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The protozoan parasite Trichomonas vaginalis is the causative agent of trichomoniasis, the most widespread nonviral sexually

transmitted disease in humans. It possesses hydrogenosomes—anaerobic mitochondria that generate H2, CO2, and acetate from

pyruvate while converting ADP to ATP via substrate-level phosphorylation. T. vaginalis hydrogenosomes lack a genome and

translation machinery; hence, they import all their proteins from the cytosol. To date, however, only 30 imported proteins have

been shown to localize to the organelle. A total of 226 nuclear-encoded proteins inferred from the genome sequence harbor a

characteristic short N-terminal presequence, reminiscent of mitochondrial targeting peptides, which is thought to mediate hy-

drogenosomal targeting. Recent studies suggest, however, that the presequences might be less important than previously

thought. We sought to identify new hydrogenosomal proteins within the 59,672 annotated open reading frames (ORFs) of T.

vaginalis, independent of the N-terminal targeting signal, using a machine learning approach. Our training set included 57 gene

and protein features determined for all 30 known hydrogenosomal proteins and 576 nonhydrogenosomal proteins. Several clas-

sifiers were trained on this set to yield an import score for all proteins encoded by T. vaginalis ORFs, predicting the likelihood of

hydrogenosomal localization. The machine learning results were tested through immunofluorescence assay and immunodetec-

tion in isolated cell fractions of 14 protein predictions using hemagglutinin constructs expressed under the homologous SCSa

promoter in transiently transformed T. vaginalis cells. Localization of 6 of the 10 top predicted hydrogenosome-localized pro-

teins was confirmed, and two of these were found to lack an obvious N-terminal targeting signal.

The anaerobic parabasalian flagellate Trichomonas vaginalis in-
fects the urogenital tract of hundreds of millions of people

annually (55). In this organism, ATP is produced in hydrogeno-
somes by substrate-level phosphorylation rather than by a proton-
driven and membrane-bound ATP-synthase complex (49). Hy-
drogenosomes share an ancestor with the mitochondrion, but
their scattered distribution over the eukaryotic supergroups
(some fungi, parabasalids, amoeboflagellates, ciliates, and at least
one animal) indicates that the specialization of these mitochon-
dria to the anaerobic lifestyle occurred several times in indepen-
dent lineages during evolution (20, 32, 59). With the exception of
the ciliate Nyctotherus ovalis (1) and the human parasite Blastocys-
tis sp. (61, 82), hydrogenosomes typically lack their own genome
and translation machinery, reflecting reductive evolution. This
necessitates the import of hundreds of nuclear-encoded proteins
from the cytosol (17, 31, 32, 59).

Understanding the biochemistry and molecular evolution of
hydrogenosomes is of medical importance as the most common
drug treatments—nitroimidazole derivates such as metronida-
zole—target hydrogenosomal proteins (6, 46). The common
point of view is that pyruvate:ferredoxin oxidoreductase oxidizes
pyruvate within the hydrogenosomes, upon which ferredoxin re-
duces the nitro moiety of the drug by transferring the electrons,
ultimately leading to the release of short-lived cytotoxic radicals
(34, 58, 78). An alternative malate-dependent pathway has fur-
thermore been suggested, which nevertheless is also part of the
hydrogenosomal biochemistry (34). Resistance to nitroimidazole
derivates has been observed in anaerobic parasites such as Giardia,
Entamoeba, and Trichomonas and in the last of these is known to
be increasing (78, 83). However, we do not possess an exhaustive
list of hydrogenosomal proteins, and proteomic approaches con-

tained many apparent cytosolic contaminations (31, 71). A better
understanding of hydrogenosomal proteins and their import into
the Trichomonas organelle is important to the development of
treatment strategies.

Targeting and translocation of proteins into yeast mitochon-
dria have been studied in detail (reviewed in references 12, 50, 56,
and 77). In contrast, little is known about the targeting mecha-
nisms or the import machinery in hydrogenosomes. Only a few
homologs of mitochondrial import machinery components have
been identified in T. vaginalis. Two of these were shown to localize
to the outer hydrogenosomal membrane (Hmp35 and Sam50)
(18, 73). Import of precursors was shown to be ATP dependent,
and early in vitro analyses suggested that correct targeting requires
an N-terminal leader (9, 11), referred to in this article as a hydrog-
enosomal targeting signal sequence (HTS).

The genome of T. vaginalis contains 59,672 open reading frames
(ORFs) (TrichDB, version 1.1 [5]), 226 of which encode the canoni-
cal HTS defined by Carlton and colleagues (11) as follows:
ML(S/T/A)X(1..15)R(N/F/E/XF) or MSLX(1..15)R(N/F/XF) or MLR
(S/N)F (11). The hydrogenosomal localization of only 30 proteins
has been verified experimentally (11, 53, 63, 64, 79). The current
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estimate is significantly lower than the ;500 proteins expected to
be found in the hydrogenosome (73). This is compounded by the
finding that some HTS-lacking proteins are imported into hy-
drogenosomes, the alpha subunit of succinyl-coenzyme A (CoA)
synthetase (TVAG_165340), and a thioredoxin reductase isoform
(TVAG_125360) (53). Thus, protein properties in addition to an
HTS are likely to serve as potential targeting precursors to the
hydrogenosomes. Consequently, the T. vaginalis genome should
encode hydrogenosomal proteins that have so far not been iden-
tified due to their lack of a canonical N-terminal HTS.

