rest of
the protein sequence unaltered. ConSurf may aid in the
discrimination between neutral and deleterious mutations.
The former are more common in variable positions, while
the latter are more frequent in conserved positions.[24]

However, many exceptions are known, which is why
many other qualities of the amino acid position and its vi-
cinity are often required in order to improve the predic-
tion accuracy.[25] Overall, it is very challenging to discrimi-
nate between deleterious mutations and harmless single-
nucleotide polymorphisms, even when the 3D structure of
the protein is known.[24]

6 ConSurf-DB and Systems Biology

ConSurf-DB is a database of precalculated ConSurf con-
servation profiles covering nearly all protein structures in
the PDB.[26] We present here a new release of the data-
base, which now covers 73,278 protein structures. Table 1
provides ConSurf-DB statistics. A detailed description of
the updated ConSurf-DB methodology is provided in the
“Overview” section in the web server (http://consurfdb.-
tau.ac.il) and a flowchart is shown in Figure 2. A four-
step procedure was used to construct ConSurf-DB:

(i) Generating a non-redundant list of sequences in the
PDB: the first step involved scanning the PDB repository
to generate a protein sequence list according to the PDB
entry and chain ID. Non-redundant structures were ex-
tracted from the list using the PISCES web server.[27]

(ii) Finding related sequences and constructing the
MSA: a unique procedure was used for building an MSA
for each protein, which balanced the need for sequence
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diversity while avoiding the inclusion of non-related pro-
teins as much as possible. For that we relied as much as
possible on the SWISSPROT database,[28] a small curated
database of annotated proteins, and referred to the larger
and noisier Uniref90 database[29] only when necessary. Ini-
tially, a CS-BLAST[3] search against the SWISSPROT da-
tabase was conducted with the goal of detecting at least
50 unique hits. In cases of failure to meet the threshold,
we searched the Uniref90 database using CS-BLAST, and
CSI-BLAST with three iterations. The list of collected se-
quences was subsequently filtered by coverage (minimum
80%) and sequence identity (between 30–95 %). The re-
maining sequences were filtered again using CD-HIT with
a 95% sequence identity clustering threshold.[5] The deci-
sion of whether to proceed with the search for related se-
quences, or abort and move to the next step, was based
on the number of sequences after filtration. An MSA of
the sequences was constructed using MAFFT.[6]

(iii) Conservation calculation: the MSA was used to
build a phylogenetic tree using the neighbor-joining algo-
rithm[11] as implemented in the Rate4Site[2a] program. Po-
sition-specific conservation scores were computed using
the Bayesian paradigm[12] and JTT replacement model.[30]

(iv) Results formatting: continuous conservation scores
were divided into a discrete scale of nine grades for visu-
alization, from the most variable positions (grade 1, tur-
quoise), through intermediately conserved positions
(grade 5, white), to the most conserved positions (grade
9, maroon). Finally, the conservation colors were mapped
onto the protein 3D structure and the MSA for visualiza-
tion.

ConSurf-DB provides the biologist with precalculated
conservation profiles of proteins of interest, allowing in-
stantaneous initial evaluation of the results. ConSurf-DB
is linked to other databases and interactive tools. One ex-
ample is Proteopedia,[31] where the ConSurf-DB colored
structure can be visualized interactively in Jmol on the

Table 1. Build statistics for the updated version of ConSurf-DB (August 2012).

Total number of chains located within 73,278 protein structures 192,647 chains
Total number of non-redundant chains processed 54,509 chains
First step: CS-BLAST on the SWISSPROT database generated 19,834 MSAs
Second step: CS-BLAST on the UniRef90 database generated 28,536 additional MSAs
Third step: CSI-BLAST (three iterations) on the UniRef90 database generated 2,418 additional MSAs
Number of chains left with less than 50 unique sequences (no calculations) 3,721 chains
Median number of unique sequences collected 142
Minimum and maximum number of unique homologues were set to 50 and 300

Figure 2. A flowchart of the process used to construct ConSurf-DB. A four-step procedure was used: scanning the PDB, building an MSA,
calculating the conservation scores, and formatting the results.
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same page as the structure publication title and abstract,
identification of ligands and non-standard residues, and
other information. Other examples are the PDBsum[32]

and MarkUs,[33] a server to navigate sequence-structure-
function space.

Convenient as ConSurf-DB is, it is important to re-
member that it is usually possible to further improve the
results for a particular protein of interest by the use of
tailor-made procedures for similarity detection, manual
selection of related sequences (made easy in the ConSurf
web server), as well as other means to reconstruct the
alignment or phylogeny.