Our study aimed to predict proteins that are targeted to the
hydrogenosome but with criteria that are independent of the ca-
nonical HTS. For that purpose, we have implemented a classifica-
tion tool based on a machine learning approach to screen the
entire T. vaginalis genome for proteins potentially targeted to the
hydrogenosome. This approach allows us to extract information
from various feature combinations in order to identify patterns
within a known learning set (bait) and perform subsequent pre-
dictions on an unknown data set (prey). Machine learning algo-
rithms have been used for biological data mining, including ap-
plications for prediction of protein targeting signals (see reference
70 for a review) or protein-protein interactions (37), and finding
protein-encoding genes (72) and noncoding RNAs (51) within
completely sequenced genomes. Using this approach we predicted
and subsequently validated experimentally new hydrogenosomal
proteins, some of which do not carry N-terminal targeting motifs.

MATERIALS AND METHODS

Machine learning classification. The machine learning analysis was im-
plemented using the open source package WEKA, version 3.7.0 (29) with
default parameters unless otherwise stated. Three learning phases were
conducted. Predictions from the first two phases were experimentally
validated. Information gained from these validations augmented the in-
put for the subsequent learning phase. The learning procedures were per-
formed on two data sets. The first data set includes the direct measures
listed in Table 1. In the second data set all continuous variables were
preprocessed into a discrete variable by binning their distribution into 10
equal-frequency bins.

Seven classifiers were used for the machine learning inference. The set
of algorithms includes the naïve Bayes, which is a simple probabilistic
classifier that assumes complete independence among the different fea-
tures (48, 57). The Bayesian network classifier is based on a probabilistic
representation of the relations between the features using graph theory
(30). This classifier was used in combination with two different structure
search algorithms: the K2 search algorithm (13, 14) with a maximum of 2,
3, or 4 parenting nodes and the tree-augmented network (TAN) Bayes
search algorithm (26). The support vector machine (SVM) approach is
based on a general linear model used to seek for possible patterns in the
supplied features (10, 80). Two alternative kernels were used for the SVM
learning process: the polynomial kernel and radial basis function (RBF)
kernel. The performance of all classifiers was compared at the end of the
learning process, and the best classification scheme was then selected for
further analysis.

Feature selection was carried out to identify the subset of the 57 fea-
tures that perform best with each combination of classifier and data set.
The feature selection was performed by applying a “wrapper” (39, 44)
using a best-first search algorithm including a greedy hill-climbing pro-
cedure augmented with a backtracking facility (15).

The performance of each learning scheme was evaluated by the area
under the curve (AUC) score, which is equivalent to the probability that
the classifier will rank a randomly chosen positive instance higher than a
randomly chosen negative instance (24, 28). For the estimation of the
classification performance, a 10-fold cross-validation was performed. The

TABLE 1 Features used for the learninga

Category and description of protein
feature (reference)

P valuef

First phase Final phase

Sequence and function

Protein sequence length 0.0014** 0.0013**

Gene sequence length 0.0014** 0.0013**

Import signal presence/absenceb 2.20E216** 2.20E216**

Gene GC content 8.00E206** 0.4109

Fit of gene GC content to the genomic
totalc

7.53E210** 0.0008**

5= UTR length 2.39E205** 0.2062

3= UTR length 0.0036** 0.6928

GO annotation (4) NA NA

Mean hydropathy index (47) 6.17E208** 1.26E210**

Positively charged amino acids content 0.0513* 2.67E205**

Negatively charged amino acids content 0.0339** 0.6928

Neutral amino acids content 1.23E207** 2.81E209**

Polar amino acids content 1.29E209** 1.68E209**

Nonpolar amino acids content 7.06E210** 2.35E207**

Hydrophilic amino acids content 2.52E213** 3.03E208**

Hydrophobic amino acids content 1.61E213** 1.94E208**

Amino acid content for all 20 amino acids

Alanine 1.48E206** 5.59E209**

Arginine 0.1942 0.4440

Asparagine 0.2024 0.6520

Aspartic acid 0.0002** 0.0004**

Cysteine 0.0014** 0.1338

Glutamic acid 0.0620 0.0052**

Glutamine 1.99E211** 2.31E206**

Glycine 0.0955 0.8803

Histidine 0.4409 0.7056

Isoleucine 0.5529 0.7056

Leucine 0.7944 0.5803

Lysine 0.4008 0.5757

Methionine 0.3706 0.0010**

Phenylalanine 0.0109** 0.0838

Proline 0.0017** 0.4345

Serine 0.0199** 0.0057**

Threonine 0.1561 0.6040

Tryptophan 0.3140 0.6520

Tyrosine 0.5148 0.4128

Valine 0.0552* 0.0894

Evolution

Phylum of the nearest neighbor NA NA

No. of BBHs in the total data setd 8.25E210** 4.03E208**

No. and percentage of genomes with BBHse 2.25E213** 1.97E210**

No. and percentage of BBHs in:

Eukaryotes 0.0078** 2.31E206**

Archaebacteria 3.42E205** 0.2397

Alphaproteobacteria 3.42E205** 1.14E228**

Betaproteobacteria 1.36E238** 3.40E229**

Gammaproteobacteria 9.47E247** 3.40E229**

Epsilonproteobacteria 1.87E244** 7.71E215**

Deltaproteobacteria 7.10E227** 1.05E224**

Other bacteria 7.29E242** 8.03E225**

a Numerical features were compared between positives and negatives in first and final

phases using Wilcoxon test and an FDR correction for multiple comparisons.
b Motif ML(S/T/A)X(1. .15)R(N/F/E/XF), MSLX(1. .15)R(N/F/XF), or MLR(S/N)F (25).
c Calculated by two features: (i) the P value of a x2 test with the total proteome and (ii)

significance of the P value (P , 0.01, 0.01 , P , 0.05, and P . 0.05).
d The best BLAST hit (BBH) is defined as the BLAST hit having the minimum E-value

from among 687 prokaryotic genomes using a T. vaginalis ORF as a query.
e The P values of the number and percentages of all features concerning the distribution

of BBHs in the different taxonomic groups are identical.
f **, Significant after FDR correction; *, significant but only before the FDR correction.

NA, not applicable.
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training set was shuffled and divided into 10 equally sized sets. The clas-
sifier was trained on 90% of the data, and the remaining 10% were used as
an unseen test set to assess the classifier’s performance. This procedure
was repeated 10 times (10 folds), with a different 10% of the data ran-
domly selected as the test set in each repeat. For each of the 10 folds, the
AUC was calculated, and the mean AUC is reported. It should be noted
that the data serving as a test set were excluded from the feature selection
stage; i.e., the feature selection was performed separately for each fold of
the cross-validation. This contributes to the independence between the
data used for the learning process and evaluation process using unseen
data. For the best-performing classifier an additional step of feature selection
and training was performed on the entire training set. The resulting trained
classifier was used to produce the import scores for all T. vaginalis ORFs. The
unbalanced frequencies of imported and nonimported proteins included in
the learning set (about 1:20) might render an overestimated AUC (38). In
order to provide comparable performance estimates despite the bias of the
training set, values for the area under the precision recall curve (AUPR) were
calculated as well, using AUCCalculator, version 0.2 (38). The proteins se-
lected for validation in the laboratory represent a mix of high- and low-
import probabilities based on the presence and absence of the HTS motif
(MOT1andMOT2 schemes, respectively). In twoproteins (TVAG_129210
and TVAG_171100) the import scores of the two schemes were opposite.

Data. The draft genome sequence of T. vaginalis was downloaded
from TrichDB, version 1.1 (5). A total of 15 eukaryotic and 687 prokary-
otic (629 eubacterial and 60 archaebacterial) genomes were downloaded
from the November 2009 version of the RefSeq database (62) for the
evolutionary reconstruction (see Table S1 in the supplemental material).
For each ORF of T. vaginalis, 57 features were included regarding the gene
and protein sequence, protein function, evolutionary relationships, the
existence of an import signal, and gene ontology (GO) annotation (Table
1; see Table S2 for a detailed description). For the inference of the evolu-
tionary features, each of the T. vaginalis ORFs was subjected to a BLAST
search (3) against the 702 query genomes. The BLAST hits were sorted
using as thresholds an E-value of #1E210 and $25% for the percentage
of identical amino acids. Each ORF was aligned with its homologs using
Muscle (19). Phylogenetic trees were reconstructed by the neighbor-
joining (NJ) method (68) with the default Jones-Taylor-Thorton (JTT)
substitution matrix (41) using the Phylip package (25).

Paralogous protein families were reconstructed by conducting a
BLAST search using all ORFs against the complete T. vaginalis proteome.
Query hit pairs with an E-value of #1E210 and percentage identical
amino acids of $25% were aligned with Needleman-Wunsch global
alignment (60) using the needle software included in the EMBOSS pack-
age (66). Pairwise protein similarity was calculated as the percentage of
identical amino acids between the two proteins in the global alignment.
Clusters of paralogous protein families were reconstructed from the pro-
tein similarities with the Markov cluster (MCL) algorithm (22) using the
default parameters. The clustering was repeated using increasing protein
similarity thresholds for the inclusion in the data ranging between 30%
and 95% (T30 and T95, where T is threshold).

Secondary structure predictions of the proteins were performed using
PSIPRED (40) with the Swiss-Prot (7) database as input. Only amino
acids with a confidence score higher than 0.7 were included in the analysis.
Proteins having a secondary structure prediction for less than 70% of their
sequence were marked as secondary structure unknown.

The training set of the first learning phase included the experimentally
validated imported proteins and 576 nonimported proteins that were
chosen based on their GO annotation (4) indicating a strict cytosolic
localization. GO terms that were used include ribosomal and flagellar
proteins, proteins from various amino acid metabolism pathways, tran-
scription factors, and RNA polymerase subunits. The training set of the
third phase included 37 imported proteins and 736 nonimported ones
(see Table S1 in the supplemental material). The imported proteins in-
cluded the 30 known imported proteins, 6 proteins validated in this study,
and one additional protein validated in another study in our lab. The

proteins in the negative set were selected based on their annotation in the
TrichDB database (5). The following keywords were used for the selec-
tion: nuclear, ribosomal, histone, polymerase, actin, tubulin, dynein, fla-
gellar, helicase, and DNA. All proteins in the training set were chosen so
that there is an indication that they are expressed (number of expressed
sequence tags [ESTs] . 0). Six proteins that were localized to the cytosol
as part of an additional study in our lab were added to the negative set as
well.

Culture conditions and transfection. Strain T1 of T. vaginalis was
cultured in TYM medium at 37°C as previously described (54). Full-
length coding sequences (ORFs) were retrieved from http://trichdb.org
/trichdb/ and amplified without the stop codon from genomic DNA iso-
lated from 50 ml of culture using DNAzol, according to the manufacture’s
protocol (Invitrogen, Germany). Genes were cloned into pTagVag2 (35)
providing the gene of interest with a 3= encoded, double hemagglutinin
(HA) tag. For transfection, an electroporation protocol developed by Del-
gadillo and colleagues (16) was used. Briefly, 50 ml of cells (exponential
growth phase) was collected at 1,500 3 g at 4°C for 10 min, and the cells
were then passed four times through a 23-gauge needle. A total of 300 ml
of cells (2.5 3 108 cells) and 50 mg of pTagVag2 plasmid (35) harboring
the gene of interest plus a C-terminal HA tag were mixed and pipetted into
a 0.4-cm electroporation cuvette. Electroporation was carried out at 350 V
and 950 mF. After the transfection, cells were cooled on ice for 10 min and
then inoculated in 12 ml of TYM medium (containing 1% [vol/vol]
penicillin-streptomycin solution [MP Biomedicals]). For selection the
medium was then supplemented with 100 mM G418.