ConSurf-DB may also be useful for genome-wide and
other large-scale studies of proteins where the goal is to
deduce general characteristics. In this respect, ConSurf-
DB could also be useful within the context of systems
biology. It is noteworthy, though, that the ConSurf calcu-
lation provides only the relative evolutionary rate at each
position with respect to the average within the examined
family, as represented in the particular sequence collec-
tion used. Because ConSurf gives relative, rather than ab-
solute, conservation scores, it can be used to compare two
different protein families only if there is reason to believe
that the families evolve at similar rates; one cannot group
together all the highly conserved positions in two differ-
ent protein families. For such purposes, and also to differ-
entiate between purifying, neutral, and adaptive selective
patterns, codon-based analyses should be used such as
those implemented in the PAML package[34] or the SE-
LECTON web server.[35] The additional information ob-
tained through codon-based methods comes at the ex-
pense of a more tedious sequence similarity search and
longer running times. Additionally, such analyses are pos-
sible only under the assumption that the rate of silent
substitutions reflects the rate of neutral evolution and is
similar across the studied protein-coding genes.[14]

7 Evaluation of the Quality of 3D Models

The correlation of conservation with solvent-accessibility
profiles can be used to evaluate theoretical models of
protein 3D structure (protein-folding predictions).[36] The
expectation is that the protein core (i.e., buried amino
acid positions) would be highly conserved, while the pe-
riphery (i.e., exposed positions) would be variable. This
idea has been implemented in the ConQuass methodolo-
gy, which is readily useful for examination of model struc-
tures.[37] Systematic examination using various datasets
showed that the ConQuass score correlates with the qual-
ity of the model structure. In particular, results with a set
of 11,686 models of 75 targets from CASP8 (http://predic-
tioncenter.org) showed that when the conservation infor-
mation is reliable, the method�s performance is compara-
ble and complementary to that of the other single-struc-
ture quality assessment methods.[37] The same conclusion

emerged from the subsequent double-blind examination
of ConQuass within the CASP9 competition (http://pre-
dictioncenter.org).

8 Structural Genomics: Infer Function from
Structure

Due mostly to the worldwide structural genomics effort,
we see the emergence of 3D structures of proteins with
unknown function or incomplete function annotation.[38]

ConSurf analysis may reveal highly conserved surface
clusters of amino acids, which are presumably functional-
ly important. In this respect, ConSurf may provide a first
step towards function annotation. To this end, we have es-
tablished the N-Func database of 757 structures of pro-
teins of unknown function and their predicted functional
regions.[21b]

9 Challenges

The exponential growth of sequence databases is a bless-
ing but also raises theoretical and practical challenges.
Let us start with the theoretical. A large database is ad-
vantageous in that it is likely to include many sequences
that are truly related to our query protein. The problem
is that it is more difficult to find these because of the high
false discovery rate. Advanced statistical methods and/or
systematic reorganization of sequence databases are re-
quired in order to resolve this issue. On the practical
level, we will need to develop tools and strategies for
dealing with hundreds and thousands of truly related se-
quences. A key question would be: when the number of
truly related sequences exceeds a certain threshold, is it
sufficient to estimate conservation based on more simple
methods, such as consensus or the Shannon entropy? If
not, methods that are based on phylogeny, like ConSurf,
will have to be improved both in speed and memory
usage.

10 Summary and Outlook

Evolutionary analysis is useful for many purposes. The
ConSurf web server has been designed to make it readily
accessible to the community. It is particularly useful for
proteins, starting from sequence or structure queries, but
it is also applicable to the analysis of DNA and RNA.

ConSurf can easily reveal highly conserved, presumably
functional, surface regions in proteins. However, addition-
al tools are needed in order to suggest what the function
is. Analysis of the physicochemical nature of the con-
served regions could provide hints (e.g., protein-protein
or nucleotide binding regions). It can also be possible to
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infer function by matching of the conserved surface re-
gions with databases of annotated functional regions.[33,39]

It is noteworthy that while evolutionary conservation is
indicative of importance, not all functionally important
surface regions are highly conserved. As mentioned
above, antigen-binding sites of antibodies and major his-
tocompatibility complex (MHC) molecules of the
immune system, as well as the surfaces of the proteins of
many infectious agents (e.g., influenza hemagglutinin)
provide good counterexamples. The hypervariability of
these regions is crucial to support their functions.[40]

Acknowledgements

We are thankful to Yana Gofman for many helpful com-
ments and discussions, and for critical comments of many
ConSurf users. This work was supported by grant number
3-7935 from the Ministry of Science and Technology.
G. C. and H. A. were funded in part by the Edmond J.
Safra Center for Bioinformatics at Tel Aviv university.
I. M. is supported by the Marie Curie Career Integration
grant (FP7-PEOPLE-2011-CIG-293878) and the Israeli
Science Foundation grant 1265/12.