Protein localization. Isolation of hydrogenosomes was based on the
method described by Bradley et al. (9) with slight modifications. After the
cells were ground, unlysed cells, glass beads, crude membranes, and nuclei
were removed by centrifugation at 755 3 g for 10 min at 4°C and the
whole-cell lysate from the supernatant was collected. The cytosolic frac-
tion (supernatant) was obtained by subsequent centrifugation of the
whole-cell lysate at 7,500 3 g for 10 min at 4°C. The pellet was resus-
pended in 45% Percoll; the hydrogenosomes were separated by isopycnic
centrifugation as described by Bradley and colleagues (9). Protein concen-
trations were determined with a Bradford assay kit (Bio-Rad) according to
the manufacturer’s instructions. Protein samples (20 mg each) were run
on 12% resolving gels (sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis) and blotted onto nitrocellulose membranes (Hybond-C Ex-
tra; Amersham Biosciences) for Western blot analysis. Blots were washed
(three times for 10 min each) in TBS (20 mM Tris-HCl, pH 7.5, 150 mM
NaCl) and blocked for 1 h in TBS containing 3% (wt/vol) bovine serum
albumin (BSA). Blots were incubated for 1 h at room temperature, with a
subsequent 1 h of incubation with mouse anti-HA antibodies (dilution,
1:5,000; Sigma). Blots were washed as before and incubated with anti-
mouse horseradish peroxidase conjugate (ImmunoPure goat at a dilution
of 1:10,000; Pierce) in TBS containing 3% (wt/vol) dry milk powder for 1
h at room temperature. After three subsequent washes in TBS, signals
were visualized using 4 ml of solution A (1.25 mM Luminol [Sigma] in 0.1
M Tris-HCl, pH 6.8), 400 ml of solution B (6 mM para-hydroxycoumaric
acid [Sigma] in dimethyl sulfoxide [DMSO]), and 1.2 ml of 30% (vol/vol)
H2O2 and Lumi-Film chemiluminescent detection film (Roche).

Expressed HA-tagged proteins and acetate:succinate CoA-transferase
([ASCT] a hydrogenosomal marker) were visualized in T. vaginalis cells
with mouse anti-hemagglutinin monoclonal antibody (Sigma-Aldrich,
Germany) and rabbit anti-ASCT polyclonal antibody (79) as primary an-
tibodies and with secondary Alexa Fluor-488 donkey anti-mouse and
Alexa-Fluor-594 donkey anti-rabbit antibodies (Invitrogen, Karlsruhe,
Germany). Images were processed with an LSM 510 Meta confocal laser
scanning microscope (Zeiss, Germany) using the software Image Browser
(Zeiss). Cells from a logarithmic phase T. vaginalis culture were placed on
glass silane-coated microscopic slides (Electron Microscopy Sciences,
Hatfield, PA) for 15 min at 37°C in an anaerobic chamber and dried
almost completely at room temperature. The cells were then fixed in two
subsequent steps by methanol (5 min) and acetone (5 min) at 220°C and
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treated with 0.25% gelatin and 0.25% BSA in phosphate-buffered saline
([PBS] 8% [wt/vol] NaCl, 0.2% [wt/vol] KCl, 1.44% [wt/vol] Na2HPO4,
0.24% [wt/vol] KH2PO4, pH 7.4) for 1 h at room temperature. The slides
were then flooded with both primary antibodies (diluted 1:500) and in-
cubated for 1 h at room temperature. After three 10-min washes in PBS,
the slides were incubated with secondary antibodies (diluted 1:1,000) for
1 h at room temperature in the dark. After the slides were washed as
described above, they were mounted in Vectashield with 4=,6=-diamidino-
2-phenylindole (DAPI; Vector Laboratories, Burlingame, CA).

RESULTS

Hydrogenosomal localization prediction. The input for the ma-
chine learning classifiers includes 57 features, measured for each
of the 59,672 protein annotations based on the T. vaginalis ge-
nome. These features comprise information about the gene se-
quence, HTS presence, physiochemical properties, function, and
phylogeny of the protein (Table 1). All proteins are divided into
three groups. The first includes proteins whose hydrogenosomal
localization was known prior to the machine learning analysis,
and these are designated positives. The second group includes
proteins that localize to other parts of the cell and are, hence,
designated negatives. Together, these two groups comprise the
learning set. The third group includes all remaining T. vaginalis
proteins whose subcellular localization is unknown. The learning
set is used for both training and testing the classification algo-
rithms. Three machine learning classifier algorithms were tested:
naïve Bayes, Bayesian networks, and a support vector machine
(SVM). For each classifier, a phase of feature selection was per-

formed in which the best-separating subset of features is selected.
The accuracy of each classifier is the average performance over
10-fold cross-validations (see Materials and Methods), and the
best-performing algorithm was subsequently used. The classifica-
tion process results in a prediction score, Simport, that quantifies
the likelihood for a given protein to be localized to the hydrogeno-
some. A protein having a high Simport score (close to 1) has features
similar to the imported proteins in the learning set and is pre-
dicted to be imported into the hydrogenosome. To test the essen-
tiality of the import motif for hydrogenosome targeting, we exe-
cuted the machine learning twice, with and without the HTS
presence/absence feature. We designate these two schemes
MOT1 and MOT2, for with and without the HTS motif, respec-
tively. During the study we conducted three phases of machine
learning prediction and validation in the lab. The initial learning
set included proteins whose hydrogenosomal localization was re-
ported in the literature (positives) and proteins whose function is
unique to other subcellular localizations (negatives). In each
phase we added the results of the localization experiments from
the previous round into the learning set. In what follows we pres-
ent the results of the final classification phase (Fig. 1).

Forty-one of the 55 numeric features were found to differ sig-
nificantly between the positive and negative learning sets (Table
1). The remaining 14 numeric features, all measuring amino acid
properties, were included in the inference procedure as well since
it is possible that synergistic effects exist among different features
that can be identified only during the learning process. The feature

FIG 1 The machine learning procedure. For a learning set comprising all proteins known to be targeted to the hydrogenosome (positive set) and a set of
nontargeted proteins (negative set), 57 different features were calculated. These values are passed to several classifiers, which aim to identify feature combinations
that best differentiate between the positive and negative sets. In order to choose the best-performing classifier, 10-fold cross validation is performed. Within each
fold, an inner cross validation is done to choose the best-performing features (feature selection). After the best classifier has been chosen, it is trained again over
all of the learning set and is used to perform the prediction for each ORF in the T. vaginalis genome. The localization of the top-scoring predictions is
experimentally tested. Newly identified hydrogenosomal proteins are added to the positive set, and another phase of learning can be performed.
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selection process that was applied to the data prior to the classifi-
cation step aims to select combinations of features, which maxi-
mizes the classifier performance in distinguishing between posi-
tive and negative proteins. To estimate the prediction robustness
for each feature, a feature stability score was used. This score is
calculated as the fraction of 10-fold cross-validation repeats in
which the feature was selected by the feature selection process. For
example, the score of a feature that was selected in 2 out of the 10
(10-fold) cross validations is 0.2. Features that are found informa-
tive by the feature selection process in all 10 folds are highly ro-
bust, and their stability score is set to 1. The two learning schemes
resulted in overall similar feature stability scores (Fig. 2). In both
MOT1 and MOT2 schemes, the most robust feature was se-
quence similarity to Betaproteobacteria that was consistently se-
lected in all cross validations. Other features that received high
stability scores (.0.7) in both schemes include the length of 5=

untranslated regions (UTRs), hydrophobic and hydrophilic
amino acid content, arginine count, and the number of homolo-
gous sequences in eukaryotes. Notably, the lengths of the 5= UTRs
that received very high stability scores (0.9 and 0.8 in MOT1 and
MOT2, respectively) do not differ significantly between the pos-
itives and negatives in the learning set. It is possible that this fea-
ture alone is not informative for a distinction between imported
and nonimported proteins but in combination improves the clas-
sification performance. Interestingly, the phylogenetic features re-
ceived high stability scores, including the number of hits (ho-
mologs) in the various Proteobacteria classes and the identity of
the nearest neighbor in the phylogenetic tree (Fig. 2).

The accuracy of the machine learning inference was measured
by the area under the curve (AUC) of the receiver operating char-
acteristics (ROC) curve. This measure quantifies the rate of true
positive versus false positive in the classification procedure. Addi-
tionally, we calculated the area under the precision recall curve
(AUPR), which is a more accurate performance estimator used for
strongly biased data sets (38). The classification performance with
both tested schemes was very high, with AUC values above 0.978
and AUPR values above 0.816 (Table 2). The mean AUCs of the
various classifiers were 0.96 6 0.003 and 0.95 6 0.003 for the
MOT1 and MOT2 schemes, respectively. The best classifiers in
both schemes were the Bayesian network classifiers; however, the
tiny performance coefficient of variation among the different clas-
sifiers (0.3%) indicates that they performed similarly. Most of the
proteins in both schemes received very low Simport values (see Ta-
ble S1 in the supplemental material), in accordance with the ob-
servation that most Trichomonas proteins are not targeted to the
hydrogenosome. A small fraction of proteins, however, obtained
Simport values higher than 0.9: 720 (1.2%) proteins in the MOT1

learning scheme and 345 (0.57%) proteins in the MOT2 learning
scheme (see Fig. S1A). In both schemes, 53,654 (90%) proteins
had Simport scores lower than 0.05, and 201 (0.33%) proteins had
Simport scores higher than 0.9. However, the overall correlation
between Simport values from the MOT1 and MOT2 schemes is
not high (rs 5 0.43; P ,, 0.01). Several proteins received high
Simport scores using one scheme and low scores using the other. For
example, 12 proteins had Simport scores higher than 0.95 in MOT2

and lower than 0.05 in MOT1 (see Fig. S1B). Hence, an exclusion
of the import motif feature from the machine learning analysis
results in a different set of proteins that are predicted as targeted to
the hydrogenosome. Importantly, the number of proteins with
Simport scores higher than 0.95 in both the MOT1 and MOT2

learning schemes is 673, which is close to the estimated number of
about 500 hydrogenosomal proteins (73).

Hydrogenosomal localization validation. We selected 14 pro-
teins for experimental validation (Table 3) based on their Simport

scores. Ten out of these 14 have high scores at least in one of the
learning schemes (MOT1 or MOT2) and are predicted to be
localized to the hydrogenosome. Four had very low scores and are
not predicted to be localized to the hydrogenosome. Out of the 10

FIG 2 A comparison of feature stability score using the MOT1 and MOT2

schemes. Using the 10-fold cross-validation approach, the estimation of the
classifier performance is repeated 10 times (10 folds; see Materials and Meth-
ods for details). In each repeat, a different set of best features may be selected.
Feature stability measures the fraction of the cross-validation repeats in which
the feature was selected. A feature that was selected repeatedly in all of the 10
folds will receive a score of 1, indicating that the feature was found to be
consistently informative for the distinction between positive and negative sets.
BBH, best BLAST hits; AA, amino acid.
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high-scoring predictions, four include a canonical N-terminal im-
port motif, as described previously (11). Proteins were hemagglu-
tinin (HA) tagged at their C termini, and their subcellular local-
izations were determined by cell subfractionation and subsequent
Western blot analysis without distinguishing between subhydrog-
enosomal localization. Potential contamination by cytosolic pro-
teins within the hydrogenosomal fraction was monitored by con-
trol Western blots detecting actin, and the localization was
furthermore checked by in situ immunolocalization (Fig. 3; see
also Fig. S2 in the supplemental material). Altogether, our predic-
tions were correct in 10 of these 14 proteins (71%). All four low-
scoring predictions were found not to localize to the hydrogeno-
some (true negative). Out of the 10 high-scoring predictions, we
localized six novel proteins to the hydrogenosomes of T. vaginalis,
two of which lack the canonical HTS (Table 3).