References

[1] A. Kessel, N. Ben-Tal, Introduction to Proteins: Structure,
Function, and Motion, CRC Press, Boca Raton, 2010.

[2] a) T. Pupko, R. E. Bell, I. Mayrose, F. Glaser, N. Ben-Tal,
Bioinformatics 2002, 18 (suppl 1), S71–S77; b) A. Armon,
D. Graur, N. Ben-Tal, J. Mol. Biol. 2001, 307, 447–463;
c) C. Berezin, F. Glaser, J. Rosenberg, I. Paz, T. Pupko, P.
Fariselli, R. Casadio, N. Ben-Tal, Bioinformatics 2004, 20,
1322–1324; d) I. Mayrose, D. Graur, N. Ben-Tal, T. Pupko,
Mol. Biol. Evol. 2004, 21, 1781 –1791; e) H. Ashkenazy, E.
Erez, E. Martz, T. Pupko, N. Ben-Tal, Nucleic Acids Res.
2010, 38, W529 –W533.

[3] C. Angerm�ller, A. Biegert, J. Sçding, Bioinformatics 2012,
28, 3240–3247.

[4] S. F. Altschul, T. L. Madden, A. A. Sch�ffer, J. Zhang, Z.
Zhang, W. Miller, D. J. Lipman, Nucleic Acids Res. 1997, 25,
3389–3402.

[5] Y. Huang, B. Niu, Y. Gao, L. Fu, W. Li, Bioinformatics
2010, 26, 680 –682.

[6] K. Katoh, H. Toh, Bioinformatics 2010, 26, 1899 –1900.
[7] A. Loytynoja, N. Goldman, Proc. Natl. Acad. Sci. U.S.A.

2005, 102, 10557–10562.
[8] C. Notredame, D. G. Higgins, J. Heringa, J. Mol. Biol. 2000,

302, 205–217.
[9] R. C. Edgar, Nucleic Acids Res. 2004, 32, 1792 –1797.

[10] M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna,
P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace,
A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson, D. G. Hig-
gins, Bioinformatics 2007, 23, 2947 –2948.

[11] N. Saitou, M. Nei, Mol. Biol. Evol. 1987, 4, 406–425.
[12] See Ref. [2d].
[13] See Ref. [2a].
[14] N. D. Rubinstein, I. Mayrose, A. Doron-Faigenboim, T.

Pupko, Mol. Biol. Evol. 2011, 28, 3297-3308.

[15] a) X. Gallet, B. Charloteaux, A. Thomas, R. Brasseur, J.
Mol. Biol. 2000, 302, 917–926; b) O. Lichtarge, H. R.
Bourne, F. E. Cohen, J. Mol. Biol. 1996, 257, 342 –358; c) O.
Lichtarge, H. R. Bourne, F. E. Cohen, Proc. Natl. Acad. Sci.
U.S.A. 1996, 93, 7507 –7511; d) O. Lichtarge, K. R. Yama-
moto, F. E. Cohen, J. Mol. Biol. 1997, 274, 325 –337; e) R.
Landgraf, I. Xenarios, D. Eisenberg, J. Mol. Biol. 2001, 307,
1487–1502; f) A. del Sol, F. Pazos, A. Valencia, J. Mol. Biol.
2003, 326, 1289–1302; g) W. S. Valdar, Proteins 2002, 48,
227–241.

[16] C. Sander, R. Schneider, Proteins 1991, 9, 56–68.
[17] J. Felsenstein, Methods Enzymol. 1996, 266, 418–427.
[18] R. J. Russell, P. S. Kerry, D. J. Stevens, D. A. Steinhauer,

S. R. Martin, S. J. Gamblin, J. J. Skehel, Proc. Natl. Acad.
Sci. U.S.A. 2008, 105, 17736 –17741.

[19] R. J. Russell, L. F. Haire, D. J. Stevens, P. J. Collins, Y. P.
Lin, G. M. Blackburn, A. J. Hay, S. J. Gamblin, J. J. Skehel,
Nature 2006, 443, 45–49.

[20] P. J. Collins, L. F. Haire, Y. P. Lin, J. Liu, R. J. Russell, P. A.
Walker, J. J. Skehel, S. R. Martin, A. J. Hay, S. J. Gamblin,
Nature 2008, 453, 1258–1261.