Out of the four proteins harboring an HTS and for which hy-
drogenosomal localization was verified, TVAG_456770 and
TVAG_361540 are paralogs of the iron sulfur biosynthesis protein
IscA (Table 3; Fig. 3). The proteins contain an HTS slightly differ-
ent from each other and overall share 69% identical amino acids.
Together with another iron sulfur assembly protein (TVAG_
055320), they form a three-member protein family at the thresh-
old of 60% identical amino acids (T60). The third member lacks
the canonical HTS defined above but harbors a similar HTS prefix
(Table 3). This protein received a low import score in both
schemes (Table 3). Proteins such as IscS, IscU, and IscA involved
in FeS cluster assembly are typically found present in mitochon-
drial, mitosomal, and hydrogenosomal organelles (20, 21, 75, 76).
In T. vaginalis the IscS have been shown to localize in the hydrog-
enosome (74).

An additional HTS-harboring protein that we localized in the
hydrogenosome is the chaperonin (HSP60) protein (TVAG_
088050). This protein has two paralogs at T70; one of them
(TVAG_203620) has an HTS and was previously localized to the
hydrogenosome (8). The import score of the other member
(TVAG_167250), which has an HTS, too, is high in the MOT1

scheme (Table 3).
The final validated HTS-harboring protein (TVAG_129210) is

of unknown function and is annotated as a conserved hypothetical
protein (Table 3). No homologs for this protein were found within
the genomes included in our study or by a global online BLAST
query at NCBI. A sequence search against the T. vaginalis genome
yielded 239 paralogous sequences at T95. All of the paralogs have
an identical 5= sequence of the first 6 amino acids, but only
TVAG_129210 has the known import motif “MSLSKSEREF.” The
import score of the paralogs is low, ranging between 0.0001 and
0.44, and none of them is expressed (EST frequency in TrichDB,
0). Hence TVAG_129210 is a T. vaginalis-specific protein that
belongs to a huge protein family with a single member that is
imported into the hydrogenosome.

Evidence for the HTS not solely being responsible for correct
targeting comes from the 4-amino-acid short HTS of the pyru-
vate:ferredoxin oxidoreductase subunit A (PFOA), which is pro-
cessed after the enzyme is imported (36). There are four copies of
this gene in the nucleus, encoding four isoenzymes with at least
80% sequence identity, and two different HTSs: “MLRS” in
TVAG_198110 and “MLRN” in TVAG_242960, TVAG_230580,
and TVAG_254890. In a screening of almost 60,000 potential pro-
teins, MLRS is found on 17, and MLRN is found on 13 proteins in
total. These include among others an axonemal dynein light chain
andaubiquitin-dependentpeptidase (TVAG_499270andTVAG_
050730, respectively) and a potential mannosyl-transferase of the
endoplasmic reticulum (ER) membrane (TVAG_365830). We an-
alyzed the latter and could localize the protein to the ER, which in
T. vaginalis is tightly wrapped around the nucleus (Fig. 4). Intrigu-
ingly, the only HTS to our knowledge essential for import is that of
a hydrogenosomal thioredoxin reductase (TrxRh1, TVAG_
281360) (53), and that is found only once in the genome—on the
TrxRh1 protein itself.

Two of the novel hydrogenosomal proteins harbor no
N-terminal HTS as defined above (Table 3; Fig. 3). The first,
TVAG_479680, carries an nitropropane dioxygenase (NPD)-like
domain (52) and is annotated as a 2-nitropropane dioxygenase
(EC 1.13.12.16) and might be involved in oxidative denitrification
of nitroalkanes to carbonyl and nitrite compounds (52). This re-
sult exemplifies the utility of the machine learning approach to
identify imported proteins that carry a noncanonical HTS. The
TVAG_479680 protein has homologs in various bacteroidetes and
several Leishmania species. A phylogenetic network analysis of this
protein groups it with its eubacterial homologs rather than the
Leishmania lineage (Fig. 5). The second HTS-lacking protein is
TVAG_221830, which contains a Glo-EDI-BRP-like domain (52)
and is annotated as a lactoylglutathione lyase (EC 4.4.1.5). The
protein domain encoded by this gene groups it with a protein
superfamily that includes metalloproteins and antibiotic resis-
tance proteins (52). A BLAST search at NCBI using the protein
sequence yielded several proteins having a similar domain in Fu-
sobacteria (Fig. 6). Neither of the above two proteins has paralogs
in T. vaginalis.

Four of the tested proteins for which high import scores were
initially calculated by one or both of the learning schemes were
found to be localized only in the cytosol (TVAG_064650,
TVAG_062520, TVAG_204360, and TVAG_171100 in Table 3).
The import scores calculated for these proteins in the final learn-
ing phase that included the newly identified hydrogenosomal pro-
teins decreased considerably (Table 3). This result indicates that
the addition of newly identified hydrogenosomal proteins to the
learning set (positives) improved the accuracy of the algorithm.

Posthoc analysis. After the final learning phase, which in-
cluded our localization results, we reexamined how the various
features differ between hydrogenosome-imported and nonim-
ported proteins. To that end, the Wilcoxon signed-rank test was
used and corrected for multiple testing, using a false-discovery
rate test (FDR) (33) (Table 1). Sequence similarities to Gamma-
proteobacteria and Betaproteobacteria homologs were the features
with the most significant difference between imported and non-
imported proteins (P value, 3.40 3 10229). Other features regard-
ing similarity to proteobacteria and other eubacteria received very
significant values as well (P values between 1.14 3 10228 and
7.71 3 10215). Numerous features regarding the amino acid con-

TABLE 2 Machine learning predicted accuracy

Scheme Accuracy measure

Predicted accuracy by

learning phase

Initial Final

MOT1 AUC 0.98 0.99

AUPR 0.84 0.96

MOT2 AUC 0.98 0.99

AUPR 0.82 0.90

Burstein et al.
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tent of the proteins also showed highly significant differences. The
most significant of these were mean hydropathy, polar and non-
polar amino acid content, and the content of arginines, all four
with a P value lower than 1028. Another feature that received a
very significant P values is the total number of BLAST hits. This is
probably due to strong correlation between the number of BLAST
hits in eubacteria and the total number of BLAST hits (rs 5 0.782;
P values, , 2.2 3 10216).

To test whether protein secondary structure correlates with the
localization to thehydrogenosome,wecompared the structural com-
position between top-scoring proteins in the last learning phase
(Simport . 0.9) and the remaining proteins. We found that the top-
scoring proteins are strongly enriched with beta sheet (P values of
2.5731029,Wilcoxon test) anddepletedof coiled segments (P values
of 5 0.002, Wilcoxon test). However, adding the secondary structure
as a feature in the machine learning improved only slightly the AUC

FIG 3 Results of the in vivo localization of two novel hydrogenosomal proteins: TVAG_456770 (a paralog of the iron sulfur biosynthesis protein IscA),
TVAG_479680 (2-nitropropane dioxygenase), and, as a negative control, TVAG_023840 (glucokinase), together with the hydrogenosomal marker ASCT
(TVAG_ 395550). a, anti.

FIG 4 Localization of the mannosyl-transferase encoded by the TVAG_365830 gene. This mannosyl-transferase homologue possesses the same N-terminal
sequence (MLRN) as found in PFO, but while PFO is imported into hydrogenosomes (Hyd) and the presequence is cleaved (36), TVAG_365830 is localized to
the ER, despite possessing the same N terminus as pyruvate:ferredoxin oxidoreductase. (A) HA-tagged TVAG_365830. (B) DAPI staining. (C) Merge of the
images in panels A and B. (D) Bright-field image. (E) An illustration of the typical arrangement of the ER (arrows) around the nucleus (Nuc) in a transmission
electron microscopic image of T. vaginalis. When not attached to host tissue, flagellated T. vaginalis cells are pyriform and about 20 mm in length. A single cell
can house several dozen hydrogenosomes, which are often found clustered in proximity to the axostyle (not visible in this section). Other membrane-bound
structures include lysosomes (Lys) and vacuolar compartments (V).

Burstein et al.
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and failed toexplain thehigh import scoresof severalnonhydrogeno-
somal proteins (Table 3, TVAG_464170).

DISCUSSION

Trichomonas vaginalis encodes more than twice as many proteins
as its human host, and instead of classical mitochondria it pos-
sesses hydrogenosomes. Like typical mitochondria, trichomonad
hydrogenosomes synthesize ATP, but in contrast to mitochondria
they must import all proteins from the cytosol as they lack a ge-
nome and translation machinery (11, 59). Many hydrogenosomal
proteins are equipped with a short N-terminal hydrogenosomal
targeting signal (HTS), which directs the preprotein to the organ-
elle (11). Recently, though, the first proteins were identified that
are apparently imported based on internal targeting signals (53).
This could help to explain the discrepancy between the number of
proteins estimated to be present in the hydrogenosome (about
500) (73) and those that harbor an HTS (about 220) (11).

In order to predict subcellular localization, we conducted a
genome-wide screen for hydrogenosomal proteins using a set of
machine learning classification algorithms. The algorithms do not
depend solely on the presence of an HTS but include 57 features
that measure various genomic, biochemical, and evolutionary
traits of the proteins. Experimental validation revealed that 6 out
of 10 proteins receiving a high import prediction score localized to
the hydrogenosomes. As more hydrogenosomal proteins are dis-

covered, the performance of the machine learning prediction will

improve. When we included the six proteins that we localized in

vivo (Table 3), the prediction score for those that failed to be

imported dropped in four out of six cases. Furthermore, the pre-

diction accuracy as calculated by the AUC and AUPR measures is

higher in this final classification phase (Table 2).

Our total success rate for experimentally tested predictions was

71% (10/14). Assuming that 500 proteins are targeted to

trichomonad hydrogenosomes, the probability of identifying one

of the imported proteins by chance is 0.8371% (500/59,672). Al-

though the success rate is 70-fold better than chance, still it is de

facto much less accurate than the expected inference accuracy es-

timated by the AUC and AUPR measures (Table 2). According to

these curves, for protein values with Simport values equal to or

higher than the minimal Simport values for the 10 tested proteins, it

is expected that 301 proteins having Simport values of .0.99 in the

MOT1 scheme should be localized to the hydrogenosome. There

could be several reasons for the discrepancy between the expected

and observed prediction performance. For example, a learning set

that includes a set of imported proteins whose properties differ

significantly from those of nonimported proteins but also are

much different from the properties of yet undiscovered hydrog-

enosomal proteins would lead to high accuracy and a low success

rate. This is because the prediction accuracy is estimated as the

FIG 5 A multiple sequence alignment and phylogenetic network of TVAG_479680, a novel hydrogenosomal protein (annotated as 2-nitropropane dioxyge-
nase), with its homologs.
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ability of the classification algorithm to distinguish between im-
ported and nonimported proteins, while for a high success rate we
require a good distinction between the yet unknown imported
proteins and nonimported proteins. Other possible reasons for
the low success rate in our approach could be related to the vast
amount of genes present in the T. vaginalis genome. Some pro-
teins have dozens of highly similar duplicates for which similar
protein characteristics are calculated, making the distinction be-
tween the rare imported proteins and the abundant cytosolic pro-
teins very difficult. Moreover, it is possible that the 57 features we
used are not those that best discriminate between imported and
nonimported proteins; possibly other features such as structural
information or yet to be discovered sequence signals would im-
prove the prediction. The learning set is still very limited and
biased toward proteins harboring the canonical HTS. As addi-
tional imported proteins are discovered, the performance of the
machine learning approach is expected to further improve, as
shown by our study.