[21] a) G. Nimrod, F. Glaser, D. Steinberg, N. Ben-Tal, T. Pupko,
Bioinformatics 2005, 21 (suppl 1), i328– i337; b) G. Nimrod,
M. Schushan, D. M. Steinberg, N. Ben-Tal, Structure 2008,
16, 1755–1763.

[22] S. E. Rollauer, M. J. Tarry, J. E. Graham, M. J��skel�inen,
F. J�ger, S. Johnson, M. Krehenbrink, S.-M. Liu, M. J.
Lukey, J. Marcoux, M. A. McDowell, F. Rodriguez, P. Ro-
versi, P. J. Stansfeld, C. V. Robinson, M. S. Sansom, T.
Palmer, M. Hçgbom, B. C. Berks, S. M. Lea, Nature 2012,
492, 210–214.

[23] M. Goldsmith, D. S. Tawfik, Curr. Opin. Struct. Biol. 2012,
22, 406–412.

[24] G. Wainreb, H. Ashkenazy, Y. Bromberg, A. Starovolsky-
Shitrit, T. Haliloglu, E. Ruppin, K. B. Avraham, B. Rost, N.
Ben-Tal, Nucleic Acids Res. 2010, 38, W523 –W528.

[25] Y. Bromberg, B. Rost, Nucleic Acids Res. 2007, 35, 3823 –
3835.

[26] O. Goldenberg, E. Erez, G. Nimrod, N. Ben-Tal, Nucleic
Acids Res. 2009, 37, D323 –D327.

[27] G. Wang, R. L. Dunbrack Jr. , Bioinformatics 2003, 19,
1589–1591.

[28] The UniProt Consortium, Nucleic Acids Res. 2012, 40,
D71–D75.

[29] B. E. Suzek, H. Huang, P. McGarvey, R. Mazumder, C. H.
Wu, Bioinformatics 2007, 23, 1282–1288.

[30] D. T. Jones, W. R. Taylor, J. M. Thornton, CABIOS,
Comput. Appl. Biosci. 1992, 8, 275–282.

[31] E. Hodis, J. Prilusky, E. Martz, I. Silman, J. Moult, J. L.
Sussman, Genome Biol. 2008, 9, R121.

[32] R. A. Laskowski, Nucleic Acids Res. 2009, 37, D355–D359.
[33] M. Fischer, Q. C. Zhang, F. Dey, B. Y. Chen, B. Honig, D.

Petrey, Nucleic Acids Res. 2011, 39, W357 –W361.
[34] Z. H. Yang, Mol. Biol. Evol. 2007, 24, 1586 –1591.
[35] A. Stern, A. Doron-Faigenboim, E. Erez, E. Martz, E.

Bacharach, T. Pupko, Nucleic Acids Res. 2007, 35, W506 –
W511.

[36] a) S. J. Fleishman, N. Ben-Tal, Curr. Opin. Struct. Biol. 2006,
16, 496–504; b) M. Schushan, N. Ben-Tal, in Introduction to
Protein Structure Prediction: Methods and Algorithms (Eds.:
H. Rangwala, G. Karypis), John Wiley and Sons, New
Jersey, 2010, pp. 369–401.

[37] M. Kalman, N. Ben-Tal, Bioinformatics 2010, 26, 1299 –
1307.

Isr. J. Chem. 2013, 53, 199 – 206 � 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.ijc.wiley-vch.de 205

ConSurf: Determining Protein Functional Areas from Evolutionary Data

http://www.ijc.wiley-vch.de


[38] L. Jaroszewski, Z. W. Li, S. S. Krishna, C. Bakolitsa, J.
Wooley, A. M. Deacon, I. A. Wilson, A. Godzik, PloS Biol.
2009, 7, e1000205.

[39] a) A. Shulman-Peleg, R. Nussinov, H. J. Wolfson, Nucleic
Acids Res. 2005, 33, W337 –W341; b) Y. Y. Tseng, J.
Dundas, J. Liang, J. Mol. Biol. 2009, 387, 451–464.

[40] P. A. Reche, E. L. Reinherz, J. Mol. Biol. 2003, 331, 623 –
641.

[41] The PyMOL Molecular Graphics System, Version 1.3
Schrçdinger, LLC. Taken from http://www.pymol.org/citing.

Received: December 14, 2012
Accepted: March 10, 2013

206 www.ijc.wiley-vch.de � 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Isr. J. Chem. 2013, 53, 199 – 206

Review G. Celniker, N. Ben-Tal et al.

http://www.ijc.wiley-vch.de