The machine learning approach identified two HTS-lacking
proteins that we also localize to the hydrogenosome (TVAG_
479680 and TVAG_221830), and these are a putative 2-nitro-
propane dioxygenase and a protein of unknown function, respec-
tively. These could not have been predicted as “hydrogenosomal”
based on the presence of an HTS alone, and they are a represen-
tative example of the ability of our approach to identify hydrog-
enosomal proteins lacking an HTS. The localization experiments
additionally confirmed the prediction of four new hydrogeno-
somal proteins. Taken together, our results suggest that the tar-
geting information is not restricted to a motif such as the sug-
gested HTS alone but might rather be a combination of factors
including amino acid composition and protein conformation.

This view is furthermore supported by the finding of the short
PFOA targeting signal on proteins not targeted to the hydrogeno-
some. PFOA must contain internal information next to its short
HTS assisting in hydrogenosomal targeting.

Streamlined import apparatuses exist in the mitosome-bearing
protists Giardia and Encephalitozoon (50), and the same could be
true for T. vaginalis. So far, only a few potential import compo-
nents have been identified, which include TIM17/TIM23, TIM44,
and PAM16/PAM18 of the inner membrane (73) and Hmp35 of
the outer hydrogenosomal membrane (18). But other compo-
nents might have been missed by a search based on sequence com-
parisons, due to the AT-rich genome of T. vaginalis altering the
codon and amino acid usage and, additionally, the phylogenetic
distance of Trichomonas from other characterized organisms.

A recent study by Rada and colleagues (65) analyzed the core
components of the hydrogenosomal membranes using a pro-
teome-based approach. To test their proteomic results, the au-
thors verified the hydrogenosomal localization of 23 proteins us-
ing transfected cell lines. Within our prediction none of the Rada
et al. protein set received high scores (see Table S1 in the supple-
mental material). The low scores are due to the very different
characteristics of membrane proteins compared to those of solu-
ble matrix proteins. Our initial training set included only two
membrane proteins (Hmp31 and Hmp35) while the large major-
ity represented soluble matrix proteins. If the situation in
Trichomonas mirrors that in yeast, hydrogenosomal membrane
proteins are most likely targeted and integrated into the mem-
brane by a process different from that of the matrix proteins (42,
45, 81). The latter are either recognized by their N-terminal motifs
or by an alternative internal signal that replaced the N-terminal
motif (53), whereas the membrane proteins in yeast insert auton-

FIG 6 A multiple sequence alignment and phylogenetic network of TVAG_221830, a novel hydrogenosomal protein (containing a Glo-EDI-BRP-like domain),
with its homologs.

Burstein et al.

226 ec.asm.org Eukaryotic Cell

 o
n
 F

e
b
ru

a
ry

 2
, 2

0
1
2
 b

y
 U

N
IV

E
R

S
IT

A
E

T
S

- U
N

D
 L

A
N

D
E

S
B

IB
L
IO

T
H

E
K

 D
U

E
S

S
E

L
D

O
R

F
h

ttp
://e

c
.a

s
m

.o
rg

/
D

o
w

n
lo

a
d

e
d

 fro
m

 



omously via a mechanism involving the Sam50 complex (42, 45,
81); in the hydrogenosomal membrane the mechanism could be
similar. In either case, this will affect the prediction algorithm
through the quality of the feature selection. From this observation
we conclude that for future analyses one might need to train the
algorithm on either matrix or membrane proteins separately and
to balance the set of positives for the learning phase according to
alternative import pathways.

Patterns of protein sequence similarity and phylogenetic re-
construction play an important role in hydrogenosomal targeting
prediction using the machine learning approach. One of the
strongest evolutionary features is the number of homologs in Be-
taproteobacteria. Furthermore, both of the HTS-lacking proteins
that we have localized in the hydrogenosome here are eubacterial
proteins (Fig. 5 and 6). One possibility for the origin of these
proteins would be lateral gene acquisition from prokaryotic endo-
symbionts of human that share their habitat with T. vaginalis (2).
However, because lateral gene transfer is a rare event among eu-
karyotes (69), a more tenable possibility would be that these pro-
teins are vestiges of the common endosymbiotic origin of mito-
chondria and hydrogenosomes. Many proteins that are targeted
into double membrane-bound organelles in eukaryotes (hydrog-
enosomes, mitochondria, mitosomes, and chloroplasts) are the
products of genes that were transferred to the host nuclear ge-
nome during the course of endosymbiosis (43). Differential loss of
genes from endosymbiotic origin and insufficient sampling den-
sity of sequenced eukaryotic genomes in the taxonomic neighbor-
hood of T. vaginalis may lead to a phylogenetic signal that is sim-
ilar to lateral gene acquisition. Indeed, the common ancestor of
mitochondria and hydrogenosomes is assumed to have been an
alphaproteobacterium (27); thus, the common expectation is that
nuclear genes of mitochondrial origin would be more similar than
their alphaproteobacterial homologs. However, owing to the sub-
stantial frequency of lateral gene transfer during prokaryote evo-
lution, the alphaproteobacterial phylogenetic signal is scrambled
over time (67), leading to a wider taxonomic distribution of eu-
bacterial homologs with a tendency toward proteobacterial genes
(23). Evidence for the role of the evolutionary component in hy-
drogenosomal targeting prediction is in line with the endosymbi-
otic origin of the organelle.
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